Accelerated Laboratory Weathering of Polypropylene/Poly (Lactic Acid) Blends
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Blends Preparation
2.3. Accelerated Laboratory Weathering
2.4. Characterization
3. Results and Discussion
3.1. FTIR Analysis
3.2. Weight Loss Analysis
3.3. Surface Morphology
3.4. TGA Analysis
3.5. DSC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OECD. Global Plastics Outlook: Economic Drivers, Environmental Impacts and Policy Options. Available online: https://www.oecd-ilibrary.org/environment/global-plastics-outlook_de747aef-en (accessed on 22 February 2022).
- Sivan, A.; Szanto, M.; Pavlov, V. Biofilm development of the polyethylene-degrading bacterium Rhodococcus ruber. Appl. Microbiol. Biot. 2006, 72, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Jian, X.; Xia, L.; Zhu, J.; Zhu, A.; Qi, Y.; Huang, Y.; Li, G. Natural weathering mechanism of isotatic polypropylene under different outdoor climates in China. Polym. Degrad. Stabil. 2017, 146, 212–222. [Google Scholar]
- Suits, L.D.; Hsuan, Y.G. Assessing the photo-degradation of geosynthetics by outdoor exposure and laboratory weatherometer. Geotext. Geomembr. 2003, 21, 111–122. [Google Scholar] [CrossRef]
- Hadar, Y.; Sivan, A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber. Appl. Microbiol. Biot. 2004, 65, 97–104. [Google Scholar]
- Fukushima, K.; Abbate, C.; Tabuani, D.; Gennari, M.; Camino, G. Biodegradation of poly(lactic acid) and its nanocomposites. Polym. Degrad. Stabil. 2009, 94, 1646–1655. [Google Scholar] [CrossRef]
- Qin, Q.; Yang, Y.; Yang, C.; Zhang, L.; Yin, H.; Yu, F.; Ma, J. Degradation and adsorption behavior of biodegradable plastic PLA under conventional weathering conditions. Sci. Total Environ. 2022, 842, 156775. [Google Scholar] [CrossRef]
- Ss, A.; Dkm, B.; Sa, A.; Hb, A. Biodegradation kinetic modeling of oxo-biodegradable polypropylene/polylactide/nanoclay blends and composites under controlled composting conditions. J. Environ. Manag. 2019, 249, 109186. [Google Scholar]
- Lv, Y.; Huang, Y.; Yang, J.; Kong, M.; Yang, H.; Zhao, J.; Li, G. Outdoor and accelerated laboratory weathering of polypropylene: A comparison and correlation study. Polym. Degrad. Stabil. 2015, 112, 145–159. [Google Scholar] [CrossRef]
- Kaynak, C.; Sar, B. Accelerated weathering performance of polylactide and its montmorillonite nanocomposite. Appl. Clay Sci. 2016, 121–122, 86–94. [Google Scholar] [CrossRef]
- Park, D.H.; Kim, M.S.; Yang, J.H.; Lee, D.J.; Kim, K.N.; Hong, B.K.; Kim, W.N. Effects of compatibilizers and hydrolysis on the mechanical and rheological properties of polypropylene/EPDM/poly (lactic acid) ternary blends. Macromol. Res. 2011, 19, 105–112. [Google Scholar] [CrossRef]
- Yoo, T.W.; Yoon, H.G.; Choi, S.J.; Kim, M.S.; Kim, Y.H.; Kim, W.N. Effects of compatibilizers on the mechanical properties and interfacial tension of polypropylene and poly (lactic acid) blends. Macromol. Res. 2010, 18, 583–588. [Google Scholar] [CrossRef]
- Reddy, N.; Nama, D.; Yang, Y. Polylactic acid/polypropylene polyblend fibers for better resistance to degradation. Polym. Degrad. Stabil. 2008, 93, 233–241. [Google Scholar] [CrossRef]
- Mandal, D.K.; Bhunia, H.; Bajpai, P.K.; Chaudhari, C.V.; Dubey, K.A.; Varshney, L.; Kumar, A. Preparation and characterization of polypropylene/polylactide blends and nanocomposites and their biodegradation study. J. Thermoplast. Compos. 2021, 34, 725–744. [Google Scholar] [CrossRef]
- Ebadi-Dehaghani, H.; Barikani, M.; Borhani, S.; Bolvardi, B.; Khonakdar, H.A.; Jafari, S.H.; Aarabi, A. Biodegradation and hydrolysis studies on polypropylene/polylactide/organo-clay nanocomposites. Polym. Bull. 2016, 73, 3287–3304. [Google Scholar] [CrossRef]
- Azuma, Y.; Takeda, H.; Watanabe, S.; Nakatani, H. Outdoor and accelerated weathering tests for polypropylene and polypropylene/talc composites: A comparative study of their weathering behavior. Polym. Degrad. Stabil. 2009, 94, 2267–2274. [Google Scholar] [CrossRef]
- Lizarraga-Laborin, L.L.; Quiroz-Castillo, J.M.; Encinas-Encinas, J.C.; Castillo-Ortega, M.M.; Burruel-Ibarra, S.E.; Romero-Garcia, J.; Torres-Ochoa, J.A.; Cabrera-German, D.; Rodriguez-Felix, D.E. Accelerated weathering study of extruded polyethylene/poly (lactic acid)/chitosan films. Polym. Degrad. Stabil. 2018, 155, 43–51. [Google Scholar] [CrossRef]
- Contat-Rodrigo, L.; Ribes-Greus, A. Viscoelastic behavior of degradable polyolefins aged in soil. J. Appl. Polym. Sci. 2000, 78, 1707–1720. [Google Scholar] [CrossRef]
- Tsuji, H.; Tezuka, Y. Stereocomplex formation between enantiomeric poly(lacticacid)s. 12. Spherulite growth of low-molecular-weight poly(lactic acid)s fromthe melt. Biomacromolecules 2004, 5, 1181–1186. [Google Scholar] [CrossRef]
- Niemczyk, A.; Dziubek, K.; Grzymek, M.; Czaja, K. Accelerated laboratory weathering of polypropylene composites filled with synthetic silicon-based compounds. Polym. Degrad. Stabil. 2019, 161, 30–38. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, W.; Cao, J. Preparation of sodium ligninsulfonate-layered double hydroxide and its effects on wood flour/polypropylene composites during accelerated UV weathering. Polym. Compos. 2018, 39, 2451–2460. [Google Scholar] [CrossRef]
- Barbes, L.; Radulescu, C.; Stihi, C. ATR-FTIR spectrometry characterisation of polymeric materials. Rom. Rep. Phys. 2014, 66, 765–777. [Google Scholar]
- Han, C.; Sahle-Demessie, E.; Varughese, E.; Shi, H. Polypropylene-MWCNT composite degradation, and release, detection and toxicity of MWCNTs during accelerated environmental aging. Environm. Sci. Nano 2019, 6, 1876–1894. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Q.; Zhang, K.; Pan, L.; Feng, Y.; Jia, Y.; Xu, N. Property improvement and compatibilization mechanism of biodegradable polylactic acid/maleic anhydride-based/polypropylene spunbonded nonwoven slices. J. Clean. Prod. 2022, 375, 134097. [Google Scholar] [CrossRef]
- Tian, S.; Luo, Y.; Chen, J.; He, H.; Chen, Y.; Ling, Z. A Comprehensive Study on The Accelerated Weathering Properties of Polypropylene-Wood Composites with Non-Metallic Materials of Waste-Printed Circuit Board Powders. Materials 2019, 12, 876. [Google Scholar] [CrossRef] [PubMed]
- Yew, G.H.; Chow, W.S.; Ishak, Z.M.; Yusof, A.M. Natural Weathering of Poly (Lactic Acid): Effects of Rice Starch and Epoxidized Natural Rubber. J. Elastom. Plast. 2009, 41, 369–382. [Google Scholar] [CrossRef]
- Rabello, M.S.; White, J.R. The role of physical structure and morphology in the photodegradation behaviour of polypropylene. Polym. Degrad. Stabil. 1997, 56, 55–73. [Google Scholar] [CrossRef]
- Ojeda, T.; Freitas, A.; Birck, K.; Dalmolin, E.; Jacques, R.; Bento, F.; Camargo, F. Degradability of linear polyolefins under natural weathering. Polym. Degrad. Stabil. 2011, 96, 703–707. [Google Scholar] [CrossRef] [Green Version]
- Tao, X.; Xiong, J.; Liao, X.; Zhu, J.; Li, G. Mechanism of Microstructural Change of High-Density Polyethylene Under Different Outdoor Climates in China. J. Polym. Environ. 2020, 28, 2616–2630. [Google Scholar] [CrossRef]
- Hayoune, F.; Chelouche, S.; Trache, D.; Zitouni, S.; Grohens, Y. Thermal decomposition kinetics and lifetime prediction of a PP/PLA blend supplemented with iron stearate during artificial aging. Thermochim. Acta 2020, 690, 178700. [Google Scholar] [CrossRef]
- Nakatani, H.; Kyan, T.; Muraoka, T. An Effect of water presence on surface exfoliation of polypropylene film initiated by photodegradation. J. Polym. Environ. 2020, 28, 2219–2226. [Google Scholar] [CrossRef]
Blends | PP (wt%) | PLA (wt%) | PP-g-MAH (phr) | SEBS-g-MAH (phr) |
---|---|---|---|---|
PP/PLA10.0 | 100 | 0 | 0 | 0 |
PP/PLA9.1 | 90 | 10 | 0 | 0 |
PP/PLA8.2 | 80 | 20 | 0 | 0 |
PP/PLA7.3 | 70 | 30 | 0 | 0 |
PP/PLA6.4 | 60 | 40 | 0 | 0 |
PP/PLA5.5 | 50 | 50 | 0 | 0 |
PP/PLA4.6 | 40 | 60 | 0 | 0 |
PP/PLA3.7 | 30 | 70 | 0 | 0 |
PP/PLA2.8 | 20 | 80 | 0 | 0 |
PP/PLA1.9 | 10 | 90 | 0 | 0 |
PP/PLA0.10 | 0 | 100 | 0 | 0 |
PP/PLA8.2c | 80 | 20 | 5 | 5 |
Blends | PP Content (%) | Values |
---|---|---|
PP/PLA10.0 | 100 | – |
PP/PLA9.1 | 90 | 4.50 |
PP/PLA8.2 | 80 | 5.87 |
PP/PLA7.3 | 70 | 4.50 |
PP/PLA6.4 | 60 | 1.87 |
PP/PLA5.5 | 50 | 4.26 |
PP/PLA4.6 | 40 | 2.75 |
PP/PLA3.7 | 30 | 2.83 |
PP/PLA2.8 | 20 | 7.62 |
PP/PLA1.9 | 10 | 5.01 |
PP/PLA0.10 | 0 | 0.46 |
Blends | 0 d | 60 d | ||||||
---|---|---|---|---|---|---|---|---|
Tg (°C) | Tm (°C) | Tc (°C) | Xc (%) | Tg (°C) | Tm (°C) | Tc (°C) | Xc (%) | |
PP/PLA10.0 | - | 160.7 | 118.4 | 39.8 | - | 157.1, 150.1 | 112.8, 108.6 | 41.1 |
PP/PLA9.1 | - | 164.2 | 117.4 | 38.8 | - | 157.8, 150.7 | 115.2 | 39.2 |
PP/PLA8.2 | - | 164.1 | 116.4 | 38.8 | - | 157.8, 151.7 | 114.0 | 41.1 |
PP/PLA7.3 | - | 163.2 | 117.6 | 41.0 | - | 157.1, 145.9 | 116.7 | 46.0 |
PP/PLA6.4 | - | 163.2 | 119.9 | 40.2 | - | 158.0, 150.5 | 113.5, 96.2 | 39.3 |
PP/PLA5.5 | - | 164.2 | 119.1 | 39.4 | - | 160.9, 155.1 | 113.1, 97.5 | 41.1 |
PP/PLA4.6 | 61.5 | 165.3 | 118.2 | 40.1 | - | 158.0, 150.1 | 114.2, 96.7 | 42.8 |
PP/PLA3.7 | 62.1 | 165.7 | 118.8 | 37.3 | 55.4 | 157.1, 148.5 | 109.2 | 38.2 |
PP/PLA2.8 | 62.4 | 166.0 | 118.5 | 39.3 | 52.7 | 155.9, 150.9 | 112.4 | 45.9 |
PP/PLA1.9 | 62.4 | 166.0 | 118.8 | 40.4 | - | 156.6, 151.9 | 112.8, 85.3 | 49.6 |
PP/PLA0.10 | 55.6 | 154.0, 147.1 | 0 | 24.0 | 45.9 | 143.7, 133.5 | 0 | 34.9 |
Time (d) | PP/PLA8.2 | PP/PLA8.2c | ||||||
---|---|---|---|---|---|---|---|---|
Tg (°C) | Tm (°C) | Tc (°C) | Xc (%) | Tg (°C) | Tm (°C) | Tc (°C) | Xc (%) | |
0 | - | 164.5 | 116.6 | 38.8 | - | 163.6 | 116.6 | 37.2 |
30 | - | 156.6 | 116.2 | 39.2 | - | 158.9 | 116.0 | 35.7 |
60 | - | 157.6, 151.9 | 114.1 | 41.0 | - | 155.0 | 115.6, 111.8 | 35.3 |
90 | - | 154.0, 145.2 | 114.0 | 39.6 | - | 152.1, 143.5 | 112.5 | 31.0 |
150 | - | 147.5, 140.2 | 111.6 | 35.2 | - | 153.6, 145.2 | 113.1 | 33.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Q.; Liu, X.; Lu, Y.; Dao, X.; Qiu, L. Accelerated Laboratory Weathering of Polypropylene/Poly (Lactic Acid) Blends. Polymers 2023, 15, 17. https://doi.org/10.3390/polym15010017
Zhou Q, Liu X, Lu Y, Dao X, Qiu L. Accelerated Laboratory Weathering of Polypropylene/Poly (Lactic Acid) Blends. Polymers. 2023; 15(1):17. https://doi.org/10.3390/polym15010017
Chicago/Turabian StyleZhou, Qihua, Xuan Liu, Yanzhen Lu, Xiaoyao Dao, and Liuqing Qiu. 2023. "Accelerated Laboratory Weathering of Polypropylene/Poly (Lactic Acid) Blends" Polymers 15, no. 1: 17. https://doi.org/10.3390/polym15010017
APA StyleZhou, Q., Liu, X., Lu, Y., Dao, X., & Qiu, L. (2023). Accelerated Laboratory Weathering of Polypropylene/Poly (Lactic Acid) Blends. Polymers, 15(1), 17. https://doi.org/10.3390/polym15010017