Sustainable Exopolysaccharide Production by Rhizobium viscosum CECT908 Using Corn Steep Liquor and Sugarcane Molasses as Sole Substrates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Exopolysaccharide Production
2.1.1. Microorganism, Culture Medium and Culture Conditions
2.1.2. Alternative Culture Media
2.1.3. Recovery and Purification of Exopolysaccharides
2.1.4. Analytical Techniques
2.2. Exopolysaccharides Characterization
2.2.1. Sugars Analysis
2.2.2. Linkage Analysis of Carbohydrates
2.2.3. Acetylation Degree
2.3. Oil Recovery Assays
3. Results and Discussion
3.1. Exopolysaccharide Production by Rhizobium viscosum CECT908 Grown in Synthetic Medium
3.2. Sugarcane Molasses as an Alternative Carbon Source for Exopolysaccharide Production
3.3. Corn Steep Liquor as an Alternative Nitrogen Source for Exopolysaccharide Production by Rhizobium viscosum CECT908
Microorganism/ EPS | Carbon Source/ Nitrogen Source | Cultivation Mode | η (mPa s) | EPS Titer (g/L) | EPS Yield (g/g Carbon Source) | Productivity (g/(L × Day)) | Reference |
---|---|---|---|---|---|---|---|
Alcaligenes sp. ATCC31555/ Welan gum | Sugarcane molasses */ Beef extract | Bioreactor | 3730 ± 40 | 41.0 ± 1.4 | 0.70 ± 0.16 | 8.16 ± 0.24 | [38] |
Alcaligenes faecalis/Curdlan | Orange peels * + sucrose/ (NH4)2HPO4 + CSL | Bioreactor | - | 23.2 | 0.53 | 7.73 | [18] |
Aureobasidium pullulans AZ-6/ Pullulan | Sugarcane molasses/ Sugarcane molasses | Flask | - | 33.6 | 0.39 | 3.7 | [22] |
Aureobasidium pullulans AZ-6/ Pullulan | Hazelnut husk hydrolysate/ (NH4)2SO4 | Flask | - | 74.3 | 0.68 | 10.6 | [44] |
Aureobasidium pullulans RBF 4A3/ Pullulan | Glucose/CSL | Bioreactor | - | 88.6 | 0.68 | 22.15 | [19] |
Enterobacter A47/FucoPol | Cheese whey */ (NH4)2HPO4 | Bioreactor (fed-batch) | ≈100 | 6.4 | ≈0.02 | 2.00 | [16] |
Enterobacter A47/FucoPol | Tomato paste **/ (NH4)2HPO4 | Bioreactor (fed-batch) | ≈100 | 8.7 | - | 2.92 | [17] |
Pantoea sp. BCCS 001 GH/Pantoan | Sugar beet molasses/ peptone | Flask | ≈2000 | 9.9 ± 0.5 | 0.33 | 4.9 | [8] |
Pseudomonas stutzeri XP1/Dextran | Corn starch/NaNO3 | Flask | 2241 | 16.0 | - | 3.2 | [20] |
Schizophyllum commune ATCC38548/Schizophyllan | Date syrup/CSL | Flask | - | 8.5 ± 0.2 | 0.29 | 1.06 | [39] |
Sphingomonas paucimobilis/ Gellan gum | Glucose/CSL * + urea | Flask | 6840 | 14.4 | 0.43 | 7.20 | [4] |
Sphingomonas sp. FM01/ Welan gum | Sugarcane molasses */ Beef extract | Flask | 3443 | 37.7 | 0.63 | 12.55 | [15] |
Xanthomonas campestris LRELP-1/ Xanthan gum | Kitchen waste */ Kitchen waste * | Bioreactor | ≈500 | 11.7 | 0.67 | 2.93 | [25] |
Rhizobium viscosum CECT908 | Glucose/Yeast extract | Flask | 3560 ± 96 | 3.0 ± 0.2 | 0.22 ± 0.05 | 0.50 ± 0.03 | This study |
Rhizobium viscosum CECT908 | Sugarcane molasses/CSL | Flask | 10,697 ± 365 | 6.1 ± 0.2 | 0.26 ± 0.09 | 1.01 ± 0.05 | This study |
3.4. Rheological Properties
3.5. Exopolysaccharides Characterization
3.6. Economic Analysis
3.7. Oil Recovery Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Barcelos, M.C.S.; Vespermann, K.A.C.; Pelissari, F.M.; Molina, G. Current status of biotechnological production and applications of microbial exopolysaccharides. Crit. Rev. Food Sci. 2020, 60, 1475–1495. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.R.; Gudiña, E.J.; Ferreira, D.; Teixeira, J.A.; Rodrigues, L.R. The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery. N. Biotechnol. 2019, 49, 144–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freitas, F.; Torres, C.A.V.; Reis, M.A.M. Engineering aspects of microbial exopolysaccharide production. Bioresour. Technol. 2017, 245, 1674–1683. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhu, S.; Li, C.; Zhang, C.; Ji, Y. Cost-effective optimization of gellan gum production by Sphingomonas paucimobilis using corn steep liquor. Prep. Biochem. Biotechnol. 2020, 50, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Ji, S.; Li, H.; Wang, G.H.; Lu, T.; Ma, W.; Wang, J.; Zhu, H.; Xu, H. Rheological behaviors of a novel exopolysaccharide produced by Sphingomonas WG and the potential application in enhanced oil recovery. Int. J. Biol. Macromol. 2020, 162, 1816–1824. [Google Scholar] [CrossRef] [PubMed]
- Miao, S.J.; Zhou, J.; Qi, G.N.; Liu, J.F.; Yang, S.Z.; Gang, H.; Mu, B.Z. Rheological properties of a new microbial exopolysaccharide produced by Sphingomonas sp. HS and its potential in enhanced oil recovery. Energy Fuels 2022, 36, 1792–1798. [Google Scholar] [CrossRef]
- Qi, M.; Zheng, C.; Wu, W.; Yu, G.; Wang, P. Exopolysaccharides from marine microbes: Source, structure and application. Mar. Drugs 2022, 20, 512. [Google Scholar] [CrossRef] [PubMed]
- Niknezhad, S.V.; Kianpour, S.; Jafarzadeh, S.; Alishahi, M.; Darzi, G.N.; Morowvat, M.H.; Ghasemi, Y.; Shavandi, A. Biosynthesis of exopolysaccharide from waste molasses using Pantoea sp. BCCS 001 GH: A kinetic and optimization study. Sci. Rep. 2022, 12, 10128. [Google Scholar] [CrossRef]
- Nadzir, M.M.; Nurhayati, R.W.; Idris, F.N.; Nguyen, M.H. Biomedical applications of bacterial exopolysaccharides: A review. Polymers 2021, 13, 530. [Google Scholar] [CrossRef]
- Jang, H.Y.; Zhang, K.; Chon, B.H.; Choi, H.J. Enhanced oil recovery performance and viscosity characteristics of polysaccharide xanthan gum solution. J. Ind. Eng. Chem. 2015, 21, 741–745. [Google Scholar] [CrossRef]
- Li, Y.; Xu, L.; Gong, H.; Ding, B.; Dong, M.; Li, Y. A microbial exopolysaccharide produced by Sphingomonas species for enhanced oil recovery at high temperatures and high salinity. Energy Fuels 2017, 31, 3960–3969. [Google Scholar] [CrossRef]
- Mehta, A.; Prasad, G.S.; Choudhury, A.R. Cost effective production of pullulan from agri-industrial residues using response surface methodology. Int. J. Biol. Macromol. 2014, 64, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Lu, M.; Chen, J.; Fang, Y.; Wu, L.; Xu, Y.; Wang, S. Production of pullulan from raw potato starch hydrolysates by a new strain of Aureobasidium pullulans. Int. J. Biol. Macromol. 2016, 82, 740–743. [Google Scholar] [CrossRef]
- Mendonça, C.M.N.; Oliveira, R.C.; Freire, R.K.B.; Piazentin, A.C.M.; Pereira, W.A.; Gudiña, E.J.; Evtuguin, D.V.; Converti, A.; Santos, J.H.P.M.; Nunes, C.; et al. Characterization of levan produced by a Paenibacillus sp. isolated from Brazilian crude oil. Int. J. Biol. Macromol. 2021, 186, 788–799. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhou, Y.; Ke, C.; Bai, Y.; Liu, X.; Li, S. Production of welan gum from cane molasses by Sphingomonas sp. FM01. Carbohydr. Polym. 2020, 244, 116485. [Google Scholar] [CrossRef]
- Antunes, S.; Freitas, F.; Alves, V.D.; Grandfils, C.; Reis, M.A.M. Conversion of cheese whey into a fucose- and glucuronic acid-rich extracellular polysaccharide by Enterobacter A47. J. Biotechnol. 2015, 210, 1–7. [Google Scholar] [CrossRef]
- Antunes, S.; Freitas, F.; Sevrin, C.; Grandfils, C.; Reis, M.A.M. Production of FucoPol by Enterobacter A47 using waste tomato paste by-product as sole carbon source. Bioresour. Technol. 2017, 227, 66–73. [Google Scholar] [CrossRef]
- Mohsin, A.; Sun, J.; Khan, I.M.; Hang, H.; Tariq, M.; Tian, X.; Ahmed, W.; Niazi, S.; Zhuang, Y.; Chu, J.; et al. Sustainable biosynthesis of curdlan from orange waste by using Alcaligenes faecalis: A systematically modeled approach. Carbohydr. Polym. 2019, 205, 626–635. [Google Scholar] [CrossRef]
- Sharma, N.; Prasad, G.S.; Choudhury, A.R. Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohydr. Polym. 2013, 93, 95–101. [Google Scholar] [CrossRef]
- Zhao, F.; Guo, C.; Cui, Q.; Hao, Q.; Xiu, J.; Han, S.; Zhang, Y. Exopolysaccharide production by an indigenous isolate Pseudomonas stutzeri XP1 and its application potential in enhanced oil recovery. Carbohydr. Polym. 2018, 199, 375–381. [Google Scholar] [CrossRef]
- Kalogiannis, S.; Iakovidou, G.; Liakopoulou-Kyrikiades, M.; Kyriakidis, A.; Skaracis, G.N. Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem. 2003, 39, 249–256. [Google Scholar] [CrossRef]
- Oktay, B.A.; Bozdemir, M.T.; Ozbas, Z.Y. Evaluation of some agro-industrial wastes as fermentation medium for pullulan production by Aureobasidium pullulans AZ-6. Curr. Microbiol. 2022, 79, 93. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Xu, G.; Yu, L.; Gong, H.; Dong, M.; Li, Y. The displacement efficiency and rheology of welan gum for enhanced heavy oil recovery. Polym. Adv. Technol. 2014, 25, 1122–1129. [Google Scholar] [CrossRef]
- Xia, W.; Dong, X.; Zhang, Y.; Ma, T. Biopolymer from marine Athelia and its application on heavy oil recovery in heterogeneous reservoir. Carbohydr. Polym. 2018, 195, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Li, T.; Zeng, Y.; Li, X.; Jiang, X.; Wang, Y.; Xie, T.; Zhang, Y. Biosynthesis of xanthan gum by Xanthomonas campestris LRELP-1 using kitchen waste as the sole substrate. Carbohydr. Polym. 2016, 151, 684–691. [Google Scholar] [CrossRef]
- Jeanes, A.; Knutson, C.A.; Pittsley, J.E.; Watson, P.R. Extracellular polysaccharide produced from glucose by Arthrobacter viscosus NRRL B-1973: Chemical and physical characterization. J. Appl. Polym. Sci. 1965, 9, 627–638. [Google Scholar] [CrossRef]
- Siddiqui, I.R. An extracellular polysaccharide from Arthrobacter viscosus. Carbohydr. Res. 1967, 4, 277–283. [Google Scholar] [CrossRef]
- Sloneker, J.H.; Orentas, D.G.; Knutson, C.A.; Watson, P.R.; Jeanes, A. Structure of the extracellular bacterial polysaccharide from Arthrobacter viscosus NRRL B-1973. Can. J. Chem. 1968, 46, 3353–3361. [Google Scholar] [CrossRef] [Green Version]
- Quintelas, C.; da Silva, V.B.; Silva, B.; Figueiredo, H.; Tavares, T. Optimization of production of extracellular polymeric substances by Arthrobacter viscosus and their interaction with 13X zeolite for the biosorption of Cr(VI). J. Environ. Technol. 2011, 32, 1541–1549. [Google Scholar] [CrossRef] [Green Version]
- López, E.; Ramos, I.; Sanromán, M.A. Extracellular polysaccharides production by Arthrobacter viscosus. J. Food Eng. 2003, 60, 463–467. [Google Scholar] [CrossRef]
- Novak, J.S.; Tanenbaum, S.W.; Nakas, J.P. Heteropolysaccharide formation by Arthrobacter viscosus grown on xylose and xylose oligosaccharides. Appl. Environ. Microbiol. 1992, 58, 3501–3507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, E.; Rocha, M.A.M.; Saraiva, J.A.; Coimbra, M.A. Microwave superheated water and dilute alkali extraction of brewers´ spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydr. Polym. 2014, 99, 415–422. [Google Scholar] [CrossRef]
- Selvendran, R.R.; March, J.F.; Ring, S.G. Determination of aldoses and uronic acid content of vegetable fiber. Anal. Biochem. 1979, 96, 282–292. [Google Scholar] [CrossRef] [PubMed]
- Coimbra, M.A.; Delgadillo, I.; Waldron, K.W.; Selvendran, R.R. Isolation and analysis of cell wall polymers from olive pulp. In Plant Cell Wall Analysis. Modern Methods of Plant Analysis; Linskens, H.F., Jackson, J.F., Eds.; Springer: Berlin/Heidelberg, Germany, 1996; Volume 17, pp. 19–44. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Reis, S.F.; Coelho, E.; Evtuguin, D.V.; Coimbra, M.A.; Lopes, P.; Cabral, M.; Mateus, N.; Freitas, V. Migration of tannins and pectic polysaccharides from natural cork stoppers to the hydroalcoholic solution. J. Agric. Food Chem. 2020, 68, 14230–14242. [Google Scholar] [CrossRef]
- Nunes, C.; Rocha, S.M.; Saraiva, J.; Coimbra, M.A. Simple and solvent-free methodology for simultaneous quantification of methanol and acetic acid content of plant polysaccharides based on headspace solid phase microextraction-gas chromatography (HS-SPME-GC-FID). Carbohydr. Polym. 2006, 64, 306–311. [Google Scholar] [CrossRef]
- Ai, H.; Liu, M.; Yu, P.; Zhang, S.; Suo, Y.; Luo, P.; Li, S.; Wang, J. Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Carbohydr. Polym. 2015, 129, 35–43. [Google Scholar] [CrossRef]
- Jamshidian, H.; Shojaosadati, S.A.; Vilaplana, F.; Mousavi, S.M.; Soudi, M.R. Characterization and optimization of schizophyllan production from date syrup. Int. J. Biol. Macromol. 2016, 92, 484–493. [Google Scholar] [CrossRef]
- Bento, H.B.S.; Carbalho, A.K.F.; Reis, C.E.R.; De Castro, H.F. Single cell oil production and modification for fuel and food applications: Assessing the potential of sugarcane molasses as culture medium for filamentous fungus. Ind. Crops Prod. 2020, 145, 112141. [Google Scholar] [CrossRef]
- Banik, R.M.; Santhiagu, A.; Upadhayay, S.N. Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour. Technol. 2007, 98, 792–797. [Google Scholar] [CrossRef]
- Hofer, A.; Hauer, S.; Kroll, P.; Fricke, J.; Herwig, C. In-depth characterization of the raw material corn steep liquor and its bioavailability in bioprocesses of Penicillium chrysogenum. Process Biochem. 2018, 70, 20–28. [Google Scholar] [CrossRef]
- Correia, J.; Gudiña, E.J.; Lazar, Z.; Janek, T.; Teixeira, J.A. Cost-effective rhamnolipid production by Burkholderia thailandensis E264 using agro-industrial residues. Appl. Microbiol. Biotechnol. 2022, 106, 7477–7489. [Google Scholar] [CrossRef] [PubMed]
- Oktay, B.A.; Bozdemir, M.T.; Ozbas, Z.Y. Optimization of hazelnut husk medium for pullulan production by a domestic A. pullulans strain. Prep. Biochem. Biotechnol. 2022, in press. [Google Scholar] [CrossRef]
- Bastos, R.; Coelho, E.; Coimbra, M.A. Arabinoxylans from cereal by-products: Insights into structural features, recovery, and applications. In Sustainable Recovery and Reutilization of Cereal Processing By-Products; Woodhead Publishing Series in Food Science, Technology and Nutrition; Elsevier: Kidlington, UK, 2018; Chapter 8; pp. 227–251. [Google Scholar] [CrossRef]
- Pintado, A.I.E.; Ferreira, J.A.; Pintado, M.M.E.; Gomes, A.M.P.; Malcata, F.X.; Coimbra, M.A. Efficiency of purification methods on the recovery of exopolysaccharides from fermentation media. Carbohydr. Polym. 2020, 231, 115703. [Google Scholar] [CrossRef] [PubMed]
Sample | Sugars Composition (mol %) | Total Sugars (mg/g) | Acetic Acid (mg/g) | |||||
---|---|---|---|---|---|---|---|---|
Ara | Xyl | Man | Gal | Glc | UA | |||
EPSSyn | 3.2 | 42.4 | 31.9 | 22.6 | 464.4 ± 0.9 | 213.3 ± 21.3 | ||
EPSCSLM | 1.5 | 0.7 | 2.0 | 43.7 | 35.0 | 17.1 | 567.7 ± 22.7 | 184.4 ± 7.3 |
% mol | ||||
---|---|---|---|---|
Glycosyl Linkage | EPSSyn | RSD | EPSCSLM | RSD |
t-Araf | 2.9 | 11 | ||
3-Araf | 0.5 | 1 | ||
5-Araf | 0.6 | 31 | ||
Total | 3.9 | 12 | ||
t-Xylp | 0.3 | 29 | ||
4-Xylp | 2.3 | 8 | ||
2,4-Xylp | 1.2 | 17 | ||
Total | 3.8 | 13 | ||
t-Man | 2.6 | 5 | Traces | |
2-Man | 1.6 | 6 | ||
6-Man | 1.2 | 17 | ||
2,6-Man | 2.8 | 8 | ||
Total | 8.3 | 2 | ||
t-Gal | 0.7 | 18 | 0.9 | 28 |
4-Gal | 50.4 | 2 | 50.8 | 1 |
2,4-Gal | 0.8 | 24 | ||
3,4-Gal | 0.6 | 21 | ||
3,6-Gal | 0.7 | 5 | ||
4,6-Gal | 0.2 | 25 | ||
Total | 51.1 | 2 | 54.0 | 0.1 |
t-Glc | 2.7 | 4 | 2.9 | 24 |
4-Glc | 14.1 | 0.2 | 12.8 | 4 |
6-Glc | 1.2 | 2.9 | 5.0 | 7 |
2,4-Glc | 0.3 | 14 | ||
3,4-Glc | 0.5 | 5 | ||
4,6-Glc | 1.5 | 0.8 | 1.7 | 11 |
2,3,4,6-Glc | 2.4 | 28 | 1.2 | 32 |
Total | 21.8 | 2 | 24.3 | 9 |
t-ManA | 1.9 | 16 | 2.5 | 27 |
4-ManA | 16.9 | 8 | 11.4 | 33 |
Total | 18.8 | 6 | 14.0 | 16 |
% Branching | 9.0 | 8.5 |
Substrate | Concentration (g/L Medium) | Price (€/kg) a | Cost of Substrate/L Medium (€) | EPS Titer (g/L) | Cost of Substrate/kg EPS Produced (€) |
---|---|---|---|---|---|
Glucose | 25 | 0.8 | 0.02 | 6.67 | |
Yeast extract | 3 | 72.0 | 0.216 | 71.99 | |
K2HPO4 | 2 | 11.3 | 0.0226 | 7.53 | |
MgSO4·7H2O | 0.1 | 5.6 | 0.00056 | 0.18 | |
0.25916 | 3.0 | 86.37 | |||
SM | 60 | 0.2 | 0.012 | 1.97 | |
CSL | 13 b | 0.4 | 0.0052 | 0.85 | |
0.0172 | 6.1 | 2.82 |
Treatment | OOIP (mL) | Water Flooding Recovery (% OOIP) | Tertiary Recovery (% OOIP) | Final Recovery (% OOIP) |
---|---|---|---|---|
Water | 91.7 ± 2.5 | 48.4 ± 2.8 | - | 48.4 ± 2.8 |
EPSCSLM (50 mPa s) | 92.1 ± 2.6 | 50.7 ± 1.6 | 25.0 ± 1.1 | 75.6 ± 2.7 |
EPSCSLM (100 mPa s) | 93.7 ± 2.1 | 47.7 ± 1.2 | 26.9 ± 1.2 | 74.6 ± 0.8 |
Xanthan (50 mPa s) | 94.0 ± 1.7 | 48.6 ± 1.4 | 9.2 ± 0.6 | 57.8 ± 1.7 |
Xanthan (100 mPa s) | 92.2 ± 2.0 | 50.0 ± 1.1 | 14.0 ± 1.4 | 64.0 ± 0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudiña, E.J.; Couto, M.R.; Silva, S.P.; Coelho, E.; Coimbra, M.A.; Teixeira, J.A.; Rodrigues, L.R. Sustainable Exopolysaccharide Production by Rhizobium viscosum CECT908 Using Corn Steep Liquor and Sugarcane Molasses as Sole Substrates. Polymers 2023, 15, 20. https://doi.org/10.3390/polym15010020
Gudiña EJ, Couto MR, Silva SP, Coelho E, Coimbra MA, Teixeira JA, Rodrigues LR. Sustainable Exopolysaccharide Production by Rhizobium viscosum CECT908 Using Corn Steep Liquor and Sugarcane Molasses as Sole Substrates. Polymers. 2023; 15(1):20. https://doi.org/10.3390/polym15010020
Chicago/Turabian StyleGudiña, Eduardo J., Márcia R. Couto, Soraia P. Silva, Elisabete Coelho, Manuel A. Coimbra, José A. Teixeira, and Lígia R. Rodrigues. 2023. "Sustainable Exopolysaccharide Production by Rhizobium viscosum CECT908 Using Corn Steep Liquor and Sugarcane Molasses as Sole Substrates" Polymers 15, no. 1: 20. https://doi.org/10.3390/polym15010020
APA StyleGudiña, E. J., Couto, M. R., Silva, S. P., Coelho, E., Coimbra, M. A., Teixeira, J. A., & Rodrigues, L. R. (2023). Sustainable Exopolysaccharide Production by Rhizobium viscosum CECT908 Using Corn Steep Liquor and Sugarcane Molasses as Sole Substrates. Polymers, 15(1), 20. https://doi.org/10.3390/polym15010020