Analysis of Fuel Alternative Products Obtained by the Pyrolysis of Diverse Types of Plastic Materials Isolated from a Dumpsite Origin in Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Types of Plastics
2.2. Design of the Pyrolysis Reactor and Conversion of Plastics into Fuels of Different Quality
2.3. Analysis of the Fuel Obtained by Pyrolysis of Plastics
2.3.1. Yield, Color, Density, and Viscosity
2.3.2. Calorific Value
2.4. By-Products and Rate of Conversion of Plastic into Other Products
2.5. Chemical Analysis
3. Results and Discussion
3.1. Fuel Obtained by Pyrolysis and Steel Reactor
3.2. Analysis of the Products Obtained by Pyrolysis of Plastics
3.3. Chemical Analysis of Fuel by FT-IR
3.4. Chemical Analysis of Fuel by GC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bobulski, J.; Kubanek, M. Deep learning for plastic waste classification system. Appl. Comput. Intell. Soft Comput. 2021, 2021, 6626948. [Google Scholar] [CrossRef]
- Aleksza, L. (Ed.) Waste Management; Profikomp Kft.: Gödöllő, Hungary, 2014; Available online: http://www.nyf.hu/agrtud/sites/www.nye.hu.agrtud/files/konyvek/SZIE_Konyv_Angol_teljes.pdf (accessed on 1 October 2022).
- Rollinson, A.N.; Oladejo, J. Chemical Recycling: Status, Sustainability, and Environmental Impacts; Global Alliance for Incinerator Alternatives: Berkeley, CA, USA, 2020. [Google Scholar] [CrossRef]
- Law, K.L.; Starr, N.; Siegler, T.R.; Jambeck, J.R.; Mallos, N.J.; Leonard, G.H.J.S. The United States’ contribution of plastic waste to land and ocean. Sci. Adv. 2020, 6, eabd0288. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Poll. Res. 2017, 24, 21530–21547. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Evans, S.; Linden, S. Motivating actions to mitigate plastic pollution. Nat. Commun. 2019, 10, 4582. [Google Scholar] [CrossRef] [Green Version]
- Horejs, C. Solutions to plastic pollution. Nat. Rev. Mat. 2020, 5, 641. [Google Scholar] [CrossRef]
- Bano, N.; Younas, T.; Shoaib, F.; Rashid, D.; Jaffri, N. Plastic: Reduce, recycle, and environment. In Environmentally-Benign Energy Solutions; Dincer, I., Colpan, C.O., Ezan, M.A., Eds.; Springer: Cham, Switzerland, 2020; pp. 191–208. [Google Scholar]
- Watt, E.; Picard, M.; Maldonado, B.; Abdelwahab, M.A.; Mielewski, D.F.; Drzal, L.T.; Misra, M.; Mohanty, A.K. Ocean plastics: Environmental implications and potential routes for mitigation–a perspective. RSC Adv. 2021, 11, 21447–21462. [Google Scholar] [CrossRef]
- Mukheed, M.; Khan, A. Plastic pollution in Pakistan: Environmental and health implications. J. Pollut. Eff. Cont. 2020, 8, 251. [Google Scholar] [CrossRef]
- Ali, Y.; Sara, S.; Rehman, O. How to tackle plastic bags and bottles pollution crisis in Pakistan? A cost–benefit analysis approach. Environ. Ecol. Stat. 2021, 28, 697–727. [Google Scholar] [CrossRef]
- Zuberi, M.J.S.; Ali, S.F. Greenhouse effect reduction by recovering energy from waste landfills in Pakistan. Renew. Sustain. Energy Rev. 2015, 44, 117–131. [Google Scholar] [CrossRef]
- Tiwari, D.C.; Ejaz, A.; Singh, K.S. Catalytic degradation of waste plastic into fuel range hydrocarbons. Int. J. Chem. Res. 2009, 1, 31–36. [Google Scholar] [CrossRef] [Green Version]
- Imtiaz, A.; Khan, I.M.; Khan, H.; Ishaq, M.; Khan, R.; Gul, K. Pyrolysis of HDPE into fuel like products: Evaluating catalytic performance of plain and metal oxides impregnated waste brick kiln dust. J. Anal. Appl. Pyrol. 2017, 124, 195–203. [Google Scholar] [CrossRef]
- Valasai, G.D.; Uqaili, M.A.; Memon, H.R.; Samoo, S.R.; Mirjat, N.H.; Harijan, K. Overcoming electricity crisis in Pakistan: A review of sustainable electricity options. Renew. Sustain. Energy Rev. 2017, 72, 734–745. [Google Scholar] [CrossRef]
- Ahmed, S.; Mahmood, Q.; Elahi, N.; Nawab, B. Current practices and futuristic options in plastic waste management in Pakistan. Cent. Asian J. Environ. Sci. Technol. Innov. 2020, 1, 237–244. [Google Scholar] [CrossRef]
- Awan, A.B.; Khan, Z.A. Recent progress in renewable energy–Remedy of energy crisis in Pakistan. Renew. Sustain. Energy Rev. 2014, 33, 236–253. [Google Scholar] [CrossRef]
- Singh, P.; Sharma, V.P. Integrated plastic waste management: Environmental and improved health ap-proaches. Proc. Environ. Sci. 2016, 35, 692–700. [Google Scholar] [CrossRef]
- Wollny, V.; Dehoust, G.; Fritsche, U.R.; Weinem, P. Comparison of plastic packaging waste management options: Feedstock recycling versus energy recovery in Germany. J. Indust. Ecol. 2001, 5, 49–63. [Google Scholar] [CrossRef]
- Gebre, S.H.; Sendeku, M.G.; Bahri, M. Recent trends in the pyrolysis of non-degradable waste plastics. ChemistryOpen 2021, 10, 1202–1226. [Google Scholar] [CrossRef]
- Waghmare, S.N.; Shelare, S.D.; Tembhurkar, C.K.; Jawalekar, S.B. Pyrolysis system for environment-friendly conversion of plastic waste into fuel. In Advances in Materials Processing; Singh, S., Prakash, C., Ramakrishna, S., Krolczyk, G., Eds.; Springer: Singapore, 2020; pp. 131–138. [Google Scholar] [CrossRef]
- Skrzyniarz, M.; Sajdak, M.; Zajemska, M.; Iwaszko, J.; Biniek-Poskart, A.; Skibiński, A.; Morel, S.; Niegodajew, P. Plastic waste management towards energy recovery during the COVID-19 pandemic: The example of protective face mask pyrolysis. Energies 2022, 15, 2629. [Google Scholar] [CrossRef]
- Europarc Federation. EU Strategy on Plastic Waste–Paving the Way towards a Circular Economy. 2018. Available online: https://www.europarc.org/news/2018/01/european-strategy-on-plastic-waste (accessed on 1 October 2022).
- Burlakovs, J.; Kriipsalu, M.; Porshnov, D.; Jani, Y.; Ozols, V.; Pehme, K.M.; Rudovica, V.; Grinfelde, I.; Pilecka, J.; Vincevica-Gaile, Z.; et al. Gateway of landfilled plastic waste towards circular economy in Europe. Separations 2019, 6, 25. [Google Scholar] [CrossRef] [Green Version]
- Kiran, N.; Ekinci, E.; Snape, C.E. Recycling of plastic wastes via pyrolysis. Resour. Conserv. Recycl. 2000, 29, 273–283. [Google Scholar] [CrossRef]
- Mase, C.; Maillard, J.F.; Paupy, B.; Hubert-Roux, M.; Afonso, C.; Giusti, P. Speciation and semiquantification of nitrogen-containing species in complex mixtures: Application to plastic pyrolysis oil. ACS Omega 2022, 7, 19428–19436. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, S.; Giridharan, K.; Stalin, B.; Kumaran, S.; Kavimani, V.; Nagaprasad, N.; Jule, L.T.; Krish-naraj, R. Energy recovery of waste plastics into diesel fuel with ethanol and ethoxy ethyl acetate additives on circular economy strategy. Sci. Rep. 2022, 12, 5330. [Google Scholar] [CrossRef] [PubMed]
- Baytekin, B.; Baytekin, H.T.; Grzybowski, B.A. Retrieving and converting energy from polymers: Deployable technologies and emerging concepts. Energy Environ. Sci. 2013, 6, 3467. [Google Scholar] [CrossRef]
- Devaraj, J.; Robinson, Y.; Ganapathi, P. Experimental investigation of performance, emission and combustion characteristics of waste plastic pyrolysis oil blended with diethyl ether used as fuel for diesel engine. Energy 2015, 85, 304–309. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P.; Tigga, V.P. Waste plastic to pyrolytic oil and its utilization in CI engine: Performance analysis and combustion characteristics. Fuel 2020, 262, 116539. [Google Scholar] [CrossRef]
- Das, A.K.; Hansdah, D.; Mohapatra, A.K.; Panda, A.K. Energy, exergy and emission analysis on a DI single cylinder Diesel engine using pyrolytic waste plastic oil diesel blend. J. Energy Inst. 2020, 93, 1624–1633. [Google Scholar] [CrossRef]
- Jahirul, M.I.; Rasul, M.G.; Schaller, D.; Khan, M.M.K.; Hasan, M.M.; Hazrat, M.A. Transport fuel from waste plastics pyrolysis—A review on technologies, challenges and opportunities. Energy Convers. Manag. 2022, 258, 115451. [Google Scholar] [CrossRef]
- Sivagami, K.; Kumar, K.V.; Tamizhdurai, P.; Govindarajan, D.; Kumar, M.; Nambi, I. Conversion of plastic waste into fuel oil using zeolite catalysts in a bench-scale pyrolysis reactor. RSC Adv. 2022, 12, 7619. [Google Scholar] [CrossRef]
- Jia, H.; Wang, J.; Ma, Y. Experimental study on preparation of fuel by low-temperature pyrolysis of plastic waste combined with desiccated sludge after performing. MATEC Web Conf. 2022, 355, 01028. [Google Scholar] [CrossRef]
- Okonsky, S.T.; Jayarama Krishna, J.V.; Toraman, H.E. Catalytic co-pyrolysis of LDPE and PET with HZSM-5, H-beta, and HY: Experiments and kinetic modelling. React. Chem. Eng. 2022, 7, 2175. [Google Scholar] [CrossRef]
- Global Alliance for Incinerator Alternatives (GAIA). Plastic-to-Fuel: A Losing Proposition; Global Alliance for Incinerator Alternatives: Berkeley, CA, USA, 2022; Available online: https://www.no-burn.org/wp-content/uploads/2022/01/PTF_A-losing-proposition_Jan-12-2022.pdf (accessed on 1 October 2022).
- Zein, S.H.; Grogan, C.T.; Yansaneh, O.Y.; Putranto, A. Pyrolysis of high-density polyethylene waste plastic to liquid fuels—Modelling and economic analysis. Processes 2022, 10, 1503. [Google Scholar] [CrossRef]
- European Commission. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions. The European Green Deal. Brussels, 11.12.2019 COM(2019) 640 Final. Available online: https://ec.europa.eu/info/sites/default/files/european-green-deal-communication_en.pdf (accessed on 1 October 2022).
- Profikomp Ltd. MATE Has Created a Unique Circular Economy Knowledge Centre. 2022. Available online: https://profikomp.hu/en/?mod=news&cla=news&fun=shownews&cat_id=1&id=208&temp=news (accessed on 1 October 2022).
- Mikó, P.; Kovács, G.P.; Alexa, L.; Balla, I.; Póti, P.; Gyuricza, C.S. Biomass production of energy willow under unfavourable field conditions. Appl. Ecol. Environ. Res. 2014, 12, 1–11. [Google Scholar] [CrossRef]
- Anuar Sharuddin, S.D.; Abnisa, F.; Wan Daud, W.M.A.; Aroua, M.K. A review on pyrolysis of plastic wastes. Energy Convers. Manag. 2016, 115, 308–326. [Google Scholar] [CrossRef]
- Quesada, L.; Calero, M.; Lara, M.Á.M.; Pérez, A.; Blázquez, G. Production of an alternative fuel by pyrolysis of plastic wastes mixtures. Energy Fuels 2020, 34, 1781–1790. [Google Scholar] [CrossRef]
- Miandad, R.; Nizami, A.S.; Rehan, M.; Barakat, M.A.; Khan, M.I.; Mustafa, A.; Ismail, M.I.; Murphy, J.D. Influence of temperature and reaction time on the conversion of polystyrene waste to pyrolysis liquid oil. Waste Manag. 2016, 58, 250–259. [Google Scholar] [CrossRef] [PubMed]
- Mangesh, V.L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Kumar Reddy, T.D. Prospects of pyrol-ysis oil from plastic waste as fuel for diesel engines: A review. IOP Conf. Ser. Mater. Sci. Eng. 2017, 197, 012027. [Google Scholar] [CrossRef] [Green Version]
- Sogancioglu, M.; Ahmetli, G.; Yel, E. A comparative study on waste plastics pyrolysis liquid products quantity and energy recovery potential. Energy Procedia 2017, 118, 221–226. [Google Scholar] [CrossRef]
- Güngör, C.; Serin, H.; Özcanlı, M.; Serin, S.; Aydın, K. Engine performance and emission characteristics of plastic oil produced from waste polyethylene and its blends with diesel fuel. Int. J. Green Energy 2015, 12, 98–105. [Google Scholar] [CrossRef]
- Bai, Y.; Givens, J. Ecologically unequal exchange of plastic waste? A longitudinal analysis of international trade in plastic waste. J. World-Syst. Res. 2021, 27, 265–287. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Papageorgiou, L.G.; Lettieri, P. Techno-economic assessment of thermo-chemical treatment (TCT) units in the Greater London area. Chem. Eng. J. 2014, 248, 253–263. [Google Scholar] [CrossRef]
- Thewys, T.; Kuppens, T. Economics of willow pyrolysis after phytoextraction. Int. J. Phytoremediat. 2008, 10, 561–583. [Google Scholar] [CrossRef] [PubMed]
- Vijayakumar, A.; Sebastian, J. Pyrolysis process to produce fuel from different types of plastic—A review. IOP Conf. Ser. Mater. Sci. Eng. 2018, 396, 012062. [Google Scholar] [CrossRef]
- Khan, M.Z.H.; Sultana, M.; Al-Mamun, M.R.; Hasan, M.R. Pyrolytic waste plastic oil and its diesel blend: Fuel characterization. J. Environ. Public Health 2016, 2016, 7869080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawecki, D.; Wu, Q.; Gonçalves, J.S.; Nowack, B. Polymer-specific dynamic probabilistic material flow analysis of seven polymers in Europe from 1950 to 2016. Resour. Conserv. Recycl. 2021, 173, 105733. [Google Scholar] [CrossRef]
- Umer, M.; Abid, M. Economic practices in plastic industry from raw material to waste in Pakistan: A case study. Asian J. Water Environ. Pollut. 2017, 14, 81–90. [Google Scholar] [CrossRef]
- Oni, T.O.; Ayodeji, S.O. Design, construction, and performance testing of a fixed-bed pyrolysis reactor for production of pyrolytic fuel. Eng. Res. Express 2020, 2, 035027. [Google Scholar] [CrossRef]
- Kumar, S.; Singh, R.K. Thermolysis of high-density polyethylene to petroleum products. J. Petrol. Engin. 2013, 2013, 987568. [Google Scholar] [CrossRef] [Green Version]
- Kiran Ciliz, N.; Ekinci, E.; Snape, C.E. Pyrolysis of virgin and waste polypropylene and its mixtures with waste polyethylene and polystyrene. Waste Manag. 2004, 24, 173–181. [Google Scholar] [CrossRef]
- Gülüm, M.; Bilgin, A. Measurements and empirical correlations in predicting biodiesel-diesel blends’ viscosity and density. Fuel 2017, 199, 567–577. [Google Scholar] [CrossRef]
- ASTM D240-19; ASTM International. Standard Test Method for Heat of Combustion of Liquid Hydrocarbon Fuels by Bomb Calorimeter. ASTM: West Conshohocken, PA, USA, 2019. Available online: https://www.astm.org/d0240-19.html (accessed on 1 October 2022).
- Sarker, M.; Rashid, M.M.; Molla, M. Waste polypropylene plastic conversion into liquid hydrocarbon fuel for producing electricity and energies. Environ. Technol. 2012, 33, 2709–2721. [Google Scholar] [CrossRef]
- Singh, P.; Déparrois, N.; Burra, K.G.; Bhattacharya, S.; Gupta, A.K. Energy recovery from cross-linked poly-ethylene wastes using pyrolysis and CO2 assisted gasification. Appl. Energy 2019, 254, 113722. [Google Scholar] [CrossRef]
- Bridgwater, A.V. Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 2012, 38, 68–94. [Google Scholar] [CrossRef]
- Sogancioglu, M.; Yel, E.; Ahmetli, G. Pyrolysis of waste high density polyethylene (HDPE) and low density polyethylene (LDPE) plastics and production of epoxy composites with their pyrolysis chars. J. Clean. Prod. 2017, 165, 369–381. [Google Scholar] [CrossRef]
- Jia, H.; Ben, H.; Luo, Y.; Wang, R. Catalytic fast pyrolysis of poly(ethylene terephthalate) (PET) with zeolite and nickel chloride. Polymers 2020, 12, 705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarker, M.; Kabir, A.; Rashid, M.M.; Molla, M.; Mohammad, A.D. Waste polyethylene terephthalate (PETE-1) conversion into liquid fuel. J. Fundam. Renew. Energy Appl. 2011, 1, R101202. [Google Scholar] [CrossRef]
- Heydariaraghi, M.; Ghorbanian, S.; Hallajisani, A.; Salehpour, A. Fuel properties of the oils produced from the pyrolysis of commonly-used polymers: Effect of fractionating column. J. Anal. Appl. Pyrolysis 2016, 121, 307–317. [Google Scholar] [CrossRef]
- Shah, J.; Jan, M.R.; Mabood, F.; Jabeen, F. Catalytic pyrolysis of LDPE leads to valuable resource recovery and reduction of waste problems. Energy Convers. Manag. 2010, 51, 2791–2801. [Google Scholar] [CrossRef]
- Singh, R.K.; Ruj, B.; Sadhukhan, A.K.; Gupta, P. A TG-FTIR investigation on the co-pyrolysis of the waste HDPE, PP, PS and PET under high heating conditions. J. Energy Inst. 2020, 93, 1020–1035. [Google Scholar] [CrossRef]
- Rapsing, E.C., Jr. Performance evaluation of waste plastic oil converter. Asia Pac. J. Multidiscip. Res. 2017, 5, 58–63. [Google Scholar]
- Olufemi, A.S.; Olagboye, S. Thermal conversion of waste plastics into fuel oil. Int. J. Petrochem. Sci. Eng. 2017, 2, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Singh, R.K. Recovery of hydrocarbon liquid from waste high density polyethylene by thermal pyrolysis. Braz. J. Chem. Eng. 2011, 28, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Siddiqui, M.N.; Redhwi, H.H. Pyrolysis of mixed plastics for the recovery of useful products. Fuel Process. Technol. 2009, 90, 545–552. [Google Scholar] [CrossRef]
- Ahmad, I.; Khan, M.I.; Khan, H.; Ishaq, M.; Tariq, R.; Gul, K.; Ahmad, W. Pyrolysis study of polypropylene and polyethylene into premium oil products. Int. J. Green Energy 2015, 12, 663–671. [Google Scholar] [CrossRef]
- Akgün, H.; Yapıcı, E.; Günkaya, Z.; Özkan, A.; Banar, M. Utilization of liquid product through pyrolysis of LDPE and C/LDPE as commercial wax. Environ. Sci. Pollut. Res. 2021, 28, 45971–45984. [Google Scholar] [CrossRef]
- Jung, S.-H.; Kim, S.-J.; Kim, J.-S. The influence of reaction parameters on characteristics of pyrolysis oils from waste high impact polystyrene and acrylonitrile–butadiene–styrene using a fluidized bed reactor. Fuel Process. Technol. 2013, 116, 123–129. [Google Scholar] [CrossRef]
- Siddiqui, M.N. Conversion of hazardous plastic wastes into useful chemical products. J. Hazard. Mater. 2009, 167, 728–735. [Google Scholar] [CrossRef]
- Mangesh, V.L.; Padmanabhan, S.; Tamizhdurai, P.; Ramesh, A. Experimental investigation to identify the type of waste plastic pyrolysis oil suitable for conversion to diesel engine fuel. J. Clean. Prod. 2020, 246, 119066. [Google Scholar] [CrossRef]
- Raheem, A.; Abbasi, S.A.; Memon, A.; Samo, S.R.; Taufiq-Yap, Y.H.; Danquah, M.K.; Harun, R. Renewable energy deployment to combat energy crisis in Pakistan. Energ. Sustain. Soc. 2016, 6, 16. [Google Scholar] [CrossRef]
Name | Abbreviation | Symbol | Application |
---|---|---|---|
Polyethylene terephthalate | PET | Water and soft drink bottles, cooking oil containers, etc. | |
High-density polyethylene | HDPE | Bottle caps, shampoo, and detergent containers, etc. | |
Polyvinyl chloride | PVC | Pipes, food foils, etc. | |
Low-density polyethylene | LDPE | Shopping bags, wrappings, etc. | |
Polypropylene | PP | Disposable utensils, furniture, toys, etc. | |
Polystyrene | PS | Refrigerator trays, CD cases, disposable cups/plates, etc. | |
Others | – | Makeup/cream bottles (polycarbonates), etc. |
Plastic Type 1 | Fuel | Energy | |||
---|---|---|---|---|---|
Yield (%) | Density (g/mL) | Viscosity 2 (cSt) | Calorific Value (MJ/kg Fuel) | Conversion (MJ/kg Plastic) | |
PET | 10.7 | 1.00 | 2.20 | 42.4 | 4.5 |
HDPE | 82.2 | 0.78 | 1.60 | 45.9 | 37.7 |
LDPE | 58.0 | 0.70 | 1.41 | 46.2 | 26.8 |
PP | 61.8 | 0.75 | 1.58 | 46.2 | 28.6 |
PS | 50.0 | 0.91 | 0.99 | 42.8 | 21.4 |
Gasoline | – | 0.74 | 1.70 3 | 45.8 | – |
Diesel | – | 0.83 | 2.61 3 | 45.5 | – |
Sr. No. | Wave Number (cm−1) | Functional Group | Type of Variation | Nature of Functional Group |
---|---|---|---|---|
PET | ||||
1. | 698 | =C-H | Bending | Alkene |
2. | 798 | =C-H | Bending | Alkene |
3. | 873 | =C-H | Bending | Alkene |
4. | 1425 | -C-H | Bending | Alkane |
5. | 1020 | C-O | Stretching | Alkyl Aryl Ether |
6. | 1618 | C=C | Stretching | Alkene |
7. | 2918 | =C-H | Stretching | Alkane |
HDPE | ||||
1. | 798 | =C-H | Bending | Alkene |
2. | 873 | =C-H | Bending | Alkene |
3. | 1411 | -C-H | Bending | Alkane |
4. | 1624 | C=C | Stretching | Alkene |
5. | 2850 | =C-H | Stretching | Alkene |
6. | 2916 | C-H | Stretching | Alkane |
LDPE | ||||
1. | 873 | C-H | Bending | Alkenes |
2. | 1016 | C-H | Bending (in plane) | Aromatic hydrocarbons |
3. | 1419 | C-H | Bending | Alkanes |
4. | 1618 | C=C | Stretching | Alkenes |
5. | 2920 | C-H | Stretching | Alkanes |
PP | ||||
1. | 711 | =C-H | Bending | Alkene |
2. | 798 | =C-H | Bending | Alkene |
3. | 873 | =C-H | Bending | Alkene |
4. | 1413 | -C-H | Bending | Alkane |
5. | 2918 | C-H | Stretch | Alkane |
PS | ||||
1. | 752 | =C-H | Bending | Alkenes |
2. | 1396 | C=C | Bending | Alkanes |
3. | 1491 | C-C | Stretching (in ring) | Aromatics |
4. | 1541 | C=C | Stretching | Aromatics |
5. | 1680 | C=C | Stretching | Alkenes |
6. | 2922 | C-H | Stretching | Alkanes |
7. | 3024 | =C-H | Stretching | Alkenes |
Sr. No. | Retention Time (min) | Compound | Molecular Formula | Molecular Weight |
---|---|---|---|---|
PET | ||||
1 | 3.36 | α-Methyl Styrene | C9H10 | 118 |
2 | 4.40 | Benzaldehyde dimethyl acetal | C9H12O2 | 152 |
3 | 5.92 | Benzoic acid | C7H6O2 | 122 |
4 | 9.24 | Biphenyl | C12H10 | 154 |
5 | 13.32 | Benzophenone | C13H10O | 182 |
6 | 22.62 | 1,1′:3′,1′:3′,1′′′-Quaterphenyl | C24H18 | 306 |
HDPE | ||||
1 | 3.32 | 1-Decene | C10H20 | 140 |
2 | 4.32 | 3-Tetradecene | C14H28 | 196 |
3 | 5.79 | 3-Tetadecene | C14H28 | 196 |
4 | 7.35 | Tridecane | C13H28 | 184 |
5 | 9.28 | Tetradecane | C14H30 | 198 |
6 | 10.59 | Octadecane | C18H38 | 254 |
7 | 12.15 | Hexadecane | C16H34 | 226 |
8 | 13.69 | Nonadecane | C19H40 | 268 |
9 | 15.06 | Heneicosane | C21H44 | 296 |
10 | 16.44 | Heneicosane | C21H44 | 296 |
11 | 17.74 | Octacosane | C28H58 | 394 |
12 | 18.95 | Heneicosane | C21H44 | 296 |
LDPE | ||||
1 | 3.27 | 1-Decene | C10H20 | 140 |
2 | 4.39 | 1-Undecene | C11H22 | 154 |
3 | 5.81 | 1-Dodecene | C12H24 | 168 |
4 | 7.38 | 1-Tridecene | C13H26 | 182 |
5 | 9.02 | 1-Pentadecene | C15H30 | 210 |
6 | 12.14 | Heptadecene | C17H36 | 238 |
7 | 13.70 | Octadecane | C18H38 | 254 |
8 | 15.11 | Nonadecane | C19H40 | 268 |
9 | 16.45 | Eicosane | C20H42 | 282 |
10 | 17.73 | Heneicosane | C21H44 | 296 |
11 | 20.13 | Octacosane | C28H58 | 394 |
PP | ||||
1 | 3.39 | α-Methylstyrene | C9H10 | 118 |
2 | 4.34 | 3-Tetradecene | C14H28 | 196 |
3 | 4.97 | 3-Octadecene | C18H36 | 252 |
4 | 7.67 | 3-Octadecene | C18H36 | 252 |
5 | 8.40 | 3-Octadecene | C18H36 | 252 |
6 | 11.15 | Nonadecane | C19H40 | 268 |
7 | 13.54 | Benzene, 1,1′-(1,3-propanediyl)bis- | C15H16 | 196 |
PS | ||||
1 | 3.41 | α-Methylstyrene | C9H10 | 118 |
2 | 3.87 | Benzene, 2-propenyl | C9H10 | 118 |
3 | 9.30 | Biphenyl | C12H10 | 154 |
4 | 10.14 | Diphenylmethan | C13H12 | 168 |
5 | 11.55 | Bibenzyl | C14H14 | 182 |
6 | 13.58 | Benzene, 1, 1′-(1,3propanediyl) bis- | C15H16 | 196 |
7 | 14.65 | Benzene, 3-butenyl | C10H12 | 132 |
8 | 18.22 | Naphthalene, 2-phenyl- | C16H12 | 204 |
9 | 19.85 | Naphthalene, 2-phenlymethyl | C17H14 | 218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Javed, N.; Muhammad, S.; Iram, S.; Ramay, M.W.; Jaffri, S.B.; Damak, M.; Fekete, G.; Varga, Z.; Székács, A.; Aleksza, L. Analysis of Fuel Alternative Products Obtained by the Pyrolysis of Diverse Types of Plastic Materials Isolated from a Dumpsite Origin in Pakistan. Polymers 2023, 15, 24. https://doi.org/10.3390/polym15010024
Javed N, Muhammad S, Iram S, Ramay MW, Jaffri SB, Damak M, Fekete G, Varga Z, Székács A, Aleksza L. Analysis of Fuel Alternative Products Obtained by the Pyrolysis of Diverse Types of Plastic Materials Isolated from a Dumpsite Origin in Pakistan. Polymers. 2023; 15(1):24. https://doi.org/10.3390/polym15010024
Chicago/Turabian StyleJaved, Nuzhat, Sana Muhammad, Shazia Iram, Muhammad Wajahat Ramay, Shaan Bibi Jaffri, Mariem Damak, György Fekete, Zsolt Varga, András Székács, and László Aleksza. 2023. "Analysis of Fuel Alternative Products Obtained by the Pyrolysis of Diverse Types of Plastic Materials Isolated from a Dumpsite Origin in Pakistan" Polymers 15, no. 1: 24. https://doi.org/10.3390/polym15010024
APA StyleJaved, N., Muhammad, S., Iram, S., Ramay, M. W., Jaffri, S. B., Damak, M., Fekete, G., Varga, Z., Székács, A., & Aleksza, L. (2023). Analysis of Fuel Alternative Products Obtained by the Pyrolysis of Diverse Types of Plastic Materials Isolated from a Dumpsite Origin in Pakistan. Polymers, 15(1), 24. https://doi.org/10.3390/polym15010024