Controllable Preparation of Superparamagnetic Fe3O4@La(OH)3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate
Multifunctional Polymers Used in Agricultural Application and Environmental Treatment
)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Adsorbent
2.2.1. Synthesis of Fe3O4 Particles
2.2.2. Synthesis of Fe3O4@SiO2 Composite
2.2.3. Synthesis of Fe3O4@La(OH)3 Composites
2.3. Characterization of Adsorbent
2.4. Adsorption Experiments
2.5. Adsorption Kinetics
2.6. Adsorption Isotherm
2.7. Reusable Performance
2.8. Real Samples
3. Results and Discussion
3.1. Preparation of Fe3O4@La(OH)3 Composite
3.2. Characterization of Fe3O4@La(OH)3 Composite
3.3. Optimization of Adsorption Experiment
3.3.1. Batch Factors Experiments
3.3.2. Influence of Interfering Ions
3.4. Adsorption Kinetics
3.5. Adsorption Isotherms
3.6. Removal of Phosphate in Actual Water and Its Reusability
3.7. Mechanism of Phosphate Removing by Fe3O4@La(OH)3
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rivera, R.; Chagnes, A.; Cathelineau, M.; Boiron, M.C. Conditioning of poultry manure ash for subsequent phosphorous separation and assessment for a process design. Sustain. Mater. Technol. 2022, 31, 377. [Google Scholar] [CrossRef]
- Hashim, K.S.; Al Khaddar, R.; Jasim, N.; Shaw, A.; Phipps, D.; Kot, P.; Pedrola, M.O.; Alattabi, A.W.; Abdulredha, M.; Alawsh, R. Electrocoagulation as a green technology for phosphate removal from river water. Sep. Purif. Technol. 2019, 210, 135–144. [Google Scholar] [CrossRef]
- Li, B.; Boiarkina, I.; Yu, W.; Huang, H.M.; Munir, T.; Wang, G.Q.; Young, B.R. Phosphorous recovery through struvite crystallization: Challenges for future design. Sci. Total. Environ. 2019, 648, 1244–1256. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Ngo, H.H.; Guo, W.; Liu, Y.; Zhang, X.; Guo, J.; Ni, B.J.; Chang, S.W.; Nguyen, D.D. Insight into biological phosphate recovery from sewage. Bioresour. Technol. 2016, 218, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Cichy, B.; Kuzdzal, E.; Krzton, H. Phosphorus recovery from acidic wastewater by hydroxyapatite precipitation. J. Environ. Manag. 2019, 232, 421–427. [Google Scholar] [CrossRef]
- Xie, M.; Shon, H.K.; Gray, S.R.; Elimelech, M. Membrane-based processes for wastewater nutrient recovery: Technology, challenges, and future direction. Water Res. 2016, 89, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.Y.; Shi, Z.; Song, Y.; Li, X.R.; Hu, Y.L. Phosphate removal from aqueous solution by Donnan dialysis with anion-exchange membrane. J. Cent. South Univ. 2014, 21, 1968–1973. [Google Scholar] [CrossRef]
- Wang, H.; Zhu, J.; Fu, Q.; Hu, H. Adsorption of phosphate on pure and humic acid-coated ferrihydrite. J. Soil Sediment 2015, 15, 1500–1509. [Google Scholar] [CrossRef]
- Cheng, P.; Liu, Y.; Yang, L.; Wang, X.; Chi, Y.; Yuan, H.; Wang, S.; Ren, Y.X. Adsorption and recovery of phosphate from aqueous solution by katoite: Performance and mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2022, 655, 130285. [Google Scholar] [CrossRef]
- Nur, T.; Johir, M.A.H.; Loganathan, P.; Nguyen, T.; Vigneswaran, S.; Kandasamy, J. Phosphate removal from water using an iron oxide impregnated strong base anion exchange resin. J. Ind. Eng. Chem. 2014, 20, 1301–1307. [Google Scholar] [CrossRef]
- Iftekhar, S.; Kucuk, M.E.; Srivastava, V.; Repo, E.; Sillanpaa, M. Application of zinc-aluminium layered double hydroxides for adsorptive removal of phosphate and sulfate: Equilibrium, kinetic and thermodynamic. Chemosphere 2018, 209, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Awual, M.R.; Jyo, A.; Ihara, T.; Seko, N.; Tamada, M.; Lim, K.T. Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Res. 2011, 45, 4592–4600. [Google Scholar] [CrossRef] [PubMed]
- Luo, D.; Wang, L.; Nan, H.; Cao, Y.; Wang, H.; Kumar, T.V.; Wang, C. Phosphorus adsorption by functionalized biochar: A review. Environ. Chem. Lett. 2022, 2022, 1–28. [Google Scholar] [CrossRef]
- Song, L.; Huo, J.; Wang, X.; Yang, F.; He, J.; Li, C. Phosphate adsorption by a Cu(II)-loaded polyethersulfone-type metal affinity membrane with the presence of coexistent ions. Chem. Eng. J. 2016, 284, 182–193. [Google Scholar] [CrossRef]
- Nehra, M.; Dilbaghi, N.; Singhal, N.K.; Hassan, A.A.; Kim, K.H.; Kumar, S. Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management. Environ. Res. 2019, 169, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Hui, B.; Zhang, Y.; Ye, L. Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chem. Eng. J. 2014, 235, 207–214. [Google Scholar] [CrossRef]
- Fang, L.; Wu, B.; Chan, J.K.M.; Lo, I.M.C. Lanthanum oxide nanorods for enhanced phosphate removal from sewage: A response surface methodology study. Chemosphere 2018, 192, 209–216. [Google Scholar] [CrossRef]
- Wu, Y.; Li, X.M.; Yang, Q.; Wang, D.B.; Xu, Q.X.; Yao, F.B.; Chen, F.; Tao, Z.L.T.; Huang, X.D. Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. J. Environ. Manag. 2019, 231, 370–379. [Google Scholar] [CrossRef]
- Lee, W.H.; Kim, J.O. Phosphate recovery from anaerobic digestion effluent using synthetic magnetite particles. J. Environ. Chem. Eng 2022, 10, 107103. [Google Scholar] [CrossRef]
- Liu, C.Y.; Wang, Y.L.; Li, X.L.; Li, J.Y.; Dong, S.X.; Hao, H.T.; Tong, Y.; Zhou, Y.Q. Highly efficient P uptake by Fe3O4 loaded amorphous Zr-La (carbonate) oxides: Electrostatic attraction, inner-sphere complexation and oxygen vacancies acceleration effect. J. Environ. Sci. 2022, 120, 18–29. [Google Scholar] [CrossRef]
- Chen, H.Y.; Zeng, H.B.; Yang, H.M. Phosphate removal from wastewater by magnetic amorphous lanthanum silicate alginate hydrogel beads. Minerals 2022, 12, 1–14. [Google Scholar] [CrossRef]
- Kong, X.M.; Bai, R.Y.; Wang, S.L.; Wu, B.; Zhang, R.Z.; Li, H.D. Recovery of phosphorus from aqueous solution by magnetic TiO2/Fe3O4 composites. Chem. Phys. Lett. 2022, 787, 139234. [Google Scholar] [CrossRef]
- Xiong, H.X.; Peng, S.N.; Zhang, D. Phosphate adsorption removal by (La-doping) Mn-Al bimetal oxide composites. Mater. Chem. Phys. 2022, 285, 126195. [Google Scholar] [CrossRef]
- Zheng, W.S.; Sun, Y.; Gu, Y.P. Assembly of UiO-66 onto co-doped Fe3O4 nanoparticles to activate peroxymonosulfate for efficient degradation of fenitrothion and simultaneous in-situ adsorption of released phosphate. J. Hazard Mater. 2022, 436, 129058. [Google Scholar] [CrossRef]
- Liu, Z.G.; Gao, Y.; Jin, L.; Jin, H.; Xu, N.; Yu, X.Y.; Yu, S.H. Core-shell regeneration magnetic molecularly imprinted polymers-based SERS for sibutramine rapid detection. ACS Sustain. Chem. Eng. 2019, 7, 8168–8175. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Z.; Zhang, J.; Li, H.; Xu, N.; Yuan, X.X.; Wu, Y. An azo-coupling reaction-based surface enhanced resonance Raman scattering approach for ultrasensitive detection of salbutamol. RSC Adv. 2018, 8, 5536–5541. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.H.; Liu, Z.G.; Li, H.W.; Zhang, J.P.; Yuan, X.X.; Jia, X.Y.; Wu, Y.Q. Combination of a graphene SERS substrate and magnetic solid phase micro-extraction used for the rapid detection of trace illegal additives. Analyst 2018, 143, 883–890. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Z.; Wang, W.; Jin, L.; Xu, W.; Wu, Y. Disperse magnetic solid phase microextraction and surface enhanced Raman scattering (Dis-MSPME-SERS) for the rapid detection of trace illegally chemicals. Talanta 2018, 178, 498–506. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, Y.; Deng, R.; Yang, L.; Yu, S.; Xu, S.; Xu, W. Fe3O4@graphene oxide@Ag particles for surface magnet solid-phase extraction surface-enhanced Raman scattering (SMSPE-SERS): From sample pretreatment to detection all-in-one. ACS Appl Mater. Interfaces 2016, 8, 14160–14168. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, X.; Chen, J.; Gao, J.; Yu, S.; Wang, X. Three-template magnetic molecular imprinted polymer for the rapid separation and specific recognition of illegal cooking oil markers. Microchem. J. 2020, 157, 105052. [Google Scholar] [CrossRef]
- Liu, Z.; Yu, S.; Xu, S.; Zhao, B.; Xu, W. Ultrasensitive detection of capsaicin in oil for fast identification of illegal cooking oil by SERRS. Acs Omega 2017, 2, 8401–8406. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.L.; Fang, L.P.; Fortner, J.D.; Guan, X.H.; Lo, I.M.C. Highly efficient and selective phosphate removal from wastewater by magnetically recoverable La(OH)3/Fe3O4 nanocomposites. Water Res. 2017, 126, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Xie, J.; Wang, Z.; Lu, S.Y.; Wu, D.Y.; Zhang, Z.J.; Kong, H.N. Removal and recovery of phosphate from water by lanthanum hydroxide materials. Chem Eng. 2014, 254, 163–170. [Google Scholar] [CrossRef]
- Zhu, Y.L.; Zhang, D.F.; Chang, F.Q.; Zhu, J.; Wang, P.; Tan, F.; Li, X.H.; Li, L.; Hu, G.Z. CoFe2O4-CoFe microspheres for simultaneous electrochemical determination of trace lead(II) and cadmium(II) ions. Surf. Interfaces 2021, 25, 101266. [Google Scholar] [CrossRef]
- Shojaei, B.; Miri, R.; Bazyari, A.; Thompson, L.T. Asphaltene adsorption on MgO, CaO, SiO2, and Al2O3 nanoparticles synthesized via the pechini-type sol-gel method. Fuel 2022, 321, 124136. [Google Scholar] [CrossRef]
- Wang, L.; Wang, J.Y.; Yan, W.; He, C.; Shi, Y.J. MgFe2O4-biochar based lanthanum alginate beads for advanced phosphate removal. Chem. Eng. J. 2020, 387, 123305. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Fang, Y.R.; Zhuo, L.; Yuan, H.; Zhang, L.S. Reduced graphene oxide wrapped Fe3O4@TiO2 yolk-shell nanostructures as a magnetic recyclable photocatalytic antibacterial agent. J. Alloy Compd. 2022, 904, 164001. [Google Scholar] [CrossRef]
- Jais, F.M.; Ibrahim, S.; Yoon, Y.; Jang, M. Enhanced arsenate removal by lanthanum and nano-magnetite composite incorporated palm shell waste–based activated carbon. Sep. Purif. Technol. 2016, 169, 93–102. [Google Scholar] [CrossRef]
- Han, R.; Wang, F.; Zhao, C.F.; Zhang, M.X.; Cui, S.A.; Yang, J. Magnetic solid-phase extraction of pyrethroid and neonicotinoid insecticides separately in environmental water samples based on alkaline or acidic group-functionalized mesoporous silica. Analyst 2021, 147, 1995–2007. [Google Scholar] [CrossRef]
- Jallouli, N.; Elghniji, K.; Hentati, O.; Ribeiro, A.R.; Silva, A.M.T.; Ksibi, M. UV and solar photo-degradation of naproxen: TiO2 catalyst effect, reaction kinetics, products identification and toxicity assessment. J. Hazard Mater. 2016, 304, 329–336. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, J.J.; Guan, M.; Kallem, P.; Qiu, H.D.; Chen, J. Bimetallic nitrogen-doped porous graphene for highly efficient magnetic solid phase extraction of 5-nitroimidazoles in environmental water. Anal. Chim Acta 2022, 1203, 339698. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ma, Z.H.; Cong, H.N.; Wang, Q.Y.; Wang, X. Surface Chitosan-coated Fe3O4 immobilized lignin for adsorbed phosphate radicals in solution. Biochem. Eng. J. 2022, 187, 108662. [Google Scholar] [CrossRef]
- Ding, H.; Zhao, Y.L.; Duan, Q.L.; Wang, J.W.; Zhang, K.; Ding, G.Y.; Xie, X.M.; Ding, C.M. Efficient removal of phosphate from aqueous solution using novel magnetic nanocomposites with Fe3O4@SiO2 core and mesoporous CeO2 shell. J. Rare Earth 2017, 35, 984–994. [Google Scholar] [CrossRef]
- Yuan, L.; Qiu, Z.F.; Yuan, L.; Tariq, M.; Lu, Y.Q.; Yang, J.; Li, Z.; Lyu, S.G. Adsorption and mechanistic study for phosphate removal by magnetic Fe3O4-doped spent FCC catalysts adsorbent. Chemosphere 2019, 219, 183–190. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chen, X.; Wang, X.; Zheng, S.R.; Yang, L.Y. Highly effective wastewater phosphorus removal by phosphorus accumulating organism combined with magnetic sorbent MFC@La(OH)3. Chem. Eng. J. 2018, 335, 443–449. [Google Scholar] [CrossRef]
- Fang, W.K.; Wang, Z.; Xie, Q.; Liu, Y.; Wu, D.Y. Formation of Fe3O4@ZrO2 nanocomposite and its performance as a magnetic adsorbent for phosphate uptake: Influences of end-point pH and stirring rate during synthesis process. Chem Eng. Res. Des. 2019, 145, 194–202. [Google Scholar] [CrossRef]
C0 (mg/L) | qe,exp (mg/g) | Pseudo-First-Order | Pseudo-Second-Order | ||||
---|---|---|---|---|---|---|---|
k1 × 10−2 | qe,cal (mg/g) | R2 | k2 × 10−3 | qe,cal (mg/g) | R2 | ||
5 | 8.33 | 5.73 | 5.19 | 0.9236 | 3.09 | 8.64 | 0.9976 |
10 | 16.67 | 6.89 | 8.77 | 0.9015 | 1.68 | 17.29 | 0.9990 |
30 | 49.93 | 6.70 | 28.80 | 0.8681 | 0.32 | 53.16 | 0.9963 |
50 | 61.32 | 5.83 | 44.68 | 0.9146 | 0.25 | 65.44 | 0.9972 |
100 | 86.47 | 8.01 | 68.91 | 0.9429 | 0.13 | 94.43 | 0.9951 |
Temperature (K) | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
Qmax (mg/g) | KL (L/mg) | R2 | n | KF (mg/g) | R2 | |
298 | 70.77 | 2.26 | 0.9994 | 1.22 | 0.027 | 0.9425 |
318 | 82.37 | 1.89 | 0.9966 | 1.93 | 0.026 | 0.9426 |
338 | 105.37 | 4.07 | 0.9990 | 4.34 | 0.017 | 0.9059 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Jin, X.; Li, X.; Liu, M.; Liu, B.; Zeng, X.; Chen, J.; Liu, Z.; Yu, S.; Xu, Y. Controllable Preparation of Superparamagnetic Fe3O4@La(OH)3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate. Polymers 2023, 15, 248. https://doi.org/10.3390/polym15010248
Lu Y, Jin X, Li X, Liu M, Liu B, Zeng X, Chen J, Liu Z, Yu S, Xu Y. Controllable Preparation of Superparamagnetic Fe3O4@La(OH)3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate. Polymers. 2023; 15(1):248. https://doi.org/10.3390/polym15010248
Chicago/Turabian StyleLu, Yao, Xuna Jin, Xiang Li, Minpeng Liu, Baolei Liu, Xiaodan Zeng, Jie Chen, Zhigang Liu, Shihua Yu, and Yucheng Xu. 2023. "Controllable Preparation of Superparamagnetic Fe3O4@La(OH)3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate" Polymers 15, no. 1: 248. https://doi.org/10.3390/polym15010248
APA StyleLu, Y., Jin, X., Li, X., Liu, M., Liu, B., Zeng, X., Chen, J., Liu, Z., Yu, S., & Xu, Y. (2023). Controllable Preparation of Superparamagnetic Fe3O4@La(OH)3 Inorganic Polymer for Rapid Adsorption and Separation of Phosphate. Polymers, 15(1), 248. https://doi.org/10.3390/polym15010248