Low Hysteresis and Fatigue-Resistant Polyvinyl Alcohol/Activated Charcoal Hydrogel Strain Sensor for Long-Term Stable Plant Growth Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Fabrication of Strain Sensor
2.3. Characterization
3. Results and Discussion
3.1. Design of PVA-AC Conductive Hydrogel
3.2. Mechanical Properties of PVA-AC Conductive Hydrogel
3.3. Fatigue Fracture Properties of PVA-AC Conductive Hydrogel
3.4. Sensing Performance of PVA-AC Conductive Hydrogel Strain Sensor
3.5. Long-Term Stable Plant Growth Monitoring
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qu, C.; Sun, X.; Sun, W.; Cao, L.; Wang, X.; He, Z. Flexible Wearables for Plants. Small 2021, 17, 2104482. [Google Scholar] [CrossRef] [PubMed]
- Just, M.; Frank, S. Evaluation of an Easy-to-Install, Low-Cost Dendrometer Band for Citizen-Science Tree Research. J. For. 2019, 117, 317–322. [Google Scholar] [CrossRef]
- Yoda, K.; Suzuki, M.; Suzuki, H. Development and Evaluation of a New Type of Opto-Electronic Dendrometer. IAWA J. 2000, 21, 425–434. [Google Scholar] [CrossRef]
- Anemaet, E.; Middleton, B. Dendrometer Bands Made Easy: Using Modified Cable Ties to Measure Incremental Growth of Trees. Appl. Plant. Sci. 2013, 1, 1300044. [Google Scholar] [CrossRef]
- Carter, R.; Yu, F.; Wadsworth, W.; Shephard, J.; Birks, T.; Knight, J.; Hand, D. Measurement of Resonant Bend Loss in Anti-Resonant Hollow Core Optical Fiber. Opt. Express. 2017, 25, 20612–20621. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Zhang, Z.; Zhang, N.; Li, J.; Zhou, P.; Hu, F.; Rong, Y.; Lu, B.; Gu, G. High-Stretchability, Ultralow-Hysteresis Conducting Polymer Hydrogel Strain Sensors for Soft Machines. Adv. Mater. 2022, 34, 2203650. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Yan, T.; Ping, J.; Wu, J.; Ying, Y. Rapid Fabrication of Flexible and Stretchable Strain Sensor by Chitosan-Based Water Ink for Plants Growth Monitoring. Adv. Mater. Technol. 2017, 2, 1700021. [Google Scholar] [CrossRef]
- Hu, F.; Xue, Y.; Xu, J.; Lu, B. PEDOT-based conducting polymer actuators. Front. Robot. AI 2019, 6, 114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, G.; Zhang, N.; Xu, H.; Lin, S.; Yu, Y.; Chai, G.; Ge, L.; Yang, H.; Shao, Q.; Sheng, X.; et al. A Soft Neuroprosthetic Hand Providing Simultaneous Myoelectric Control and Tactile Feedback. Nat. Biomed. Eng. 2022. [Google Scholar] [CrossRef]
- Shen, Z.; Zhu, X.; Majidi, C.; Gu, G. Cutaneous Ionogel Mechanoreceptors for Soft Machines, Physiological Sensing, and Amputee Prostheses. Adv. Mater. 2021, 33, 2102069. [Google Scholar] [CrossRef]
- Lee, H.; Joyce, R.; Lee, J. Liquid Polymer/Metallic Salt-Based Stretchable Strain Sensor to Evaluate Fruit Growth. ACS Appl. Mater. Interfaces 2022, 14, 5983–5994. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xu, K.; Zhang, L.; Deguchi, M.; Shishido, H.; Arie, T.; Pan, R.; Hayashi, A.; Shen, L.; Akita, S.; et al. Multimodal Plant Healthcare Flexible Sensor System. ACS Nano 2020, 14, 10966–10975. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, C.; Wu, X.; Ping, J.; Ying, Y. An Integrated and Robust Plant Pulse Monitoring System Based on Biomimetic Wearable Sensor. NPJ Flex. Electron. 2022, 6, 43. [Google Scholar] [CrossRef]
- Zhen, J.; Tripler, E.; Peng, X.; Lazarovitch, N. A Wireless Device for Continuous Frond Elongation Measurement. Comput. Electron. Agric. 2017, 140, 1–7. [Google Scholar] [CrossRef]
- Lee, G.; Wei, Q.; Zhu, Y. Emerging Wearable Sensors for Plant Health Monitoring. Adv. Funct. Mater. 2021, 31, 2106475. [Google Scholar] [CrossRef]
- Tang, W.; Yan, T.; Wang, F.; Yang, J.; Wu, J. Rapid Fabrication of Wearable Carbon Nanotube/Graphite Strain Sensor for Real-Time Monitoring of Plant Growth. Carbon 2019, 147, 295–302. [Google Scholar] [CrossRef]
- Oren, S.; Ceylan, H.; Schnable, P.; Dong, L. High-Resolution Patterning and Transferring of Graphene-Based Nanomaterials onto Tape toward Roll-to-Roll Production of Tape-Based Wearable Sensors. Adv. Mater. Technol. 2017, 2, 1700223. [Google Scholar] [CrossRef]
- Kumar, V.; Alam, M.; Manikkavel, A.; Song, M.; Lee, D.; Park, S. Silicone Rubber Composites Reinforced by Carbon Nanofillers and Their Hybrids for Various Applications: A Review. Polymers 2021, 13, 2322. [Google Scholar] [CrossRef]
- Kumar, V.; Lee, G.; Singh, K.; Choi, J.; Lee, D. Structure-Property Relationship in Silicone Rubber Nanocomposites Reinforced with Carbon Nanomaterials for Sensors and Actuators. Sens. Actuators A Phys. 2020, 303, 111712. [Google Scholar] [CrossRef]
- Li, X.; Jiang, C.; Zhao, F.; Lan, L.; Yao, Y.; Yu, Y.; Ping, J.; Ying, Y. Fully Stretchable Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing. Nano Energy 2019, 61, 78–85. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Hossain, O.; Paul, R.; Yao, S.; Wu, S.; Ristaino, J.; Zhu, Y.; Wei, Q. Real-Time Monitoring of Plant Stresses via Chemiresistive Profiling of Leaf Volatiles by a Wearable Sensor. Matter 2021, 4, 2553–2570. [Google Scholar] [CrossRef]
- Zhao, Q.; Liu, J.; Wu, Z.; Xu, X.; Ma, H.; Hou, J.; Xu, Q.; Yang, R.; Zhang, K.; Zhang, M.; et al. Robust PEDOT:PSS-Based Hydrogel for Highly Efficient Interfacial Solar Water Purification. Chem. Eng. J. 2022, 442, 136284. [Google Scholar] [CrossRef]
- Hsu, H.; Zhang, X.; Xu, K.; Wang, Y.; Wang, Q.; Luo, G.; Xing, M.; Zhong, W. Self-Powered and Plant-Wearable Hydrogel as LED Power Supply and Sensor for Promoting and Monitoring Plant Growth in Smart Farming. Chem. Eng. J. 2021, 422, 129499. [Google Scholar] [CrossRef]
- Yin, S.; Ibrahim, H.; Schnable, P.; Castellano, M.; Dong, L. A Field-Deployable, Wearable Leaf Sensor for Continuous Monitoring of Vapor-Pressure Deficit. Adv. Mater. Technol. 2021, 6, 2001246. [Google Scholar] [CrossRef]
- Ullo, S.; Sinha, G. Advances in IoT and Smart Sensors for Remote Sensing and Agriculture Applications. Remote. Sens. 2021, 13, 2585. [Google Scholar] [CrossRef]
- Huang, J.; Wu, P. Kneading-Inspired Versatile Design for Biomimetic Skins with a Wide Scope of Customizable Features. Adv. Sci. 2022, 9, 2200108. [Google Scholar] [CrossRef]
- Gautam, A.; Komal, P.; Sevak, R.; Gautam, P.; Manjari, S.; Ningthoujam, R. Hard Core Proof of the Polyvinyl Alcohol as a Reducer for the Formation of Gold Nanoparticles. J. Mol. Liq. 2021, 334, 116112. [Google Scholar] [CrossRef]
- Zhao, W.; Cao, J.; Wang, F.; Tian, F.; Zheng, W.; Bao, Y.; Zhang, K.; Zhang, Z.; Yu, J.; Xu, J.; et al. 3D Printing of Stretchable, Adhesive and Conductive Ti3C2Tx-Polyacrylic Acid Hydrogels. Polymers 2022, 14, 1992. [Google Scholar] [CrossRef]
- Chen, W.; Liu, L.; Zhang, H.; Yu, Z. Flexible, Transparent, and Conductive Ti3C2T x MXene–Silver Nanowire Films with Smart Acoustic Sensitivity for High-Performance Electromagnetic Interference Shielding. ACS Nano 2020, 14, 16643–16653. [Google Scholar] [CrossRef]
- Chen, L.; Chang, X.; Wang, H.; Chen, J.; Zhu, Y. Stretchable and Transparent Multimodal Electronic-Skin Sensors in Detecting Strain, Temperature, and Humidity. Nano Energy 2022, 96, 107077. [Google Scholar] [CrossRef]
- Zhang, J.; Wan, L.; Gao, Y.; Fang, X.; Lu, T.; Pan, L.; Xuan, F. Highly Stretchable and Self-Healable MXene/Polyvinyl Alcohol Hydrogel Electrode for Wearable Capacitive Electronic Skin. Adv. Electron. Mater. 2019, 5, 1900285. [Google Scholar] [CrossRef]
- Yuan, J.; Zhang, Y.; Li, G.; Liu, S.; Zhu, R. Printable and Stretchable Conductive Elastomers for Monitoring Dynamic Strain with High Fidelity. Adv. Funct. Mater. 2022, 32, 2204878. [Google Scholar] [CrossRef]
- Li, H.; Chang, S.; Li, M.; Hou, K.; Han, L.; Cao, A.; Li, H.; Shang, Y. Flexible and Stable Carbon Nanotube Film Strain Sensors with Self-Derived Integrated Electrodes. ACS Appl. Mater. Interfaces 2021, 13, 55600–55610. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Liu, X.; Liu, J.; Yuk, H.; Loh, H.; Parada, G.; Settens, C.; Song, J.; Masic, A.; Mckinley, G.; et al. Anti-Fatigue-Fracture Hydrogels. Sci. Adv. 2019, 5, eaau8528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, X.; Chen, G.; Lin, S.; Zhang, J.; Wang, L.; Zhang, P.; Wang, Z.; Wang, Z.; Lan, Y.; Ge, Q.; et al. Anisotropically Fatigue-Resistant Hydrogels. Adv. Mater. 2021, 33, 2102011. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.; Wang, Z.; Yang, C.; Yao, X.; Wang, Y.; Suo, Z. Stretchable and Fatigue-Resistant Materials. Mater. Today 2020, 34, 7–16. [Google Scholar] [CrossRef]
- Dong, X.; Guo, X.; Liu, Q.; Zhao, Y.; Qi, H.; Zhai, W. Strong and Tough Conductive Organo-Hydrogels via Freeze-Casting Assisted Solution Substitution. Adv. Funct. Mater. 2022, 32, 2203610. [Google Scholar] [CrossRef]
- Sun, D.; Gao, Y.; Zhou, Y.; Yang, M.; Hu, J.; Lu, T.; Wang, T. Enhance Fracture Toughness and Fatigue Resistance of Hydrogels by Reversible Alignment of Nanofibers. ACS Appl. Mater. Interfaces 2022, 14, 49389–49397. [Google Scholar] [CrossRef]
- Liang, Q.; Xia, X.; Sun, X.; Yu, D.; Huang, X.; Han, G.; Mugo, S.M.; Chen, W.; Zhang, Q. Highly Stretchable Hydrogels as Wearable and Implantable Sensors for Recording Physiological and Brain Neural Signals. Adv. Sci. 2022, 9, 2201059. [Google Scholar] [CrossRef]
- Zeng, S.; Zhang, J.; Zu, G.; Huang, J. Transparent, Flexible, and Multifunctional Starch-Based Double-Network Hydrogels as High-Performance Wearable Electronics. Carbohydr. Polym. 2021, 267, 118198. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Zhang, Z.; Cao, J.; Zheng, W.; Zhao, Q.; Chen, W.; Xu, X.; Luo, X.; Liu, Q.; Liu, X.; et al. Low Hysteresis and Fatigue-Resistant Polyvinyl Alcohol/Activated Charcoal Hydrogel Strain Sensor for Long-Term Stable Plant Growth Monitoring. Polymers 2023, 15, 90. https://doi.org/10.3390/polym15010090
Wang L, Zhang Z, Cao J, Zheng W, Zhao Q, Chen W, Xu X, Luo X, Liu Q, Liu X, et al. Low Hysteresis and Fatigue-Resistant Polyvinyl Alcohol/Activated Charcoal Hydrogel Strain Sensor for Long-Term Stable Plant Growth Monitoring. Polymers. 2023; 15(1):90. https://doi.org/10.3390/polym15010090
Chicago/Turabian StyleWang, Lina, Zhilin Zhang, Jie Cao, Wenqian Zheng, Qi Zhao, Wenna Chen, Xinye Xu, Xiaoyu Luo, Qi Liu, Ximei Liu, and et al. 2023. "Low Hysteresis and Fatigue-Resistant Polyvinyl Alcohol/Activated Charcoal Hydrogel Strain Sensor for Long-Term Stable Plant Growth Monitoring" Polymers 15, no. 1: 90. https://doi.org/10.3390/polym15010090
APA StyleWang, L., Zhang, Z., Cao, J., Zheng, W., Zhao, Q., Chen, W., Xu, X., Luo, X., Liu, Q., Liu, X., Xu, J., & Lu, B. (2023). Low Hysteresis and Fatigue-Resistant Polyvinyl Alcohol/Activated Charcoal Hydrogel Strain Sensor for Long-Term Stable Plant Growth Monitoring. Polymers, 15(1), 90. https://doi.org/10.3390/polym15010090