Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5
Abstract
:1. Introduction
2. Materials and Methods
2.1. Isolation of Organism and Growth Conditions
2.2. Screening for PHA Accumulation
PHA Granules Visualization
2.3. PHA Biosynthesis in Shake Flask
2.4. Effect of Some Biosynthesis Factors on Growth and PHA Accumulation
2.4.1. Effect of Carbon Source Concentration
2.4.2. Effect of Incubation Time
2.4.3. Effect of Yeast Extract Concentration
2.4.4. Effect of Co-Carbon Substrates
2.5. Analytical Methods
2.5.1. Polymer Extraction
2.5.2. GC/GC-MS Analysis
2.5.3. FT-IR Analysis
2.5.4. NMR Analysis
2.5.5. Size Exclusion Chromatography (SEC)
2.5.6. Thermogravimetry Analysis (TGA)
2.5.7. Differential Scanning Calorimetry (DSC)
3. Results
3.1. Strain Characterisation and Screening for PHA Production
3.2. PHA Biosynthesis in Shake Flask
3.3. Effect of Carbon Source Concentration
3.4. Effect of Incubation Time
3.5. Effect of Yeast Extract
3.6. Effect of Additional/Co-carbon Substrates
3.7. PHA Structure and Characterisation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Możejko-Ciesielska, J.; Kiewisz, R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res. 2016, 192, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Mallick, N. Enhanced production of SCL-LCL-PHA co-polymer by sludge-isolated Pseudomonas aeruginosa MTCC 7925. Lett. Appl. Microbiol. 2008, 46, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Kalia, V.C.; Raizada, N.; Sonakya, V. Bioplastics. J. Sci. Ind. Res. 2000, 59, 433–445. [Google Scholar]
- Mohapatra, S.; Maity, S.; Dash, H.R.; Das, S.; Pattnaik, S.; Rath, C.C.; Samantaray, D. Bacillus and biopolymer: Prospects and challenges. Biochem. Biophys. Rep. 2017, 12, 206–213. [Google Scholar] [CrossRef] [PubMed]
- Rosseto, M.; Rigueto, C.V.; Krein, D.D.; Balbé, N.P.; Massuda, L.A.; Dettmer, A. Biodegradable Polymers: Opportunities and Challenges. Org. Polym. 2020, 27, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Chee, J.; Yoga, S.; Lau, N.; Ling, S.; Abed, R.M.M. Bacterially Produced Polyhydroxyalkanoate (PHA): Converting Renewable Resources into Bioplastics. Curr. Res. Technol. Educ. Top. Appl. Microbiol. Microb. Biotechnol. 2010, 2, 1395–1404. [Google Scholar]
- Prasanna Raj Yadav, S.; Saravanan, C.G.; Vallinayagam, R.; Vedharaj, S.; Roberts, W.L. Fuel and engine characterization study of catalytically cracked waste transformer oil. Energy Convers. Manag. 2015, 96, 490–498. [Google Scholar] [CrossRef]
- Cavalheiro, J.M.B.T.; de Almeida, M.C.M.D.; Grandfils, C.; da Fonseca, M.M.R. Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem. 2009, 44, 509–515. [Google Scholar] [CrossRef]
- Teeka, J.; Imai, T.; Cheng, X.; Reungsang, A.; HIGu, T.; Yamamoto, K.; Sekine, M. Screening of PHA-Producing Bacteria Using Biodiesel-Derived Waste Glycerol as a Sole Carbon Source. J. Water Environ. Technol. 2010, 8, 373–381. [Google Scholar] [CrossRef] [Green Version]
- Loo, C.Y.; Lee, W.H.; Tsuge, T.; Doi, Y.; Sudesh, K. Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) from palm oil products in a Wautersia eutropha mutant. Biotechnol. Lett. 2005, 27, 1405–1410. [Google Scholar] [CrossRef]
- Teeka, J.; Imai, T.; Reungsang, A.; Cheng, X.; Yuliani, E.; Thiantanankul, J.; Poomipuk, N.; Yamaguchi, J.; Jeenanong, A.; Higuchi, T.; et al. Characterization of polyhydroxyalkanoates (PHAs) biosynthesis by isolated Novosphingobium sp. THA-AIK7 using crude glycerol. J. Ind. Microbiol. Biotechnol. 2012, 39, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Fernández, D.; Rodríguez, E.; Bassas, M.; Viñas, M.; Solanas, A.M.; Llorens, J.; Marqués, A.M.; Manresa, A. Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: Effect of culture conditions. Biochem. Eng. J. 2005, 26, 159–167. [Google Scholar] [CrossRef]
- Koller, M.; Rodríguez-Contreras, A. Techniques for tracing PHA-producing organisms and for qualitative and quantitative analysis of intra- and extracellular PHA. Eng. Life Sci. 2015, 15, 558–581. [Google Scholar] [CrossRef]
- Mravec, F.; Obruca, S.; Krzyzanek, V.; Sedlacek, P.; Hrubanova, K.; Samek, O.; Kucera, D.; Benesova, P.; Nebesarova, J. Accumulation of PHA granules in Cupriavidus necator as seen by confocal fluorescence microscopy. FEMS Microbiol. Lett. 2016, 363, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obruca, S.; Sedlacek, P.; Koller, M.; Kucera, D.; Pernicova, I. Involvement of polyhydroxyalkanoates in stress resistance of microbial cells: Biotechnological consequences and applications. Biotechnol. Adv. 2018, 36, 856–870. [Google Scholar] [CrossRef]
- Kato, M.; Bao, H.J.; Kang, C.K.; Fukui, T.; Doi, Y. Production of a novel copolyester of 3-hydroxybutyric acid and medium-chain-length 3-hydroxyalkanoic acids by Pseudomonas sp. 61-3 from sugars. Appl. Microbiol. Biotechnol. 1996, 45, 363–370. [Google Scholar] [CrossRef]
- Khanna, S.; Srivastava, A.K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 2005, 40, 607–619. [Google Scholar] [CrossRef]
- Liz, J.A.Z.E.; Jan-Roblero, J.; De La Serna, J.Z.D.; De León, A.V.P.; Hernández-Rodríguez, C. Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World J. Microbiol. Biotechnol. 2009, 25, 165–170. [Google Scholar] [CrossRef]
- De Eugenio, L.I.; Escapa, I.F.; Morales, V.; Dinjaski, N.; Galán, B.; García, J.L.; Prieto, M.A. The turnover of medium-chain-length polyhydroxyalkanoates in Pseudomonas putida KT2442 and the fundamental role of PhaZ depolymerase for the metabolic balance. Environ. Microbiol. 2010, 12, 207–221. [Google Scholar] [CrossRef]
- Mohapatra, S.; Mohanta, P.R.; Sarkar, B.; Daware, A.; Kumar, C.; Samantaray, D.P. Production of Polyhydroxyalkanoates (PHAs) by Bacillus Strain Isolated from Waste Water and Its Biochemical Characterization. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2017, 87, 459–466. [Google Scholar] [CrossRef]
- Koller, M.; Gasser, I.; Schmid, F.; Berg, G. Linking ecology with economy: Insights into polyhydroxyalkanoate-producing microorganisms. Eng. Life Sci. 2011, 11, 222–237. [Google Scholar] [CrossRef]
- Lee, S.Y. Plastic bacteria? Progress and prospects for polyhydroxyalkanoate production in bacteria. Trends Biotechnol. 1996, 14, 431–438. [Google Scholar] [CrossRef]
- Nicolaus, B.; Lama, L.; Esposito, E.; Manca, M.C.; Improta, R.; Bellitti, M.R.; Duckworth, A.W.; Grant, W.D.; Gambacorta, A. Haloarcula spp able to biosynthesize exo- and endopolymers. J. Ind. Microbiol. Biotechnol. 1999, 23, 489–496. [Google Scholar] [CrossRef]
- Spiekermann, P.; Rehm, B.H.A.; Kalscheuer, R.; Baumeister, D.; Steinbüchel, A. A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch. Microbiol. 1999, 171, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Steinbiiehel, A.; Friind, C.; Jendrossek, D.; Schlegei, H.G. Unable to Derepress the Fermentative Alcohol Dehydrogenase. Arch. Microbiol. 1987, 6, 178–186. [Google Scholar] [CrossRef]
- Ostle, A.G.; Holt, J.G. Nile blue A as a fluorescent stain for poly-β-hydroxybutyrate. Appl. Environ. Microbiol. 1982, 44, 238–241. [Google Scholar] [CrossRef] [Green Version]
- Higuchi-Takeuchi, M.; Morisaki, K.; Numata, K. A screening method for the isolation of polyhydroxyalkanoate-producing purple non-sulfur photosynthetic bacteria from natural seawater. Front. Microbiol. 2016, 7, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Koller, M. Established and advanced approaches for recovery of microbial polyhydroxyalkanoate (PHA) biopolyesters from surrounding microbial biomass. EuroBiotech J. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Chen, G.Q. A microbial polyhydroxyalkanoates (PHA) based bio- and materials industry. Chem. Soc. Rev. 2009, 38, 2434–2446. [Google Scholar] [CrossRef]
- Sang Yup, L.; Lee, S.Y. Bacterial Polyb ydroxyalkanoates. Biotechnol. Bioeng. 1996, 49, 1–14. [Google Scholar] [CrossRef]
- Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Bioplastics with a green agenda. Curr. Opin. Microbiol. 2010, 13, 321–326. [Google Scholar] [CrossRef] [PubMed]
- Idris, S.; Rahim, R.A.; Amirul, A.A.A. Bioprospecting and Molecular Identification of Used Transformer Oil-Degrading Bacteria for Bioplastics Production. Microorganisms 2022, 10, 583. [Google Scholar] [CrossRef] [PubMed]
- Amirul, A.A.; Syairah, S.N.; Yahya, A.R.M.; Azizan, M.N.M.; Majid, M.I.A. Synthesis of biodegradable polyesters by Gram negative bacterium isolated from Malaysian environment. World J. Microbiol. Biotechnol. 2008, 24, 1327–1332. [Google Scholar] [CrossRef]
- López-Cortés, A.; Lanz-Landázuri, A.; García-Maldonado, J.Q. Screening and isolation of PHB-producing bacteria in a polluted marine microbial mat. Microb. Ecol. 2008, 56, 112–120. [Google Scholar] [CrossRef] [PubMed]
- McDowell, E.M.; Trump, B.F. Histologic fixatives suitable for diagnostic light and electron microscopy. Arch. Pathol. Lab. Med. 1976, 100, 405–414. [Google Scholar]
- Martin, C.; Sofla, A.Y.N. A method for bonding PDMS without using plasma. In ASME International Mechanical Engineering Congress and Exposition; ASME: New York, NY, USA, 2010; Volume 10, pp. 557–560. [Google Scholar] [CrossRef]
- Du, G.; Chen, J.; Yu, J.; Lun, S. Continuous production of poly-3-hydroxybutyrate by Ralstonia eutropha in a two-stage culture system. J. Biotechnol. 2001, 88, 59–65. [Google Scholar] [CrossRef]
- Ren, Q.; Sierro, N.; Kellerhals, M.; Kessler, B.; Witholt, B. Properties of engineered poly-3-hydroxyalkanoates produced in recombinant Escherichia coli strains. Appl. Environ. Microbiol. 2000, 66, 1311–1320. [Google Scholar] [CrossRef] [Green Version]
- Braunegg, G.; Sonnleitner, B.; Lafferty, R.M. A rapid gas chromatographic method for the determination of poly-β-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 1978, 6, 29–37. [Google Scholar] [CrossRef]
- Sánchez, R.J.; Schripsema, J.; Da Silva, L.F.; Taciro, M.K.; Pradella, J.G.C.; Gomez, J.G.C. Medium-chain-length polyhydroxyalkanoic acids (PHAmcl) produced by Pseudomonas putida IPT 046 from renewable sources. Eur. Polym. J. 2003, 39, 1385–1394. [Google Scholar] [CrossRef]
- Ansari, N.F.; M. Annuar, M.S. Functionalization of medium-chain-length poly(3-hydroxyalkanoates) as amphiphilic material by graft copolymerization with glycerol 1,3-diglycerolate diacrylate and its mechanism. J. Macromol. Sci. Part A Pure Appl. Chem. 2018, 55, 66–74. [Google Scholar] [CrossRef]
- Gross, R.A.; DeMello, C.; Lenz, R.W.; Brandi, H.; Fuller, R.C. Biosynthesis and Characterization of Poly(β-hydroxyalkanoates) Produced by Pseudomonas oleovorans. Macromolecules 1989, 22, 1106–1115. [Google Scholar] [CrossRef]
- Guo, W.; Duan, J.; Geng, W.; Feng, J.; Wang, S.; Song, C. Comparison of medium-chain-length polyhydroxyalkanoates synthases from Pseudomonas mendocina NK-01 with the same substrate specificity. Microbiol. Res. 2013, 168, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Philip, S.; Keshavarz, T.; Roy, I. Polyhydroxyalkanoates: Biodegradable polymers with a range of applications. J. Chem. Technol. Biotechnol. 2007, 82, 233–247. [Google Scholar] [CrossRef]
- Leong, Y.K.; Show, P.L.; Ooi, C.W.; Ling, T.C.; Lan, J.C.W. Current trends in polyhydroxyalkanoates (PHAs) biosynthesis: Insights from the recombinant Escherichia coli. J. Biotechnol. 2014, 180, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Muangwong, A.; Boontip, T.; Pachimsawat, J.; Napathorn, S.C. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb. Cell Fact. 2016, 15, 1–17. [Google Scholar] [CrossRef] [Green Version]
- De Sisto, A.; Fusella, E.; Urbina, H.; Leyn, V.; Naranjo, L. Molecular characterization of bacteria isolated from waste electrical transformer oil. Moscow Univ. Chem. Bull. 2008, 63, 120–125. [Google Scholar] [CrossRef]
- Rojas-Avelizapa, N.G.; Rodríguez-Vázquez, R.; Enríquez-Villanueva, F.; Martínez-Cruz, J.; Poggi-Varaldo, H.M. Transformer oil degradation by an indigenous microflora isolated from a contaminated soil. Resour. Conserv. Recycl. 1999, 27, 15–26. [Google Scholar] [CrossRef]
- Koller, M. A review on established and emerging fermentation schemes for microbial production of polyhydroxyalkanoate (PHA) biopolyesters. Fermentation 2018, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Koller, M.; Bona, R.; Braunegg, G.; Hermann, C.; Horvat, P.; Kroutil, M.; Martinz, J.; Neto, J.; Pereira, L.; Varila, P. Production of polyhydroxyalkanoates from agricultural waste and surplus materials. Biomacromolecules 2005, 6, 561–565. [Google Scholar] [CrossRef]
- Shuai, J.J.; Tian, Y.S.; Yao, Q.H.; Peng, R.H.; Xiong, F.; Xiong, A.S. Identification and analysis of polychlorinated biphenyls (PCBs)-biodegrading bacterial strains in shanghai. Curr. Microbiol. 2010, 61, 477–483. [Google Scholar] [CrossRef]
- Ashby, R.D.; Solaiman, D.K.Y.; Foglia, T.A. Bacterial poly(hydroxyalkanoate) polymer production from the biodiesel co-product stream. J. Polym. Environ. 2004, 12, 105–112. [Google Scholar] [CrossRef]
- Rai, R.; Keshavarz, T.; Roether, J.A.; Boccaccini, A.R.; Roy, I. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mater. Sci. Eng. R Rep. 2011, 72, 29–47. [Google Scholar] [CrossRef]
- Tappel, R.C.; Wang, Q.; Nomura, C.T. Precise control of repeating unit composition in biodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli. J. Biosci. Bioeng. 2012, 113, 480–486. [Google Scholar] [CrossRef]
- Valappil, S.P.; Misra, S.K.; Boccaccini, A.R.; Keshavarz, T.; Bucke, C.; Roy, I. Large-scale production and efficient recovery of PHB with desirable material properties, from the newly characterised Bacillus cereus SPV. J. Biotechnol. 2007, 132, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Asad-Ur-Rehman Aslam, A.; Masood, R.; Aftab, M.N.; Ajmal, R. Ikram-Ul-Haq: Production and characterization of a thermostable bioplastic (Poly-s-hydroxybutyrate) from Bacillus cereus NRRL-b-3711. Pak. J. Bot. 2016, 48, 349–356. [Google Scholar]
- Flora, G.D.; Bhatt, K.; Tuteja, U. Optimization of culture conditions for poly A-Hydroxybutyrate production from isolated Bacillus species. J. Cell Tissue Res. 2010, 10, 2235. [Google Scholar]
- Cromwick, A.M.; Foglia, T.; Lenz, R.W. The microbial production of poly(hydroxyalkanoates) from tallow. Appl. Microbiol. Biotechnol. 1996, 46, 464–469. [Google Scholar] [CrossRef]
- Kim, T.J.; Lee, E.Y.; Kim, Y.J.; Cho, K.S.; Ryu, H.W. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J. Microbiol. Biotechnol. 2003, 19, 411–417. [Google Scholar] [CrossRef]
- Chen, J.; Li, W.; Zhang, Z.Z.; Tan, T.W.; Li, Z.J. Metabolic engineering of Escherichia coli for the synthesis of polyhydroxyalkanoates using acetate as a main carbon source. Microb. Cell Fact. 2018, 17, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Khanna, S.; Srivastava, A.K. Statistical media optimization studies for growth and PHB production by Ralstonia eutropha. Process Biochem. 2005, 40, 2173–2182. [Google Scholar] [CrossRef]
- Akiyama, M.; Tsuge, T.; Doi, Y. Environmental life cycle comparison of polyhydroxyalkanoates produced from renewable carbon resources by bacterial fermentation. Polym. Degrad. Stab. 2003, 80, 183–194. [Google Scholar] [CrossRef]
- Lu, J.; Tappel, R.C.; Nomura, C.T. Mini-review: Biosynthesis of poly(hydroxyalkanoates). Polym. Rev. 2009, 49, 226–248. [Google Scholar] [CrossRef]
- Tan, G.Y.A.; Chen, C.L.; Li, L.; Ge, L.; Wang, L.; Razaad, I.M.N.; Li, Y.; Zhao, L.; Mo, Y.; Wang, J.Y. Start a research on biopolymer polyhydroxyalkanoate (PHA): A review. Polymers 2014, 6, 706–754. [Google Scholar] [CrossRef] [Green Version]
- Madison, L.L.; Huisman, G.W. Metabolic Engineering of Poly(3-Hydroxyalkanoates): From DNA to Plastic. Microbiol. Mol. Biol. Rev. 1999, 63, 21–53. [Google Scholar] [CrossRef] [PubMed]
- Loo, C.; Sudesh, K. Polyhydroxyalkanoates: Bio-based microbial plastics and their properties. Malays. Polym. J. 2007, 2, 31–57. [Google Scholar]
- Cruz, M.V.; Freitas, F.; Paiva, A.; Mano, F.; Dionísio, M.; Ramos, A.M.; Reis, M.A.M. Valorization of fatty acids-containing wastes and byproducts into short- and medium-chain length polyhydroxyalkanoates. New Biotechnol. 2016, 33, 206–215. [Google Scholar] [CrossRef]
- Chanprateep, S. Current trends in biodegradable polyhydroxyalkanoates. J. Biosci. Bioeng. 2010, 110, 621–632. [Google Scholar] [CrossRef]
- Hany, R.; Hartmann, R.; Böhlen, C.; Brandenberger, S.; Kawada, J.; Löwe, C.; Zinn, M.; Witholt, B.; Marchessault, R.H. Chemical synthesis and characterization of POSS-functionalized poly[3-hydroxyalkanoates]. Polymer (Guildf) 2005, 46, 5025–5031. [Google Scholar] [CrossRef]
- Volova, T.G.; Syrvacheva, D.A.; Zhila, N.O.; Sukovatiy, A.G. Synthesis of P(3HB-co-3HHx) copolymers containing high molar fraction of 3-hydroxyhexanoate monomer by Cupriavidus eutrophus B10646. J. Chem. Technol. Biotechnol. 2016, 91, 416–425. [Google Scholar] [CrossRef]
- Pappalardo, F.; Fragalà, M.; Mineo, P.G.; Damigella, A.; Catara, A.F.; Palmeri, R.; Rescifina, A. Production of filmable medium-chain-length polyhydroxyalkanoates produced from glycerol by Pseudomonas mediterranea. Int. J. Biol. Macromol. 2014, 65, 89–96. [Google Scholar] [CrossRef]
- Tang, H.J.; Neoh, S.Z.; Sudesh, K. A review on poly (3-hydroxybutyrate-co-[P(3HB-co-3HHx)] and genetic modi fi cations that affect its production. Front. Bioeng. Biotechnol. 2022, 10, 2234. [Google Scholar] [CrossRef]
Biosynthesis Factors | CDW (g/L) a | PHA Content (wt.%) b | PHA (g/L) | RCDW (g/L) | Monomer Composition (mol%) b | |
---|---|---|---|---|---|---|
3HHD | 3HOD | |||||
2% (v/v) UTO 200 rpm, 30 °C, 72 h | 2.10 ± 0.04 | 34 ± 1 | 0.72 ± 0.24 | 1.38 ± 0.29 | 15 ± 1 | 85 ± 1 |
Concentration of UTO (%v/v) | CDW (g/L) a | PHA Content (wt.%) b | PHA Concentration (g/L) | RCDW (g/L) | Monomer Composition (mol%) b | |
---|---|---|---|---|---|---|
3HHD | 3HOD | |||||
0.5 | 0.94 ± 0.03 | 39 ± 2 | 0.37 ± 0.03 | 0.56 ± 0.01 | 17 ± 0 | 83 ± 0 |
1.0 | 1.43 ± 0.10 | 36 ± 1 | 0.51 ± 0.03 | 0.92 ± 0.07 | 14 ± 0 | 86 ± 0 |
1.5 | 1.58 ± 0.24 | 36 ± 2 | 0.56 ± 0.06 | 1.01 ± 0.18 | 15 ± 0 | 85 ± 0 |
2.0 | 2.10 ± 0.04 | 34 ± 4 | 0.72 ± 0.24 | 1.38 ± 0.29 | 15 ± 1 | 85 ± 1 |
2.5 | 2.11 ± 0.09 | 33 ± 6 | 0.69 ± 0.13 | 1.41 ± 0.15 | 20 ± 2 | 80 ± 2 |
Incubation time (h) | CDW (g/L) a | PHA Content (wt.%) b | PHA Concentration (g/L) | RDCW (g/L) | Monomer Composition (mol%) b | |
---|---|---|---|---|---|---|
3HHD | 3HOD | |||||
24 | 1.90 ± 0.09 | 30 ± 1 | 0.57 ± 0.05 | 1.33 ± 0.03 | 24 ± 0 | 76 ± 0 |
48 | 2.46 ± 0.04 | 39 ± 3 | 0.96 ± 0.07 | 1.49 ± 0.07 | 17 ± 3 | 83 ± 3 |
72 | 2.51 ± 0.08 | 48 ± 2 | 1.19 ± 0.08 | 1.32 ± 0.02 | 17 ± 3 | 83 ± 3 |
96 | 2.34 ± 0.07 | 50 ± 2 | 1.17 ± 0.08 | 1.17 ± 0.04 | 16 ± 5 | 84 ± 5 |
120 | 1.90 ± 0.09 | 50 ± 2 | 0.95 ± 0.06 | 0.95 ± 0.06 | 19 ± 0 | 81 ± 0 |
Conc. of YE (g/L) | CDW (g/L) a | PHA Content (wt.%) b | PHA Concentration (g/L) | RCDW (g/L) | Monomer Composition (mol%) b | |
---|---|---|---|---|---|---|
3HHD | 3HOD | |||||
0.5 | 2.87 ± 0.04 | 40 ± 2 | 1.15 ± 0.06 | 1.73 ± 0.05 | 17 ± 1 | 83 ± 1 |
1.0 | 3.36 ± 0.05 | 37 ± 2 | 1.25 ± 0.07 | 2.11 ± 0.11 | 19 ± 3 | 81 ± 3 |
1.5 | 3.63 ± 0.08 | 34 ± 1 | 1.23 ± 0.02 | 2.41 ± 0.11 | 17 ± 2 | 83 ± 2 |
2.0 | 3.46 ± 0.06 | 34 ± 4 | 1.17 ± 0.15 | 2.30 ± 0.10 | 18 ± 0 | 82 ± 0 |
2.5 | 3.42 ± 0.05 | 31 ± 1 | 1.08 ± 0.04 | 2.35 ± 0.10 | 18 ± 0 | 82 ± 0 |
Control | 2.10 ± 0.04 | 34 ± 1 | 0.72 ± 0.24 | 1.38 ± 0.29 | 15 ± 1 | 85 ± 1 |
Combination of Carbon Source | CDW (g/L) a | PHA Content (wt.%) b | PHA Concentration (g/L) | RCDW (g/L) | Monomer Composition (mol%) b | |
---|---|---|---|---|---|---|
3HHD | 3HOD | |||||
C1 | 1.91 ± 0.05 | 45 ± 2 | 0.85 ± 0.03 | 1.06 ± 0.07 | 29 ± 2 | 71 ± 2 |
C2 | 2.10 ± 0.08 | 58 ± 7 | 1.21 ± 0.10 | 0.90 ± 0.17 | 33 ± 2 | 67 ± 2 |
C3 | 3.54 ± 0.13 | 67 ± 9 | 2.37 ± 0.39 | 1.17 ± 0.30 | 10 ± 1 | 90 ± 1 |
C4 | 3.85 ± 0.14 | 78 ± 4 | 3.02 ± 0.27 | 0.83 ± 0.14 | 09 ± 0 | 91 ± 0 |
Control | 2.10 ± 0.04 | 34 ± 1 | 0.72 ± 0.24 | 1.38 ± 0.29 | 15 ± 1 | 85 ± 1 |
Parameter | Value |
---|---|
Mw (kDa) | 110.45 |
Mn (kDa) | 55.059 |
PDI | 2.01 |
Tm (°C) | 88 |
Td (°C) | 268 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Idris, S.; Rahim, R.A.; Saidin, A.N.; Abdullah, A.A.-A. Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5. Polymers 2023, 15, 97. https://doi.org/10.3390/polym15010097
Idris S, Rahim RA, Saidin AN, Abdullah AA-A. Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5. Polymers. 2023; 15(1):97. https://doi.org/10.3390/polym15010097
Chicago/Turabian StyleIdris, Shehu, Rashidah Abdul Rahim, Ahmad Nazri Saidin, and Amirul Al-Ashraf Abdullah. 2023. "Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5" Polymers 15, no. 1: 97. https://doi.org/10.3390/polym15010097
APA StyleIdris, S., Rahim, R. A., Saidin, A. N., & Abdullah, A. A. -A. (2023). Bioconversion of Used Transformer Oil into Polyhydroxyalkanoates by Acinetobacter sp. Strain AAAID-1.5. Polymers, 15(1), 97. https://doi.org/10.3390/polym15010097