Progresses and Perspectives of Near-Infrared Emission Materials with “Heavy Metal-Free” Organic Compounds for Electroluminescence
Abstract
:1. Introduction
2. Tuning the Emission of Materials into NIR Region
3. NIR Fluorescent Materials Based on Polymers
4. NIR Fluorescent Materials Based on Small Molecules
5. NIR Phosphorescent Materials Based on Small Molecules
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, C.W.; Van Slyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Kim, J.-H.; Park, J.-W. Intrinsically stretchable organic light-emitting diodes. Sci. Adv. 2021, 7, 9715. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Park, S.H.; Ouyang, X.; Ahn, S.I.; McAlpine, M.C. 3D-printed flexible organic light-emitting diode displays. Sci. Adv. 2022, 8, 8798. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Song, Y.J.; Hong, J.; Kang, K.S.; Yu, S.; Cho, H.; Kim, J.; Lee, S. Water stable and matrix addressable OLED fiber textiles for wearable displays with large emission area. NPJ Flex Electron. 2022, 6, 66. [Google Scholar] [CrossRef]
- Choi, S.; Kang, C.; Byun, C.-W.; Cho, H.; Kwon, B.-H.; Han, J.-H.; Yang, J.-H.; Shin, J.-W.; Hwang, C.-S.; Cho, N.S.; et al. Thin-film transistor-driven vertically stacked full-color organic light-emitting diodes for high-resolution active-matrix displays. Nat. Commun. 2020, 11, 2732. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Su, Q.; Chen, S. Quantum-dot and organic hybrid tandem light-emitting diodes with multi-functionality of full-color-tunability and white-light-emission. Nat. Commun. 2020, 11, 2826. [Google Scholar] [CrossRef]
- Hu, Y.X.; Miao, J.; Hua, T.; Huang, Z.; Qi, Y.; Zou, Y.; Qiu, Y.; Xia, H.; Liu, H.; Cao, X.; et al. Efficient selenium-integrated TADF OLEDs with reduced roll-off. Nat. Photon. 2022, 16, 803–810. [Google Scholar] [CrossRef]
- Liu, H.; Fu, Y.; Tang, B.Z.; Zhao, Z. All-fluorescence white organic light-emitting diodes with record-beating power efficiencies over 130 lm W−1 and small roll-offs. Nat. Commun. 2022, 13, 5154. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, L.; Qian, K.; Liu, H.; Wang, Z.; Gao, F.; Qu, C.; Dai, W.; Lin, D.; Chen, K.; et al. Bioinspired large Stokes shift small molecular dyes for biomedical fluorescence imaging. Sci. Adv. 2022, 8, 3289. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, W.; Chen, Y.; Yuan, H.; Fang, H.; Yao, S.; Zhang, C.; Xu, H.; Li, N.; Liu, Z.; et al. Rational construction of a reversible arylazo-based NIR probe for cycling hypoxia imaging in vivo. Nat. Commun. 2021, 12, 2772. [Google Scholar] [CrossRef]
- Sisak, M.A.A.; Louis, F.; Aoki, I.; Lee, S.H.; Chang, Y.-T.; Matsusaki, M. A near-infrared organic fluorescent probe for broad applications for blood vessels imaging by high-throughput screening via 3D-blood vessel models. Small Methods 2021, 5, 2100338. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.G.; Barth, C.W.; Kitts, C.H.; Mebrat, M.D.; Montaño, A.R.; House, B.J.; McCoy, M.E.; Antaris, A.L.; Galvis, S.N.; McDowall, I.; et al. Near-infrared nerve-binding fluorophores for buried nerve tissue imaging. Sci. Transl. Med. 2021, 12, 0712. [Google Scholar] [CrossRef] [PubMed]
- Salem, D.P.; Gong, X.; Liu, A.T.; Akombi, K.; Strano, M.S. Immobilization and function of NIR-fluorescent carbon nanotube sensors on paper substrates for fluidic manipulation. Anal. Chem. 2020, 92, 916–923. [Google Scholar] [CrossRef] [PubMed]
- Nißler, R.; Bader, O.; Dohmen, M.; Walter, S.G.; Noll, C.; Selvaggio, G.; Groß, U.; Kruss, S. Remote near infrared identification of pathogens with multiplexed nanosensors. Nat. Commun. 2020, 11, 5995. [Google Scholar] [CrossRef] [PubMed]
- Lan, Z.; Lei, Y.; Chan, W.K.E.; Chen, S.; Luo, D.; Zhu, F. Near-infrared and visible light dual-mode organic photodetectors. Sci. Adv. 2020, 6, 8065. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Pei, P.; Lei, Z.; Zhang, X.; Yin, D.; Zhang, F. A Promising NIR-II Fluorescent Sensor for Peptide-Mediated LongTerm Monitoring of Kidney Dysfunction. Angew. Chem. Int. Ed. 2021, 60, 15809–15815. [Google Scholar] [CrossRef] [PubMed]
- Bideh, B.N.; Shahroosvand, H.; Sousaraei, A.; Cabanillas-Gonzalez, J. A near infrared light emitting electrochemical cell with a 2.3 V turn-on voltage. Sci. Rep. 2019, 9, 228. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Kanahashi, K.; Matsuki, K.; Manzhos, S.; Feron, K.; Bottle, S.E.; Tanaka, K.; Nanseki, T.; Takenobu, T.; Tanaka, H.; et al. Triethylene Glycol Substituted Diketopyrrolopyrroleand Isoindigo-Dye Based Donor–Acceptor Copolymers for Organic Light-Emitting Electrochemical Cells and Transistors. Adv. Electron. Mater. 2020, 6, 1901414. [Google Scholar] [CrossRef]
- Mone, M.; Tang, S.; Genene, Z.; Murto, P.; Jevric, M.; Zou, X.; Ràfols-Ribé, J.; Abdulahi, B.A.; Wang, J.; Mammo, W.; et al. Near-Infrared Emission by Tuned Aggregation of a Porphyrin Compound in a Host–Guest Light-Emitting Electrochemical Cell. Adv. Opt. Mater. 2021, 9, 2001701. [Google Scholar] [CrossRef]
- Xiong, W.; Tang, S.; Murto, P.; Zhu, W.; Edman, L.; Wang, E. Combining Benzotriazole and Benzodithiophene Host Units in Host-Guest Polymers for Efficient and Stable Near-Infrared Emission from Light-Emitting Electrochemical Cells. Adv. Opt. Mater. 2019, 7, 1900280. [Google Scholar] [CrossRef]
- Vasilopoulou, M.; Fakharuddin, A.; Arquer, F.P.G.; Georgiadou, D.G.; Kim, H.; Yusoff, A.R.M.; Gao, F.; Nazeeruddin, M.K.; Bolink, H.J.; Sargent, E.H. Advances in solution-processed near-infrared light-emitting diodes. Nat. Photon. 2021, 15, 656–669. [Google Scholar] [CrossRef]
- Sun, Y.; Sun, W.; Liu, W.; Li, X.; Yin, J.; Zhou, L. Efficient Nondoped Pure Red/Near-Infrared TADF OLEDs by Designing and Adjusting Double Quantum Wells Structure. ACS Appl. Electron. Mater. 2022, 4, 3615–3622. [Google Scholar] [CrossRef]
- Tu, L.; Xie, Y.; Li, Z.; Tang, B. Aggregation-induced emission: Red and near-infrared organic light-emitting diodes. SmartMat 2021, 2, 326–346. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, H.; Xie, Z.; Shen, M.; Huang, R.; Miao, Y.; Liu, G.; Yu, T.; Huang, W. NIR TADF emitters and OLEDs: Challenges, progress, and perspectives. Chem. Sci. 2022, 13, 8906–8923. [Google Scholar] [CrossRef]
- Kelley, M.L.; Letton, J.; Simin, G.; Ahmed, F.; Love-Baker, C.A.; Greytak, A.B.; Chandrashekhar, M.V.S. Photovoltaic and Photoconductive Action Due to PbS Quantum Dots on Graphene/SiC Schottky Diodes from NIR to UV. ACS Appl. Electron. Mater. 2020, 2, 134–139. [Google Scholar] [CrossRef] [Green Version]
- Boopathi, K.M.; Hanmandlu, C.; Singh, A.; Chen, Y.-F.; Lai, C.S.; Chu, C.W. UV- and NIR-Protective Semitransparent Smart Windows Based on Metal Halide Solar Cells. ACS Appl. Energy Mater. 2018, 1, 632–637. [Google Scholar] [CrossRef]
- Chen, C.; Zheng, S.; Song, H. Photon management to reduce energy loss in perovskite solar cells. Chem. Soc. Rev. 2021, 50, 7250–7329. [Google Scholar] [CrossRef]
- Leccardi, M.J.I.A.; Chenais, N.A.L.; Ferlauto, L.; Kawecki, M.; Zollinger, E.G.; Ghezzi, D. Photovoltaic organic interface for neuronal stimulation in the near-infrared. Commun. Mater. 2020, 1, 21. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, R.; Xiang, G.; Jiang, S.; Li, L.; Luo, X.; Pang, Y.; Tian, Y. Multi-parametric thermal sensing based on NIR emission of Ho(III) doped CaWO4 phosphors. Opt. Mater. 2017, 66, 12–16. [Google Scholar] [CrossRef]
- Shang, K.; He, W.; Sun, J.; Hu, D.; Liu, J. Synthesis, crystal structure and Near-infrared luminescence of rare earth metal (YIII, ErIII, HoIII) complexes containing semi-rigid tricarboxylic acid ligand. J. Mol. Struct. 2021, 1246, 131097. [Google Scholar] [CrossRef]
- Wu, J.; Pan, X.; Wen, L.; Luo, L.; Zhou, Q. Design a rare-earth free broadband NIR phosphor and improve the photoluminescence intensity by alkali charge compensation. Mater. Today Commun. 2022, 30, 102997. [Google Scholar] [CrossRef]
- Rao, V.R.; Jayasankar, C.K. Spectroscopic investigations on multi-channel visible and NIR emission of Sm3+-doped alkali-alkaline earth fluoro phosphate glasses. Opt. Mater. 2019, 91, 7–16. [Google Scholar] [CrossRef]
- Wang, S.-F.; Su, B.-K.; Wang, X.-Q.; Wei, Y.-C.; Kuo, K.-H.; Wang, C.-H.; Liu, S.-H.; Liao, L.-S.; Hung, W.-Y.; Fu, L.-W.; et al. Polyatomic molecules with emission quantum yields >20% enable efficient organic light-emitting diodes in the NIR(II) window. Nat. Photon. 2022, 16, 843–850. [Google Scholar] [CrossRef]
- Xiong, W.; Meng, F.; You, C.; Wang, P.; Yu, J.; Wu, X.; Pei, Y.; Zhu, W.; Wang, Y.; Su, S. Molecular Isomeric Engineering of Naphtyl-quinoline-Containing Dinuclear Platinum Complexes to Tune Emission from Deep Red to Near Infrared. J. Mater. Chem. C 2019, 7, 630–638. [Google Scholar] [CrossRef]
- Zhu, Z.-L.; Tan, J.-H.; Chen, W.-C.; Yuan, Y.; Fu, L.-W.; Cao, C.; You, C.-J.; Ni, S.-F.; Chi, Y.; Lee, C.-S. High Performance NIR OLEDs with Low Efficiency Roll-Off by Leveraging Os(II) Phosphors and Exciplex Co-Host. Adv. Funct. Mater. 2021, 31, 2102. [Google Scholar] [CrossRef]
- Penconi, M.; Kajjam, A.B.; Jung, M.-C.; Cazzaniga, M.; Baldoli, C.; Ceresoli, D.; Thompson, M.E.; Bossi, A. Advancing Near-Infrared Phosphorescence with Heteroleptic Iridium Complexes Bearing a Single Emitting Ligand: Properties and Organic Light-Emitting Diode Applications. Chem. Mater. 2022, 34, 574–583. [Google Scholar] [CrossRef]
- Hu, Y.; Yuan, Y.; Shi, Y.; Lin, J.; Jiang, Z.; Liao, L. Efficient near-infrared organic light-emitting diodes based on a bipolar host. J. Mater. Chem. C 2018, 6, 1407–1412. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, J.; Mao, Z.; Chen, X.; Yang, Z.; Ge, X.; Peng, X.; Zhao, J.; Su, S.-J.; Chi, Z. Asymmetric Thermally Activated Delayed Fluorescence Emitter for Highly Efficient Red/Near-Infrared Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2022, 14, 33606–33613. [Google Scholar] [CrossRef]
- Yu, Y.; Xing, H.; Liu, D.; Zhao, M.; Sung, H.H.-Y.; Williams, I.D.; Lam, J.W.Y.; Xie, G.; Zhao, Z.; Tang, B.Z. Solution-processed AIEgen NIR OLEDs with EQE Approaching 15%. Angew. Chem. Int. Ed. 2022, 61, 202204279. [Google Scholar] [CrossRef]
- Yang, R.Q.; Tian, R.Y.; Yan, J.G.; Zhang, Y.; Yang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Deep-Red Electroluminescent Polymers: Synthesis and Characterization of New Low-Band-Gap Conjugated Copolymers for Light-Emitting Diodes and Photovoltaic Devices. Macromolecules 2005, 38, 244–253. [Google Scholar] [CrossRef]
- Li, P.; Fenwick, O.; Yilmaz, S.; Breusov, D.; Caruana, D.J.; Allard, S.; Scherf, U.; Cacialli, F. Dual functions of a novel low-gap polymer for near infrared photovoltaics and light-emitting diodes. Chem. Commun. 2011, 47, 8820–8822. [Google Scholar] [CrossRef] [PubMed]
- Crossley, D.L.; Urbano, L.; Neumann, R.; Bourke, S.; Jones, J.; Dailey, L.A.; Green, M.; Humphries, M.J.; King, S.M.; Turner, M.L.; et al. Post-polymerization C−H Borylation of Donor−Acceptor Materials Gives Highly Efficient Solid State Near-Infrared Emitters for Near-IROLEDs and Effective Biological Imaging. ACS Appl. Mater. Interfaces 2017, 9, 28243–28249. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Du, X.; Qi, J.; Zhang, Z.; Ma, D.; Wang, Z.Y. Efficient Non-doped Near Infrared Organic Light-Emitting Devices Based on Fluorophores with Aggregation-Induced Emission Enhancement. Chem. Mater. 2012, 24, 2178–2185. [Google Scholar] [CrossRef]
- Cao, L.; Li, J.; Zhu, Z.-Q.; Huang, L.; Li, J. Stable and Efficient Near-Infrared Organic Light-Emitting Diodes Employing a Platinum(II) Porphyrin Complex. ACS Appl. Mater. Interfaces 2021, 13, 60261–60268. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zhang, H.; Wen, D.; Wu, W.; Zeng, Q.; Chen, S.; Wong, W.-Y. A simple and efficient approach toward deep-red to near-infrared-emitting iridium(III) complexes for organic light-emitting diodes with external quantum efficiencies of over 10%. Chem. Sci. 2020, 11, 2342–2349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Chen, Z.; Zhu, L.; Wu, Y.; Xu, Y.; Chen, S.; Wong, W.-Y. High Performance NIR OLEDs with Emission Peak Beyond 760 nm and Maximum EQE of 6.39%. Adv. Optical Mater. 2022, 10, 2200111. [Google Scholar] [CrossRef]
- Nalaoh, P.; Sungworawongpana, N.; Chasing, P.; Waengdongbung, W.; Funchien, P.; Kaiyasuan, C.; Sudyoadsuk, T.; Promarak, V. A Dimeric π-Stacking of Anthracene Inducing Efficiency Enhancement in Solid-State Fluorescence and Non-Doped Deep-Blue Triplet-Triplet Annihilation Organic Light-Emitting Diodes. Adv. Opt. Mater. 2021, 9, 2100500. [Google Scholar] [CrossRef]
- Chen, C.-H.; Li, Y.-S.; Fang, S.-C.; Lin, B.-Y.; Li, C.-Y.; Liao, Y.-C.; Chen, D.-G.; Chen, Y.-R.; Kung, Y.-C.; Wu, C.-C.; et al. High-Performance Deep-Blue OLEDs Harnessing Triplet-Triplet Annihilation Under Low Dopant Concentration. Adv. Photonics Res. 2022, 2200204. [Google Scholar] [CrossRef]
- Gu, Q.; Abdurahman, A.; Friend, R.H.; Li, F. Polymer Light Emitting Diodes with Doublet Emission. J. Phys. Chem. Lett. 2020, 11, 5638–5642. [Google Scholar] [CrossRef]
- Liu, C.-H.; Hamzehpoor, E.; Sakai-Otsuka, Y.; Jadhav, T.; Perepichka, D.F. A Pure-Red Doublet Emission with 90% Quantum Yield: Stable, Colorless, Iodinated Triphenylmethane Solid. Angew. Chem. Int. Ed. 2020, 59, 23030–23034. [Google Scholar] [CrossRef]
- Zhong, Z.; Zhu, X.; Wang, X.; Zheng, Y.; Geng, S.; Zhou, Z.; Feng, X.J.; Zhao, Z.; Lu, H. High Steric-Hindrance Windmill-Type Molecules for Efficient Ultraviolet to Pure-Blue Organic Light-Emitting Diodes via Hybridized Local and Charge-Transfer Excited-State. Adv. Funct. Mater. 2022, 32, 2112969. [Google Scholar] [CrossRef]
- Fu, C.; Luo, S.; Li, Z.; Ai, X.; Pang, Z.; Li, C.; Chen, K.; Zhou, L.; Li, F.; Huang, Y.; et al. Highly efficient deep-blue OLEDs based on hybridized local and charge-transfer emitters bearing pyrene as the structural unit. Chem. Commun. 2019, 55, 6317–6320. [Google Scholar] [CrossRef]
- Jairam, T.; Hong, W.P. Recent progress in imidazole based efficient near ultraviolet/blue hybridized local charge transfer (HLCT) characteristic fluorophores for organic light-emitting diodes. J. Mater. Chem. C 2022, 10, 16173–16217. [Google Scholar] [CrossRef]
- Kim, E.; Park, J.; Jun, M.; Shin, H.; Baek, J.; Kim, T.; Kim, S.; Lee, J.; Ahn, H.; Sun, J.; et al. Highly efficient and stable deep-blue organic light-emitting diode using phosphor-sensitized thermally activated delayed fluorescence. Sci. Adv. 2022, 8, 1641. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Li, W.; Gan, L.; Li, M.; Zheng, N.; Ning, C.; Chen, D.; Wu, Y.-C.; Su, S.-J. J-Aggregation Enhances the Electroluminescence Performance of a Sky-Blue Thermally Activated Delayed-Fluorescence Emitter in Nondoped Organic Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2020, 12, 2717–2723. [Google Scholar] [CrossRef]
- Su, R.; Huang, Z. “H-Type” Like Constructed Dimer: Another Way to Enhance the Thermally Activated Delayed Fluorescence Effect. J. Phys. Chem. Lett. 2021, 12, 11497–11502. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Yang, Y.; Zapata, F.; Qian, G.D.; Luo, Y.S.; Zhang, J.H.; Lobkovsky, E.B. Enhanced Near-Infrared−Luminescence in an Erbium Tetrafluoroterephthalate Framework. Inorg. Chem. 2006, 45, 8882–8886. [Google Scholar] [CrossRef] [PubMed]
- Wefts, M.H.V.; Hofstraat, J.W.; Geurts, F.A.J.; Verhoeven, J.W. Fluorescein and eosin as sensitizing chromophores in near-infrared luminescent ytterbium(III), neodymium(III) and erbium(III) chelates. Chem. Phys. Lett. 1997, 276, 196–201. [Google Scholar] [CrossRef]
- Shavaleev, N.M.; Scopelliti, R.; Gumy, F.; Bünzli, J.C.G. Modulating the Near-Infrared Luminescence of Neodymium and Ytterbium Complexes with Tridentate Ligands Based on Benzoxazole-Substituted 8-Hydroxyquinolines. Inorg. Chem. 2009, 48, 2908–2918. [Google Scholar] [CrossRef]
- Liu, X.; Ye, S.; Qiao, Y.; Dong, G.; Zhu, B.; Chen, D.; Lakshminarayana, G.; Qiu, J. Cooperative downconversion and near-infrared luminescence of Tb3+–Yb3+ codoped lanthanum borogermanate glasses. Appl. Phys. B 2009, 96, 51–55. [Google Scholar] [CrossRef]
- Shen, L.; Wu, Q.; Lu, J.; Zhao, H.; Liu, H.; Meng, Q.; Li, X. Design of potential singlet fission chromophores based on diketofurofuran: An alternative to diketopyrrolopyrrole. J. Mater. Chem. C 2022, 10, 10404–10411. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, Z.; Hou, Y.; Yan, Y.; Zhao, J.; Dick, B. Recent development of heavy-atom-free triplet photosensitizers: Molecular structure design, photophysics and application. J. Mater. Chem. C 2021, 9, 11944–11973. [Google Scholar] [CrossRef]
- Song, Y.; Yu, R.; Meng, X.; He, L. Donor-σ-acceptor molecules with alkyl σ-linkers of different lengths: Exploration on the exciplex emission and their use for efficient organic light-emitting diodes. Dyes Pigments 2022, 208, 110876. [Google Scholar] [CrossRef]
- Yee, N.; Dadvand, A.; Perepichka, D.F. Band gap engineering of donor–acceptor co-crystals by complementary two-point hydrogen bonding. Mater. Chem. Front. 2020, 4, 3669–3677. [Google Scholar] [CrossRef]
- Pschirer, N.G.; Kohl, C.; Nolde, F.; Qu, J.; Mullen, K. Pentarylene- and Hexarylenebis(dicarboximide)s: Near-Infrared-Absorbing Polyaromatic Dyes. Angew. Chem. Int. Ed. 2006, 45, 1401. [Google Scholar] [CrossRef] [PubMed]
- Muller, S.; Mullen, K. Expanding benzene to giant graphenes: Towards molecular devices. Philos. Trans. R. Soc. A 2007, 365, 1453–1472. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Chen, X.; Zhao, J. Electron spin-controlled charge transfer and the resulting long-lived charge transfer state: From transition metal complexes to organic compounds. Dalton Trans. 2021, 50, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Carbas, B.B.; NOORI, H.A.; Kavak, E.; Kaya, Y.; Kıvrak, A. Optical, electrochemical and DFT studies of donor-acceptor typed indole derivatives. J. Mol. Struct. 2023, 1271, 134129. [Google Scholar] [CrossRef]
- Zhu, Y.; Qu, C.; Ye, J.; Xu, Y.; Zhang, Z.; Wang, Y. Donor-Acceptor Type of Fused-Ring Thermally Activated Delayed Fluorescence Compounds Constructed through an Oxygen-Containing Six-Membered Ring. ACS Appl. Mater. Interfaces 2022, 14, 47971–47980. [Google Scholar] [CrossRef]
- Dufresne, S.; Bourgeaux, M.; Skene, W.G. Tunable spectroscopic and electrochemical properties of conjugated push-push, push-pull and pull-pull thiopheno azomethines. J. Mater. Chem. 2007, 17, 1166–1177. [Google Scholar] [CrossRef]
- Kertesz, M. Pancake Bonding: An Unusual Pi-Stacking Interaction. Chem. Eur. J. 2019, 25, 400–416. [Google Scholar] [CrossRef] [PubMed]
- Labella, J.; Durán-Sampedro, G.; Krishna, S.; Martinez-Diaz, M.V.; Guldi, D.L.; Torres, T. Anthracene-Fused Oligo-BODIPYs: A New Class of-Extended NIR-Absorbing Materials. Angew. Chem. Int. Ed. 2022, 202214543. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Q.; Luo, X.; Ma, H.; Zheng, W.; Yu, J.; Zhang, Z.; Zhang, K.; Qu, K.; Yang, R.; et al. Low-Cost Fabrication of High-Performance Fluorinated Polythiophene-Based Vis-NIR Electrochromic Devices toward Deformable Display and Camouflage. Chem. Mater. 2022, 34, 9923–9933. [Google Scholar] [CrossRef]
- Liu, C.-H.; Wei, A.; Cheung, M.F.; Perepichka, D.F. Vanishing Electronic Band Gap in Two-Dimensional Hydrogen-Bonded Organic Frameworks. Chem. Mater. 2022, 34, 3461–3467. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, J.; Li, C.; Zhang, S.; Yang, B.; Liu, Y.; Wang, Y. Novel Deep-Blue Hybridized Local and Charge-Transfer Host Emitter for High-Quality Fluorescence/Phosphor Hybrid Quasi-White Organic Light-Emitting Diode. Adv. Funct. Mater. 2021, 31, 2100704. [Google Scholar] [CrossRef]
- Scharber, M.C.; Sariciftci, N.S. Low Band Gap Conjugated Semiconducting Polymers. Adv. Mater. Technol. 2021, 6, 2000857. [Google Scholar] [CrossRef]
- Brutting, W.; Frischeisen, J.; Scholz, B.J.; Schmidt, T.D. More light from organic light-emitting diodes Europhys. News 2011, 42, 20–24. [Google Scholar] [CrossRef]
- Thompson, B.C.; Madrigal, L.G.; Pinto, M.R.; Kang, T.; Schanze, K.S.; Reynolds, J.R. Donor-Acceptor Copolymers for Red- and Near-Infrared-Emitting Polymer Light-Emitting Diodes. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 1417–1431. [Google Scholar] [CrossRef]
- Gadisa, A.; Perzon, E.; Andersson, M.R.; Inganäs, O. Red and near infrared polarized light emissions from polyfluorene copolymer based light emitting diodes. Appl. Phys. Lett. 2007, 90, 113510. [Google Scholar] [CrossRef]
- Rafique, A.; Hussain, R.; Irshad, Z.; Adnan, M.; Lim, J. Over 1000 nm photoresponse with cyclopentadithiophene-based non-fullerene acceptors for efficient organic solar cells. Comput. Theor. Chem. 2022, 1216, 113852. [Google Scholar] [CrossRef]
- Yoon, J.W.; Bae, H.; Yang, J.; Ha, J.-W.; Lee, C.; Lee, J.; Yoon, S.C.; Choi, H.; Ko, S.-J. Semitransparent organic solar cells with light utilization efficiency of 4% using fused-cyclopentadithiophene based near-infrared polymer donor. Chem. Eng. J. 2023, 452, 139423. [Google Scholar] [CrossRef]
- Koldemir, U.; Graham, K.R.; Salazar, D.H.; McCarley, T.D.; Reynolds, J.R. Electron rich APFO polymer with dual electrochromism and electroluminescence. J. Mater. Chem. 2011, 21, 6480–6482. [Google Scholar] [CrossRef]
- Schill, J.; Ferrazzano, L.; Tolomelli, A.; Schenning, A.P.H.J.; Brunsveld, L. Fluorene benzothiadiazole co-oligomer based aqueous self-assembled nanoparticles. RSC Adv. 2020, 10, 444–450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafourou, P.; Park, B.; Luke, J.; Tan, L.; Panidi, J.; Glçcklhofer, F.; Kim, J.; Anthopoulos, T.D.; Kim, J.-S.; Lee, K.; et al. One-Step Sixfold Cyanation of Benzothiadiazole Acceptor Units for Air-Stable High-Performance n-Type Organic Field-Effect Transistors. Angew. Chem. Int. Ed. 2021, 60, 5970–5977. [Google Scholar] [CrossRef] [PubMed]
- Paisley, N.R.; Tonge, C.M.; Mayder, D.M.; Thompson, K.A.; Hudson, Z.M. Tunable benzothiadiazole-based donor-acceptor materials for two-photon excited fluorescence. Mater. Chem. Front. 2020, 4, 555–566. [Google Scholar] [CrossRef]
- Steckler, T.T.; Fenwick, O.; Lockwood, T.; Andersson, M.R.; Cacialli, F. Near-Infrared Polymer Light-Emitting Diodes Based on Low-Energy Gap Oligomers Copolymerized into a High-Gap Polymer Host. Macromol. Rapid Commun. 2013, 34, 990–996. [Google Scholar] [CrossRef]
- Steckler, T.T.; Lee, M.J.; Chen, Z.; Fenwick, O.; Andersson, M.R.; Cacialli, F.; Sirringhaus, H. Multifunctional materials for OFETs, LEFETs and NIR PLEDs. J. Mater. Chem. C 2014, 2, 5133–5141. [Google Scholar] [CrossRef]
- Murto, P.; Minotto, A.; Zampetti, A.; Xu, X.; Andersson, M.R.; Cacialli, F.; Wang, E. Triazolobenzothiadiazole-Based Copolymers for Polymer Light-Emitting Diodes: Pure Near-Infrared Emission via Optimized Energy and Charge Transfer. Adv. Optical Mater. 2016, 4, 2068–2076. [Google Scholar] [CrossRef]
- Tregnago, G.; Steckler, T.T.; Fenwick, O.; Anderssonb, M.R.; Cacialli, F. Thia- and selena-diazole containing polymers for near-infrared light-emitting diodes. J. Mater. Chem. C 2015, 3, 2792–2797. [Google Scholar] [CrossRef] [Green Version]
- Gao, X.; Hu, B.; Tu, G. Straight forward synthesis of conjugated polymers for deep red to NIR PLED containing chlorine atoms on the backbone. Org. Electron. 2014, 15, 1440–1447. [Google Scholar] [CrossRef]
- Bringmann, G.; Menche, D.; Mühlbacher, J.; Reichert, M.; Saito, N.; Pfeiffer, S.S.; Lipshutz, B.H. On the Verge of Axial Chirality: Atroposelective Synthesis of the AB-Biaryl Fragment of Vancomycin. Org. Lett. 2002, 4, 2833–2836. [Google Scholar] [CrossRef] [PubMed]
- Pessah, I.N.; Lehmler, H.-J.; Robertson, L.W.; Perez, C.F.; Cabrales, E.; Bose, D.D.; Feng, W. Enantiomeric Specificity of (-)-2,2′,3,3′,6,6′-Hexachlorobiphenyl toward Ryanodine Receptor Types 1 and 2. Chem. Res. Toxicol. 2008, 22, 201–207. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yong, Z.; Jian, Y.; Qiong, H.; Yueqi, M.; Junbiao, P.; Yong, C. Near infrared polymer light-emitting diodes. Chin. Sci. Bull. 2005, 50, 957–960. [Google Scholar] [CrossRef]
- He, Z.-W.; Zhang, Q.; Li, C.-X.; Han, H.-T.; Lu, Y. Synthesis of Thieno[3,4-b]pyrazine-based Alternating Conjugated Polymers via Direct Arylation for Near-infrared OLED Applications. Chin. J. Polym. Sci. 2022, 40, 138–146. [Google Scholar] [CrossRef]
- Bulovic, V.; Kozlov, V.G.; Khalfin, V.B.; Forrest, S.R. Transform-Limited, Narrow-Linewidth Lasing Action in Organic Semiconductor Microcavities. Science 1998, 279, 553–555. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Yang, D.; Sun, L.; Lv, W.; Wu, X.; Wei, Y.; Fang, X.; Song, X.; Wang, Y.; Tang, Y.; et al. Toward an Ultrahigh-Performance Near-Infrared Photoresponsive Field-Effect Transistor Using a Lead Phthalocyanine/MoS2 Organic-Inorganic Planar Heterojunction. ACS Appl. Electron. Mater. 2022, 4, 2777–2786. [Google Scholar] [CrossRef]
- Cranston, R.R.; Lessard, B.H. Metal phthalocyanines: Thin-film formation, microstructure, and physical properties. RSC Adv. 2021, 11, 21716–21737. [Google Scholar] [CrossRef]
- Bai, Q.; Zhang, C.; Song, J.; Liu, J.; Feng, Y.; Duan, L.; Cheng, C. Metal-free phthalocyanine single crystal: Solvothermal synthesis and near-infrared electroluminescence. Chin. Chem. Lett. 2016, 27, 764–768. [Google Scholar] [CrossRef]
- Fan, Z.; Cheng, C.; Yu, S.; Ye, K.; Sheng, R.; Xia, D.; Ma, C.; Wang, X.; Chang, Y.; Du, G. Red and near-infrared electroluminescence from organic light-emitting devices based on a soluble substituted metal-free phthalocyanine. Opt. Mater. 2009, 31, 889–894. [Google Scholar] [CrossRef]
- Bai, Q.; Zhang, C.; Cheng, C.; Li, W.; Wang, J.; Du, G. Synthesis, Photophysical Properties and Near Infrared Electroluminescence of 1(4),8(11),15(18),22(25)-Tetra-(methoxy-phenoxy)phthalocyanine. Chin. J. Chem. 2012, 30, 689–694. [Google Scholar] [CrossRef]
- Sharbati, M.T.; Panahi, F.; Shourvarzi, A.; Khademi, S.; Emami, F. Near-infrared electroluminescence from organic light emitting diode based on Imine oligomer with low turn on voltage. Optik 2013, 124, 52–54. [Google Scholar] [CrossRef]
- Cortizo-Lacalle, D.; Pertegas, A.; Martinez-Sarti, L.; Melle-Franco, M.; Bolink, H.J.; Mateo-Alonso, A. Twisted hexaazatrianthrylene: Synthesis, optoelectronic properties and near-infrared electroluminescent heterojunctions thereof. J. Mater. Chem. C 2015, 3, 9170–9174. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.; Archer, R.; Redding, T.; Foden, C.; Tant, J.; Geerts, Y.; Friend, R.H.; Silva, C. Charge recombination in distributed heterostructures of semiconductor discotic and polymeric materials. J. Appl. Phys. 2008, 103, 124510. [Google Scholar] [CrossRef]
- Choudhary, S.; Gozalvez, C.; Higelin, A.; Krossing, I.; MelleFranco, M.; Mateo-Alonso, A. Hexaazatrinaphthylenes with Different Twists. Chem. Eur. J. 2014, 20, 1525–1528. [Google Scholar] [CrossRef] [PubMed]
- Roncali, J. Synthetic Principles for Bandgap Control in Linear π-Conjugated Systems. Chem. Rev. 1997, 97, 173–205. [Google Scholar] [CrossRef]
- Qian, G.; Dai, B.; Luo, M.; Yu, D.; Zhan, J.; Zhang, Z.; Ma, D.; Wang, Z.Y. Band Gap Tunable, Donor-Acceptor-Donor Charge-Transfer Heteroquinoid-Based Chromophores: Near Infrared Photoluminescence and Electroluminescence. Chem. Mater. 2008, 20, 6208–6216. [Google Scholar] [CrossRef]
- Qian, B.G.; Zhong, Z.; Luo, M.; Yu, D.; Zhang, Z.; Wang, Z.Y.; Ma, D. Simple and Efficient Near-Infrared Organic Chromophores for Light-Emitting Diodes with Single Electroluminescent Emission above 1000 nm. Adv. Mater. 2009, 21, 111–116. [Google Scholar] [CrossRef]
- Qian, G.; Zhong, Z.; Luo, M.; Yu, D.; Zhang, Z.; Ma, D.; Wang, Z.Y. Synthesis and Application of Thiadiazoloquinoxaline-Containing Chromophores as Dopants for Efficient Near-Infrared Organic Light-Emitting Diodes. J. Phys. Chem. C 2009, 113, 1589–1595. [Google Scholar] [CrossRef]
- Yang, Y.; Farley, R.T.; Steckler, T.T.; Eom, S.; Reynolds, J.R.; Schanze, K.S.; Xue, J. Efficient near-infrared organic light-emitting devices based on low-gap fluorescent oligomers. J. Appl. Phys. 2009, 106, 044509. [Google Scholar] [CrossRef]
- Ellinger, S.; Graham, K.R.; Shi, P.; Farley, R.T.; Steckler, T.T.; Brookins, R.N.; Taranekar, P.; Mei, J.; Padilha, L.A.; Ensley, T.R.; et al. Donor-Acceptor-Donor-based π-Conjugated Oligomers for Nonlinear Optics and Near-IR Emission. Chem. Mater. 2011, 23, 3805–3817. [Google Scholar] [CrossRef]
- Ooyama, Y.; Sagisaka, R.; Enoki, T.; Tsunoji, N.; Ohshita, J. Tetraphenylethene- and diphenyldibenzofulvene-anthracene-based fluorescence sensors possessing photo-induced electron transfer and aggregation-induced emission enhancement characteristics for detection of water. New J. Chem. 2018, 42, 13339–13350. [Google Scholar] [CrossRef]
- Sengottuvelu, D.; Kachwal, V.; Raichure, P.; Raghav, T.; Laskar, I.R. Aggregation-Induced Enhanced Emission (AIEE)-Active Conjugated Mesoporous Oligomers (CMOs) with Improved Quantum Yield and Low-Cost Detection of a Trace Amount of Nitroaromatic Explosives. ACS Appl. Mater. Interfaces 2020, 12, 31875–31886. [Google Scholar] [CrossRef] [PubMed]
- Vishwakarma, V.K.; Nagar, M.R.; Lhouvum, N.; Jou, J.-H.; Sudhakar, A.A. A New Class of Solution Processable Pyrazino[2,3-g] quinoxaline Carbazole Derivative Based on D-A-D Architecture for Achieving High EQE in Yellow and White OLEDs. Adv. Opt. Mater. 2022, 10, 2200241. [Google Scholar] [CrossRef]
- Ledwon, P.; Zassowski, P.; Jarosz, T.; Lapkowski, M.; Wagner, P.; Cherpakd, V.; Stakhira, P. A novel donor–acceptor carbazole and benzothiadiazole material for deep red and infrared emitting applications. J. Mater. Chem. C 2016, 4, 2219–2227. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, Z.; Xu, Y.; Liang, J.; Lin, C.; Wei, J.; Wang, Y. Achieving Efficient Blue Delayed Electrofluorescence by Shielding Acceptors with Carbazole Units. ACS Appl. Mater. Interfaces 2019, 11, 28096–28105. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, J.; Wu, T.-L.; Huang, M.-J.; Huang, P.-Y.; Chou, T.-Y.; Lin, H.-W.; Cheng, C.-H. Pyridine-Carbonitrile-Carbazole-Based Delayed Fluorescence Materials with Highly Congested Structures and Excellent OLED Performance. ACS Appl. Mater. Interfaces 2019, 11, 21042–21048. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhao, C.; Zhu, Z.; Li, X.-L.; Ashebr, T.G.; Tang, J. Aggregation-Induced Emission and Single-Molecule Magnet Behavior of TPE-Based Ln(III) Complexes. Chem. Asian J. 2022, 17, 202200913. [Google Scholar] [CrossRef] [PubMed]
- Therdkatanyuphong, P.; Chasing, P.; Kaiyasuan, C.; Boonnab, S.; Sudyoadsuk, T.; Promarak, V. High Solid-State Near Infrared Emissive Organic Fluorophores from Thiadiazole[3,4-c]Pyridine Derivatives for Efficient Simple Solution-Processed Nondoped Near Infrared OLEDs. Adv. Funct. Mater. 2020, 30, 2002481. [Google Scholar] [CrossRef]
- Funchien, P.; Chasing, P.; Sudyoadsukab, T.; Promarak, V. A highly efficient near infrared organic solid fluorophore based on naphthothiadiazole derivatives with aggregation-induced emission enhancement for a non-doped electroluminescent device. Chem. Commun. 2020, 56, 6305–6308. [Google Scholar] [CrossRef]
- Sudyoadsuk, T.; Chasing, P.; Kaewpuang, T.; Manyum, T.; Chaiwai, C.; Namuangruk, S.; Promarak, V. High efficiency and low efficiency roll-off hole-transporting layer-free solution-processed fluorescent NIR-OLEDs based on oligothiophene–benzothiadiazole derivatives. J. Mater. Chem. C 2020, 8, 5045–5050. [Google Scholar] [CrossRef]
- Sharbati, M.T.; Rad, M.N.S.; Behrouz, S.; Gharavi, A.; Emami, F. Near infrared organic light-emitting diodes based on acceptor–donor–acceptor (ADA) using novel conjugated isatin Schiff bases. J. Lumin. 2011, 131, 553–558. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, S.; Li, S.; Yuan, Y.; Wu, F.; Kumar, S.; Jiang, Z.; Fung, M.; Liao, L. D–A–A-Type Emitter Featuring Benzo[c][1,2,5]thiadiazole and Polar C≡N Bond as Tandem Acceptor for High Performance Near-Infrared Organic Light-Emitting Diodes. Adv. Opt. Mater. 2017, 5, 1700566. [Google Scholar] [CrossRef]
- Xue, S.; Wu, Y.; Lu, Y.; Xu, X.; Sun, Q.; Yang, W. A pair of conjoined donor–acceptor butterflies as promising solution-processable aggregation-enhanced emission FR/NIR EL emitters. J. Mater. Chem. C 2017, 5, 11700–11707. [Google Scholar] [CrossRef]
- Minotto, A.; Murto, P.; Genene, Z.; Zampetti, A.; Carnicella, G.; Mammo, W.; Andersson, M.R.; Wang, E.; Cacialli, F. Efficient Near-Infrared Electroluminescence at 840 nm with “Metal-Free” Small-Molecule:Polymer Blends. Adv. Mater. 2018, 30, 1706584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poverenov, E.; Zamoshchik, N.; Patra, A.; Ridelman, Y.; Bendikov, M. Unusual Doping of Donor−Acceptor-Type Conjugated Polymers Using Lewis Acids. J. Am. Chem. Soc. 2014, 136, 5138–5149. [Google Scholar] [CrossRef] [PubMed]
- Zalar, P.; Kuik, M.; Henson, Z.B.; Woellner, C.; Zhang, Y.; Sharenko, A.; Bazan, G.C.; Nguyen, T. Increased Mobility Induced by Addition of a Lewis Acid to a Lewis Basic Conjugated Polymer. Adv. Mater. 2014, 26, 724–727. [Google Scholar] [CrossRef] [PubMed]
- Crossley, D.L.; Cade, I.A.; Clark, E.R.; Escande, A.; Humphries, M.J.; King, S.M.; Vitorica-Yrezabal, I.; Ingleson, M.J.; Turner, M.L. Enhancing electron affinity and tuning band gap in donor–acceptor organic semiconductors by benzothiadiazole directed C–H borylation. Chem. Sci. 2015, 6, 5144–5151. [Google Scholar] [CrossRef] [Green Version]
- D’Ale´o, A.; Sazzad, M.H.; Kim, D.H.; Choi, E.Y.; Wu, J.W.; Canard, G.; Fages, F.; Ribierre, J.-C.; Adachi, C. Boron difluoride hemicurcuminoid as an efficient far red to near-infrared emitter: Toward OLEDs and laser dyes. Chem. Commun. 2017, 53, 7003–7006. [Google Scholar] [CrossRef]
- Zampetti, A.; Minotto, B.M.; Squeo, V.G.; Gregoriou, S.; Allard, U.; Scherf, C.L.; Chochos, F. Cacialli, Highly Efficient Solid-State Near-infrared Organic Light-Emitting Diodes incorporating A-D-A Dyes based on α,β-unsubstituted “BODIPY” Moieties. Sci. Rep. 2017, 7, 1611. [Google Scholar] [CrossRef] [Green Version]
- Shikano, M.; Morimoto, M.; Naka, S. Near-infrared organic light-emitting diodes of pure fluorescence emission using small-molecule boron-dipyrromethene derivative. Org. Electron. 2021, 99, 106320. [Google Scholar] [CrossRef]
- Liu, T.; Xie, G.; Zhong, C.; Gong, S.; Yang, C. Boosting the Efficiency of Near-Infrared Fluorescent OLEDs with an Electroluminescent Peak of Nearly 800 nm by Sensitizer-Based Cascade Energy Transfer. Adv. Funct. Mater. 2018, 28, 1706088. [Google Scholar] [CrossRef]
- Chen, Y.-S.; Dian, L.; Wei, W.-C.; Chen, B.-L.; Yeh, T.-H.; Liu, S.-W.; Wong, K.-T. New Exciplex-Forming Co-Host System and Thienothiadazole-based Fluorescent Emitter for High-Efficiency and Promising Stability Near-Infrared OLED. Adv. Opt. Mater. 2022, 10, 2101952. [Google Scholar] [CrossRef]
- Pun, A.B.; Sanders, S.N.; Sfeir, M.Y.; Campos, L.M.; Congreve, D.N. Annihilator dimers enhance triplet fusion upconversion. Chem. Sci. 2019, 10, 3969–3975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, L.; Chua, X.W.; Yang, Z.; Ding, X.; Yu, Y.; Suwardi, A.; Zhao, M.; Ke, K.L.; Ehrler, B.; Di, D. Photon-upconverters for blue organic light emitting diodes: A low-cost, sky-blue example. Nanoscale Adv. 2022, 4, 1318–1323. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Liu, H.; Xu, L.; Xu, X.; He, X.; Liu, F.; Chen, J.; Peng, Q. Achieving High Efficiency at High Luminance in Fluorescent Organic Light-Emitting Diodes through Triplet-Triplet Fusion Based on Phenanthroimidazole-Benzothiadiazole Derivatives. Chem. Eur. J. 2021, 27, 13828–13839. [Google Scholar] [CrossRef]
- Xue, J.; Li, C.; Xin, L.; Duan, L.; Qiao, J. High-efficiency and low efficiency roll-off near-infrared fluorescent OLEDs through triplet fusion. Chem. Sci. 2016, 7, 2888–2895. [Google Scholar] [CrossRef] [Green Version]
- Jayabharathi, J.; Thilagavathy, S.; Thanikachalam, V.; Anudeebhana, J. A triphenylacrylonitrile phenanthroimidazole cored butterfly shaped AIE chromophore for blue and HLCT sensitized fluorescent OLEDs. J. Mater. Chem. C 2022, 10, 4342–4354. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Bai, Q.; Du, C.; Shang, A.; Jiang, S.; Tang, X.; Lu, P. Pyrene[4,5-d]imidazole-Based Derivatives with Hybridized Local and Charge-Transfer State for Highly Efficient Blue and White Organic Light-Emitting Diodes with Low Efficiency Roll-Off. ACS Appl. Mater. Interfaces 2020, 12, 16715–16725. [Google Scholar] [CrossRef]
- Usta, H.; Cosut, B.; Alkan, F. Understanding and Tailoring Excited State Properties in SolutionProcessable Oligo(p-phenyleneethynylene)s: Highly Fluorescent Hybridized Local and Charge Transfer Character via Experiment and Theory. J. Phys. Chem. B 2021, 125, 11717–11731. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B.; Ma, Y. Highly Efficient Near-Infrared Organic Light-Emitting Diode Based on a Butterfly-Shaped Donor-Acceptor Chromophore with Strong Solid-State Fluorescence and a Large Proportion of Radiative Excitons. Angew. Chem. Int. Ed. 2014, 53, 2119–2123. [Google Scholar] [CrossRef]
- Yao, L.; Sun, S.; Xue, S.; Zhang, S.; Wu, X.; Zhang, H.; Pan, Y.; Gu, C.; Li, F.; Ma, Y. Aromatic S-Heterocycle and Fluorene Derivatives as Solution-Processed Blue Fluorescent Emitters: Structure-Property Relationships for Different Sulfur Oxidation States. J. Phys. Chem. C 2013, 117, 14189–14196. [Google Scholar] [CrossRef]
- Liu, T.; Zhu, L.; Zhong, C.; Xie, G.; Gong, S.; Fang, J.; Ma, D.; Yang, C. Naphthothiadiazole-Based Near-Infrared Emitter with a Photoluminescence Quantum Yield of 60% in Neat Film and External Quantum Efficiencies of up to 3.9% in Nondoped OLEDs. Adv. Funct. Mater. 2017, 27, 1606384. [Google Scholar] [CrossRef]
- Wang, C.; Li, X.; Gao, Y.; Wang, L.; Zhang, S.; Zhao, L.; Lu, P.; Yang, B.; Su, S.; Ma, Y. Efficient Near-Infrared (NIR) Organic Light-Emitting Diodes Based on Donor-Acceptor Architecture: An Improved Emissive State from Mixing to Hybridization. Adv. Opt. Mater. 2017, 5, 1700441. [Google Scholar] [CrossRef]
- Jiang, J.; Li, X.; Hanif, M.; Zhou, J.; Hu, D.; Su, S.; Xie, Z.; Gao, Y.; Yang, B.; Ma, Y. Pyridal[2,1,3]thiadiazole as strong electronwithdrawing and less sterically-hindered acceptor for highly efficient donor-acceptor type NIR materials. J. Mater. Chem. C 2017, 5, 11053–11058. [Google Scholar] [CrossRef]
- Tang, X.; Li, X.; Liu, H.; Gao, Y.; Shen, Y.; Zhang, S.; Lu, P.; Yang, B.; Su, S.; Ma, Y. Efficient near-infrared emission based on donor-acceptor molecular architecture: The role of ancillary acceptor of cyanophenyl. Dyes Pigments 2018, 149, 430–436. [Google Scholar] [CrossRef]
- Pan, Y.; Li, W.; Zhang, S.; Yao, L.; Gu, C.; Xu, H.; Yang, B.; Ma, Y. High Yields of Singlet Excitons in Organic Electroluminescence through Two Paths of Cold and Hot Excitons. Adv. Opt. Mater. 2014, 2, 510–515. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, C.; Zhu, M.; Miao, J. High Performance Near-Infrared Emitters with Methylated Triphenylamine and Thiadiazolo[3,4-g]quinoxaline-Based Fluorophores. Molecules 2021, 26, 6386. [Google Scholar] [CrossRef]
- Weissenseel, S.; Gottscholl, A.; Bönnighausen, R.; Dyakonov, V.; Sperlich, A. Long-lived spin-polarized intermolecular exciplex states inthermally activated delayed fluorescence-based organic light-emitting diodes. Sci. Adv. 2021, 7, 9961. [Google Scholar] [CrossRef]
- Ma, W.; Su, Y.; Zhang, Q.; Deng, C.; Pasquali, L.; Zhu, W.; Tian, Y.; Ran, P.; Chen, Z.; Yang, G.; et al. Thermally activated delayed fluorescence (TADF) organic molecules for efficient X-ray scintillation and imaging. Nat. Mater. 2022, 21, 210–216. [Google Scholar] [CrossRef]
- Wang, S.; Yan, X.; Cheng, Z.; Zhang, H.; Liu, Y.; Wang, Y. Highly Efficient Near-Infrared Delayed Fluorescence Organic Light Emitting Diodes Using a Phenanthrene-Based Charge-Transfer Compound. Angew. Chem. Int. Ed. 2015, 54, 13068–13072. [Google Scholar] [CrossRef]
- Grimsdale, A.C.; Chan, K.L.; Martin, R.E.; Jokisz, P.G.; Holmes, A.B. Synthesis of Light-Emitting Conjugated Polymers for Applications in Electroluminescent Devices. Chem. Rev. 2009, 109, 897–1091. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Wu, X.; Liu, H.; Guo, J.; Yang, D.; Ma, D.; Zhao, Z.; Tang, B.Z. Realizing Record-High Electroluminescence Efficiency of 31.5% for Red Thermally Activated Delayed Fluorescence Molecules. Angew. Chem. Int. Ed. 2021, 60, 23635–23640. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Miao, Y.; Yan, X.; Ye, K.; Wang, Y. A dibenzo[a,c]phenazine-11,12-dicarbonitrile (DBPzDCN) acceptor based thermally activated delayed fluorescent compound for efficient near-infrared electroluminescent devices. J. Mater. Chem. C 2018, 6, 6698–6704. [Google Scholar] [CrossRef]
- Balijapalli, U.; Nagata, R.; Yamada, N.; Nakanotani, H.; Tanaka, M.; D’Alo, A.; Placide, V.; Mamada, M.; Tsuchiya, Y.; Adachi, C. Highly Efficient Near-Infrared Electrofluorescence from a Thermally Activated Delayed Fluorescence Molecule. Angew. Chem. Int. Ed. 2021, 60, 8477–8482. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Hu, Y.; Zhang, Y.; Lin, J.; Wang, Y.; Jiang, Z.; Liao, L.; Lee, S.-T. Over 10% EQE Near-Infrared Electroluminescence Based on a Thermally Activated Delayed Fluorescence Emitter. Adv. Funct. Mater. 2017, 27, 1700986. [Google Scholar] [CrossRef]
- Xia, H.; Liu, D.; Xu, X.; Miao, Q. Ambipolar organic semiconductors from electron-accepting cyclopenta-fused anthracene. Chem. Commun. 2013, 49, 4301–4303. [Google Scholar] [CrossRef]
- Bheemireddy, S.R.; Plunkett, K.N. Dicyclopenta[cd,jk]pyrene based acceptors in conjugated polymers. Polym. Chem. 2016, 7, 292–296. [Google Scholar] [CrossRef]
- Xue, J.; Liang, Q.; Wang, R.; Hou, J.; Li, W.; Peng, Q.; Shuai, Z.; Qiao, J. Highly Efficient Thermally Activated Delayed Fluorescence via J-Aggregates with Strong Intermolecular Charge Transfer. Adv. Mater. 2019, 31, 1808242. [Google Scholar] [CrossRef]
- Liang, Q.X.; Xu, J.; Xue, J.; Qiao, J. Near-infrared-II thermally activated delayed fluorescence organic light-emitting diodes. Chem. Commun. 2020, 56, 8988–8991. [Google Scholar] [CrossRef]
- Congrave, D.G.; Drummond, B.H.; Conaghan, P.J.; Francis, H.; Jones, S.T.E.; Grey, C.P.; Greenham, N.C.; Credgington, D.; Bronstein, H. A simple molecular design strategy for delayed fluorescence towards 1000 nm. J. Am. Chem. Soc. 2019, 141, 18390–18394. [Google Scholar] [CrossRef]
- Cheng, J.; Pan, Z.-H.; Zhang, K.; Zhao, Y.; Wang, C.-K.; Ding, L.; Fung, M.-K.; Fan, J. Interrupted intramolecular donor-acceptor interaction compensated by strong through-space electronic coupling for highly efficient near-infrared TADF with emission over 800 nm. Chem. Eng. J. 2022, 430, 132744. [Google Scholar] [CrossRef]
- Liu, J.-F.; Wang, X.-Q.; Yu, Y.-J.; Zou, S.-N.; Yang, S.-Y.; Jiang, Z.-Q.; Liao, L.-S. Highly efficient near-infrared thermally activated delayed fluorescence material based on a spirobifluorene decorated donor. Org. Electron. 2021, 91, 106088. [Google Scholar] [CrossRef]
- Xue, J.; Liang, Q.; Zhang, Y.; Zhang, R.; Duan, L.; Qiao, J. High-Efficiency Near-Infrared Fluorescent Organic Light-Emitting Diodes with Small Efficiency Roll-Off: A Combined Design from Emitters to Devices. Adv. Funct. Mater. 2017, 27, 1703283. [Google Scholar] [CrossRef]
- Li, C.; Duan, R.; Liang, B.; Han, G.; Wang, S.; Ye, K.; Liu, Y.; Yi, Y.; Wang, Y. Deep-Red to Near-Infrared Thermally Activated Delayed Fluorescence in Organic Solid Films and Electroluminescent Devices. Angew. Chem. Int. Ed. 2017, 56, 11525–11529. [Google Scholar] [CrossRef]
- Higginbotham, H.F.; Pander, P.; Rybakiewicz, R.; Etherington, M.K.; Maniam, S.; Zagorska, M.; Pron, A.; Monkman, A.P.; Data, P. Triphenylamine disubstituted naphthalene diimide: Elucidation of excited states involved in TADF and application in near-infrared organic light emitting diodes. J. Mater. Chem. C 2018, 6, 8219–8225. [Google Scholar] [CrossRef] [Green Version]
- Kumsampao, J.; Chaiwai, C.; Chasing, P.; Chawanpunyawat, T.; Namuangruk, S.; Sudyoadsuk, T.; Promarak, V. A Simple and Strong Electron-Deficient 5,6-Dicyano[2,1,3]benzothiadiazole-Cored Donor-Acceptor-Donor Compound for Efficient Near Infrared Thermally Activated Delayed Fluorescence. Chem. Asian J. 2020, 15, 3029–3036. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Li, M.; Li, W.; Du, S.; Chen, Z.; Luo, M.; Qiu, Y.; Lu, X.; Yang, S.; Wang, Z.; et al. Highly Efficient Near-Infrared Thermally Activated Delayed Fluorescent Emitters in Non-Doped Electroluminescent Devices. Angew. Chem. Int. Ed. 2022, 61, e202210687. [Google Scholar] [CrossRef]
- Kim, D.-H.; D’Aléo, A.; Chen, X.-K.; Sandanayaka, A.D.S.; Yao, D.; Zhao, L.; Komino, T.; Zaborova, E.; Canard, G.; Tsuchiya, Y.; et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photon. 2018, 12, 98–104. [Google Scholar] [CrossRef]
- Ye, H.; Kim, D.H.; Chen, X.; Sandanayaka, A.S.D.; Kim, J.U.; Zaborova, E.; Canard, G.; Tsuchiya, Y.; Choi, E.Y.; Wu, J.W.; et al. Near-Infrared Electroluminescence and Low Threshold Amplified Spontaneous Emission above 800 nm from a Thermally Activated Delayed Fluorescent Emitter. Chem. Mater. 2018, 30, 6702–6710. [Google Scholar] [CrossRef]
- Shahalizad, A.; Malinge, A.; Hu, L.; Laflamme, G.; Haeberlé, L.; Myers, D.M.; Mao, J.; Skene, W.G.; Kéna-Cohen, S. Efficient Solution-Processed Hyperfluorescent OLEDs with Spectrally Narrow Emission at 840 nm. Adv. Funct. Mater. 2020, 31, 2007119. [Google Scholar] [CrossRef]
- Zhou, L.; Ni, F.; Li, N.; Wang, K.; Xie, G.; Yang, C. Tetracoordinate Boron-Based Multifunctional Chiral Thermally Activated Delayed Fluorescence Emitters. Angew. Chem. Int. Ed. 2022, 61, e202203844. [Google Scholar] [CrossRef]
- Chen, G.-Y.; Chang, B.-R.; Shih, T.-A.; Lin, C.-H.; Lo, C.-L.; Chen, Y.-Z.; Liu, Y.-X.; Li, Y.-R.; Guo, J.-T.; Lu, C.-W.; et al. Cationic IrIII Emitters with Near-Infrared Emission Beyond 800 nm and Their Use in Light-Emitting Electrochemical Cells. Chem. Eur. J. 2019, 25, 5489–5497. [Google Scholar] [CrossRef] [PubMed]
- Shahroosvand, H.; Heydari, L.; Bidehab, B.N.; Pashaei, B. Molecularly engineered electroplex emission for an efficient near-infrared light-emitting electrochemical cell (NIR-LEC). RSC Adv. 2020, 10, 14099–14106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-X.; Yi, R.-H.; Lin, C.-H.; Yang, Z.-P.; Lu, C.-W.; Su, H.-C. Near-infrared light-emitting electrochemical cells based on the excimer emission of a cationic iridium complex. J. Mater. Chem. C 2020, 8, 14378–14385. [Google Scholar] [CrossRef]
- Bideh, B.N.; Shahroosvand, H. New molecularly engineered binuclear ruthenium(II) complexes for highly efficient near-infrared light-emitting electrochemical cells (NIR-LECs). Dalton Trans. 2022, 51, 3652–3660. [Google Scholar] [CrossRef]
- Murto, P.; Tang, S.; Larsen, C.; Xu, X.; Sandströ, A.; Pietarinen, J.; Bagemihl, B.; Abdulahi, B.A.; Mammo, W.; Andersson, M.R.; et al. Incorporation of Designed Donor-Acceptor-Donor Segments in a Host Polymer for Strong Near-Infrared Emission from a Large-Area Light-Emitting Electrochemical Cell. ACS Appl. Energy Mater. 2018, 1, 1753–1761. [Google Scholar] [CrossRef]
- Pashaei, B.; Karimi, S.; Shahroosvand, H.; Pilkington, M. Molecularly Engineered Near-Infrared Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 2020, 30, 1908103. [Google Scholar] [CrossRef]
λPL (nm) | ΦP (%) | λEL (nm) | EQEmax (%) | Ref. | |
---|---|---|---|---|---|
P1 | 517, 554 (shoulder) | 0.17 | 690 | - | [78] |
P2 | 652 | 0.07 | 800 | - | [78] |
P3 | - | - | 705 | 0.005 | [79] |
P4 | - | - | 950 | 0.0005 | [79] |
P5 | - | - | 956 (unblended) 876 (blended) | 0.003 (unblended) 0.002 (blended) | [41] |
P6 | 730 | - | 742 | 0.3 | [82] |
P7 | 418, 881 | - | 909 | 0.04 | [83] |
P8 | 880 | - | 885 | 0.27 | [84] |
P9 | 650, 945 | - | 930 | 0.004 | [85] |
P10 | 697 | 15 | 697 | 0.70 | [40] |
P11 | 790 | 1 | 790 | 0.02 | [40] |
P12 | 890 | - | 895 | 0.09 | [86] |
P13 | 1000 | - | 990 | 0.02 | [86] |
P14 | 718 | - | 708 | 0.69 | [87] |
P15 | 527 | - | - | - | [42] |
P16 | 731 (solid) | 23 | 716 | 0.41 | [42] |
P17 | 750 | - | 758 | 2.12 | [90] |
P18 | 641 (solution) 648, 776 (film) | 26.32 | 772 | 0.38 | [91] |
P19 | 655 (solution) 698, 810 (film) | 28.53 | 764 | 0.17 | [91] |
P20 | 642 (solution) 657, 766 (film) | 31.98 | 775 | 0.63 | [91] |
λPL (nm) | ΦP (%) | λEL (nm) | EQEmax (%) | Ref. | |
---|---|---|---|---|---|
M1 | 595, 648 (shoulder) | - | 720, 805 (shoulder) | 0.0018 | [93] |
M2 | 922 (pellet) | - | 936 | - | [95] |
M3 | 905 (film) | - | 910 | - | [96] |
M4 | 945 (pellet) | - | 891 | - | [97] |
M5 | - | - | 800 | 1.9 | [98] |
M6 | 636, 687 (shoulder) | - | 848 | 0.0012 | [99] |
M7 | 975 | 7.4 | 1050 | 0.05 | [103] |
M8 | 1120 | 4.9 | 1115 | - | [103] |
M9 | 975, 1050 (film) | 7.4 | 1050 | 0.16 | [104] |
M10 | 995, 1060 (film) | 5.8 | 1080 | 0.73 | [104] |
M11 | 970, 1040 (film) | 6.3 | 1050 | 0.33 | [104] |
M12 | 1255 | 0.5 | 1220 | - | [104] |
M13 | 784 | 5.3 | 752 (doped) 784 (nondoped) | 1.12 (doped) 0.02 (nondoped) | [105] |
M14 | 800 | 4.4 | 748 (doped) 788 (nondoped) | 1.13 (doped) 0.03(nondoped) | [105] |
M15 | 868 | 4.0 | 823 (doped) 870 (nondoped) | 0.27 (doped) 0.02 (nondoped) | [105] |
M16 | 698 | 21 | 692 | 1.6 | [106] |
M17 | 805 | 7.6 | 815 | 0.5 | [106] |
M18 | 725 | 0.07 | 730 | 0.28 | [107] |
M19 | 700, 704 (film) | 10.1 | 706 | 0.89 | [43] |
M20 | 780, 761 (film) | 0.28 | 749 | 0.29 | [43] |
M21 | 787, 803 (film) | 13.0 | 802 | 0.43 | [43] |
M22 | 857, 883 (film) | 0.20 | 864 | 0.20 | [43] |
M23 | 712 | - | 688 | 3.13 | [113] |
M24 | 700, 725 (film) | 15, 34 (film) | 726 | 1.51 | [118] |
M25 | 702, 725 (film) | 13, 10 (film) | 726 | 0.96 | [118] |
M26 | 761, 760 (film) | 16, 22 (film) | 754 | 1.48 | [119] |
M27 | 661, 720 (film) | 10, 0.8 (film) | 734 | 0.48 | [120] |
M28 | 686, 758 (film) | 5, 0.6 (film) | 773 | 0.26 | [120] |
M29 | - | - | 640 | 0.054 | [121] |
M30 | - | - | 700 | 0.051 | [121] |
M31 | 728 | 86 | 692 (doped) 708 (nondoped) | 3.8 (doped) 3.1 (nondoped) | [122] |
M32 | 668 | 25.2 | 683 | 0.57 | [123] |
M33 | 840 (doped) | 19 | 840 (doped) | 1.01 | [124] |
M34 | 702 | 10 | 679 | 0.48 | [127] |
M35 | 716 | 9.5 | 716 | 0.4 | [128] |
M36 | 700 | 20 | 720 | 1.1 | [129] |
M37 | 658 | - | 756 | 1.87 | [130] |
M38 | 785 | 6, 11 (film) | 786 | 0.77 | [131] |
M39 | 746 | 26 | 774 | 5.3 | [132] |
λPL (nm) | ΦP (%) | λEL (nm) | EQEmax (%) | Ref. | |
---|---|---|---|---|---|
M40 | 670 | 52 | 700 | 2.1 | [136] |
M41 | 660 | - | 692 | 2.4 | [49] |
M42 | 700 (film) | 16 | 700 | 1.54 | [140] |
M43 | 683 | 60 | 696 | 3.9 | [142] |
M44 | 642 | - | 738 | 0.82 | [143] |
M45 | 683 (film) | 30 | 700 | 1.47 | [144] |
M46 | 710 (film) | 17 | 702 | 1.2 | [145] |
M47 | 736, 780 (film) | 26 | 718 | 1.58 | [147] |
M48 | 714, 732 (film) | 38 | 693 | 1.33 | [147] |
M49 | 724, 748 (film) | 34 | 707 | 3.02 | [147] |
M50 | 708 (film) | 14 | 710 | 2.1 | [150] |
M51 | 709 | 48.84 | 718 | 5.4 | [38] |
M52 | 692 (film) | 13 | 716 | 1.9 | [152] |
M53 | 710 (film) | 7 | 748 | 1.4 | [152] |
M54 | 702 (film) | 11 | 734 | 1.4 | [152] |
M55 | 702 (film) | 6 | 748 | 1.0 | [152] |
M56 | 735 | 39 (doped) | 698 | 7.68 | [153] |
M57 | 729 | 19.1 | 734 | 13.4 | [154] |
M58 | 756 (film) | 17 | 777 | 2.19 | [155] |
M59 | 777 | 20.3 | 765 | 5.1 | [158] |
M60 | 716 | 16.3 | 711 | 3.5 | [158] |
M61 | 742 (solution) 1009 (film) | 7.7 (solution) | 722 (doped) 1010 (nondoped) | 1.35 (doped) 0.003 (nondoped) | [159] |
M62 | 887 (film) | 0.18 | 904 | 0.019 | [160] |
M63 | 878 (film) | 1.10 | 910 | 0.22 | [161] |
M64 | 758 (film) | 15 | 782 | 2.55 | [162] |
M65 | 764 (film) | 12 | 730 | 2.65 | [163] |
M66 | 733 (film) | 21 | 728 | 3.9 | [164] |
M67 | 740 | 8.4 | 740 | 2.4 | [165] |
M68 | 750 (film) | 21 | 712 | 6.57 | [166] |
M69 | 696 | 35.8 | 709 | 6.61 | [167] |
M70 | 696 | 64.4 | 711 | 9.44 | [167] |
M71 | 820 | 10.7 | 750 (doped) 802 (nondoped) | 14.3 (doped) 2.2(nondoped) | [39] |
M72 | 721 (doped) 782 (film) | 0.7 (doped) 0.035 (film) | 721 (doped) | 9.74 (doped) | [168] |
M73 | 760 (doped) 788 (solution) | 45 (doped) 1.3 (solution) | 758 | 5.1 | [169] |
M74 | 840 (doped) | 15.8 (doped) | 840 (doped) | 3.8 (doped) | [170] |
M75 | 536 | 1 | 716 | 1.9 | [171] |
M76 | 534 | 2 | 700 | 0.7 | [171] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, W.; Zhang, C.; Fang, Y.; Peng, M.; Sun, W. Progresses and Perspectives of Near-Infrared Emission Materials with “Heavy Metal-Free” Organic Compounds for Electroluminescence. Polymers 2023, 15, 98. https://doi.org/10.3390/polym15010098
Xiong W, Zhang C, Fang Y, Peng M, Sun W. Progresses and Perspectives of Near-Infrared Emission Materials with “Heavy Metal-Free” Organic Compounds for Electroluminescence. Polymers. 2023; 15(1):98. https://doi.org/10.3390/polym15010098
Chicago/Turabian StyleXiong, Wenjing, Cheng Zhang, Yuanyuan Fang, Mingsheng Peng, and Wei Sun. 2023. "Progresses and Perspectives of Near-Infrared Emission Materials with “Heavy Metal-Free” Organic Compounds for Electroluminescence" Polymers 15, no. 1: 98. https://doi.org/10.3390/polym15010098
APA StyleXiong, W., Zhang, C., Fang, Y., Peng, M., & Sun, W. (2023). Progresses and Perspectives of Near-Infrared Emission Materials with “Heavy Metal-Free” Organic Compounds for Electroluminescence. Polymers, 15(1), 98. https://doi.org/10.3390/polym15010098