Practical Preparation of Elastomer-Immobilized Nonclose-Packed Colloidal Photonic Crystal Films with Various Uniform Colors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Pieranski, P. Colloidal crystals. Contemp. Phys. 2006, 24, 25–73. [Google Scholar] [CrossRef]
- Kanai, T.; Sano, K.; Yano, H.; Sawada, T. Independent control of optical stop-band wavelength and width of colloidal photonic crystals. Colloids Surf. A 2016, 506, 586–590. [Google Scholar] [CrossRef]
- Ge, J.; Yin, Y. Responsive photonic crystals. Angew. Chem. Int. Ed. 2011, 50, 1492–1522. [Google Scholar] [CrossRef] [PubMed]
- Pan, M.; Wang, L.; Dou, S.; Zhao, J.; Xu, H.; Wang, B.; Zhang, L.; Li, X.; Pan, L.; Li, Y. Recent Advances in Colloidal Photonic Crystal-Based Anti-Counterfeiting Materials. Crystals 2019, 9, 417. [Google Scholar] [CrossRef]
- Shieh, J.-Y.; Kuo, J.-Y.; Weng, H.-P.; Yu, H.H. Preparation and evaluation of the bioinspired PS/PDMS photochromic films by the self-assembly dip–drawing method. Langmuir 2013, 29, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.; Asher, S.A. Photonic crystal chemical sensors: pH and ionic strength. J. Am. Chem. Soc. 2000, 122, 9534–9537. [Google Scholar] [CrossRef]
- Honda, M.; Seki, T.; Takeoka, Y. Dual tuning of the photonic band-gap structure in soft photonic crystals. Adv. Mater. 2009, 21, 1801–1804. [Google Scholar] [CrossRef]
- Sugiyama, H.; Sawada, T.; Yano, H.; Kanai, T. Linear thermosensitivity of gel-immobilized tunable colloidal photonic crystals. J. Mater. Chem. C 2013, 1, 6103–6106. [Google Scholar] [CrossRef]
- Yuan, S.; Ge, F.; Yang, X.; Guang, S. Self-assembly of colloidal photonic crystals of PS@PNIPAM nanoparticles and temperature-responsive tunable fluorescence. J. Fluoresc. 2016, 26, 2303–2310. [Google Scholar] [CrossRef]
- Kanai, T.; Yano, H.; Kobayashi, N.; Sawada, T. Enhancement of thermosensitivity of gel-immobilized tunable colloidal photonic crystals with anisotropic contraction. ACS Macro Lett. 2017, 6, 1196–1200. [Google Scholar] [CrossRef]
- Toyotama, A.; Kanai, T.; Sawada, T.; Yamanaka, J.; Ito, K.; Kitamura, K. Gelation of colloidal crystals without degradation in their transmission quality and chemical tuning. Langmuir 2005, 21, 10268–10270. [Google Scholar] [CrossRef]
- Yamamoto, S.; Sawada, T.; Kanai, T. Wide spectral tuning of gel-immobilized colloidal crystals preserving high uniformity. Chem. Lett. 2012, 41, 495–497. [Google Scholar] [CrossRef]
- Luo, W.; Yan, J.; Tan, Y.; Ma, H.; Guan, J. Rotating 1-D magnetic photonic crystal balls with a tunable lattice constant. Nanoscale 2017, 9, 9548–9555. [Google Scholar] [CrossRef] [PubMed]
- Amano, A.; Kanai, T. Tuning of optical stopband wavelength and effective bandwidth of gel-immobilized colloidal photonic crystal films. Gels 2023, 9, 56. [Google Scholar] [CrossRef] [PubMed]
- Sivasankarapillai, V.S.; Sundararajan, A.; Easwaran, E.C.; Pourmadadi, M.; Aslani, A.; Dhanusuraman, R.; Rahdar, A.; Kyzas, G.Z. Application of ionic liquids in rubber elastomers: Perspectives and challenges. J. Mol. Liq. 2023, 382, 121846. [Google Scholar] [CrossRef]
- Das, G.; Park, S.-Y. Liquid crystalline elastomer actuators with dynamic covalent bonding: Synthesis, alignment, reprogrammability, and self-healing. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101076. [Google Scholar] [CrossRef]
- Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M.Á.; Santana, M.H. Self-healing elastomers: A sustainable solution for automotive applications. Eur. Polym. J. 2023, 190, 112023. [Google Scholar] [CrossRef]
- Fudouzi, H.; Sawada, T. Colloidal photonic crystals made of soft materials: Gels and elastomers. In Micro- and Nanophotonic Technologies; Meyrueis, P., Van de Voorde, M., Sakoda, K., Eds.; Wiley-VCH: Weinheim, Germany, 2017; pp. 507–526. [Google Scholar]
- Hong, W.; Yuan, Z.; Chen, X. Structural color materials for optical anticounterfeiting. Small 2020, 16, 1907626. [Google Scholar] [CrossRef] [PubMed]
- Xing, H.; Li, J.; Shi, Y.; Guo, J.; Wei, J. Thermally driven photonic actuator based on silica opal photonic crystal with liquid crystal elastomer. ACS Appl. Mater. Interfaces 2016, 8, 9440–9445. [Google Scholar] [CrossRef]
- Clough, J.M.; Weder, C.; Schrettl, S. Mechanochromism in structurally colored polymeric materials. Macromol. Rapid Commun. 2021, 42, 2000528. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, J.; Lu, X.; Fang, X.; Peng, H. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes. Angew. Chem. Int. Ed. 2015, 54, 3630–3634. [Google Scholar] [CrossRef] [PubMed]
- Inci, E.; Topcu, G.; Demir, M.M. Colloidal films of SiO2 in elastomeric polyacrylates by photopolymerization: A strain sensor application. Sens. Actuators B 2020, 305, 127452. [Google Scholar] [CrossRef]
- Snapp, P.; Kang, P.; Leem, J.; Nam, S. Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Funct. Mater. 2019, 29, 1902216. [Google Scholar] [CrossRef]
- Li, M.; Lyu, Q.; Peng, B.; Chen, X.; Zhang, L.; Zhu, J. Bioinspired colloidal photonic composites: Fabrications and emerging applications. Adv. Mater. 2022, 34, 2110488. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Han, S.H.; Kim, J.B.; Kim, J.H.; Lee, J.M.; Kim, S.-H. Colloidal photonic inks for mechanochromic films and patterns with structural colors of high saturation. Chem. Mater. 2019, 31, 8154–8162. [Google Scholar] [CrossRef]
- Yang, D.; Ouyang, C.; Zhang, Y.; Ma, D.; Ye, Y.; Bu, D.; Huang, S. Simple and efficient fabrication of multi-stage color-changeable photonic prints as anti-counterfeit labels. J. Colloid Interface Sci. 2021, 590, 134–143. [Google Scholar] [CrossRef]
- Kanai, T.; Sawada, T.; Toyotama, A.; Kitamura, K. Air-pulse-drive fabrication of photonic crystal films of colloids with high spectral quality. Adv. Funct. Mater. 2005, 15, 25–29. [Google Scholar] [CrossRef]
- Kanai, T.; Sawada, T.; Kitamura, K. Quantitative evaluation of spatial uniformity in spectral characteristics for large-area colloidal crystals. Chem. Lett. 2005, 34, 904–905. [Google Scholar] [CrossRef]
- Kanai, T.; Sawada, T.; Yamanaka, J. Fabrication of large-area silica colloidal crystals immobilized in hydrogel film. J. Ceram. Soc. Jpn. 2005, 118, 370–373. [Google Scholar] [CrossRef]
- Kanai, T.; Kobayashi, N.; Tajima, H. Enhanced linear thermosensitivity of gel-immobilized colloidal photonic crystal film bound on glass substrate. Mater. Adv. 2021, 2, 2600–2603. [Google Scholar] [CrossRef]
- Tajima, H.; Amano, A.; Kanai, T. Elastomer-immobilized tunable colloidal photonic crystal films with high optical qualities and high maximum strain. Mater. Adv. 2021, 2, 3294–3299. [Google Scholar] [CrossRef]
- Iwasawa, Y.; Tajima, H.; Kanai, T. Tuning and fixing of uniform Bragg reflection color of gel-immobilized colloidal photonic crystal films. Polym. J. 2021, 53, 1157–1161. [Google Scholar] [CrossRef]
- Kanai, T.; Sawada, T.; Maki, I.; Kitamura, K. Kossel line analysis of flow-aligned textures of colloidal crystals. Jpn. J. Appl. Phys. 2003, 42, L655–L657. [Google Scholar] [CrossRef]
- Lee, G.H.; Choi, T.M.; Kim, B.; Han, S.H.; Lee, J.M.; Kim, S.-H. Chameleon-inspired mechanochromic photonic films composed of non-close-packed colloidal arrays. ACS Nano 2017, 11, 11350–11357. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobori, M.; Hirano, Y.; Tanaka, M.; Kanai, T. Practical Preparation of Elastomer-Immobilized Nonclose-Packed Colloidal Photonic Crystal Films with Various Uniform Colors. Polymers 2023, 15, 2294. https://doi.org/10.3390/polym15102294
Kobori M, Hirano Y, Tanaka M, Kanai T. Practical Preparation of Elastomer-Immobilized Nonclose-Packed Colloidal Photonic Crystal Films with Various Uniform Colors. Polymers. 2023; 15(10):2294. https://doi.org/10.3390/polym15102294
Chicago/Turabian StyleKobori, Momoko, Yuna Hirano, Mikako Tanaka, and Toshimitsu Kanai. 2023. "Practical Preparation of Elastomer-Immobilized Nonclose-Packed Colloidal Photonic Crystal Films with Various Uniform Colors" Polymers 15, no. 10: 2294. https://doi.org/10.3390/polym15102294
APA StyleKobori, M., Hirano, Y., Tanaka, M., & Kanai, T. (2023). Practical Preparation of Elastomer-Immobilized Nonclose-Packed Colloidal Photonic Crystal Films with Various Uniform Colors. Polymers, 15(10), 2294. https://doi.org/10.3390/polym15102294