Three-Dimensional-Printed Polymeric Cores for Methane Hydrate Enhanced Growth
Abstract
:1. Introduction
2. Materials and Methods
2.1. X-ray Computed Tomography
2.2. Three-Dimensional Printing
2.3. Gas Hydrate Formation Test
3. Results
3.1. Three-Dimensional-Printed Cores X-ray Computed Tomography Characterization
3.2. Methane Hydrate Growth with 3D-Printed Cores
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Sloan, E.D.; Koh, C.A. Clathrate Hydrates of Natural Gases, 3rd ed.; CRC Press: Boca Rator, FL, USA; London, UK; New York, NY, USA, 2008. [Google Scholar]
- Chong, Z.R.; Yang, S.H.B.; Babu, P.; Linga, P.; Li, X.-S. Review of natural gas hydrates as an energy resource: Prospects and challenges. Appl. Energ. 2016, 162, 1633–1652. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Joonaki, E.; Farahani, M.V.; Takeya, S.; Ruppel, C.; Yang, J.; English, N.J.; Schicks, J.M.; Edlmann, K.; Mehrabian, H. Gas hydrates in sustainable chemistry. Chem. Soc. Rev. 2020, 49, 5225–5309. [Google Scholar] [CrossRef] [PubMed]
- Manakov, A.Y.; Stoporev, A.S. Physical chemistry and technological applications of gas hydrates: Topical aspects. Russ. Chem. Rev. 2021, 90, 566. [Google Scholar] [CrossRef]
- Song, C.; Liu, Q.; Ji, N.; Deng, S.; Zhao, J.; Li, Y.; Song, Y.; Li, H. Alternative pathways for efficient CO2 capture by hybrid processes—A review. Renew. Sustain. Energy Rev. 2018, 82, 215–231. [Google Scholar] [CrossRef]
- Pan, M.; Schicks, J.M. Influence of gas supply changes on the formation process of complex mixed gas hydrates. Molecules 2021, 26, 3039. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, S.M.; Kolliopoulos, G. Hydrate based desalination for sustainable water treatment: A review. Desalination 2022, 537, 115855. [Google Scholar] [CrossRef]
- Zhang, Y.; Bhattacharjee, G.; Vijayakumar, M.D.; Linga, P. Rapid and energy-dense methane hydrate formation at near ambient temperature using 1, 3-dioxolane as a dual-function promoter. Appl. Energ. 2022, 311, 118678. [Google Scholar] [CrossRef]
- Nambiar, A.; Babu, P.; Linga, P. Improved kinetics and water recovery with propane as co-guest gas on the hydrate-based desalination (hydesal) process. ChemEngineering 2019, 3, 31. [Google Scholar] [CrossRef] [Green Version]
- Filarsky, F.; Wieser, J.; Schultz, H.J. Rapid Gas Hydrate Formation—Evaluation of Three Reactor Concepts and Feasibility Study. Molecules 2021, 26, 3615. [Google Scholar] [CrossRef]
- Chong, Z.R.; He, T.B.; Babu, P.; Zheng, J.N.; Linga, P. Economic evaluation of energy efficient hydrate based desalination utilizing cold energy from liquefied natural gas (LNG). Desalination 2019, 463, 69–80. [Google Scholar] [CrossRef]
- Petukhov, A.N.; Atlaskin, A.A.; Kudryavtseva, M.S.; Kryuchkov, S.S.; Shablykin, D.N.; Stepanova, E.A.; Smorodin, K.A.; Kazarina, O.V.; Trubyanov, M.M.; Atlaskina, M.E. CO2 capture process through hybrid gas hydrate-membrane technology: Complex approach for the transition from theory to practice. J. Environ. Chem. Eng. 2022, 10, 108104. [Google Scholar] [CrossRef]
- Atlaskin, A.A.; Petukhov, A.N.; Stepakova, A.N.; Tsivkovsky, N.S.; Kryuchkov, S.S.; Smorodin, K.A.; Moiseenko, I.S.; Atlaskina, M.E.; Suvorov, S.S.; Stepanova, E.A. Membrane Cascade Type of «Continuous Membrane Column» for Power Plant Post-Combustion Carbon Dioxide Capture Part 1: Simulation of the Binary Gas Mixture Separation. Membranes 2023, 13, 270. [Google Scholar] [CrossRef] [PubMed]
- Filarsky, F.; Schmuck, C.; Schultz, H.J. Development of a gas hydrate absorption for energy storage and gas separation–proof of concept based on natural gas. Energy Procedia 2019, 158, 5367–5373. [Google Scholar] [CrossRef]
- Kashchiev, D.; Firoozabadi, A. Driving force for crystallization of gas hydrates. J. Cryst. Growth 2002, 241, 220–230. [Google Scholar] [CrossRef]
- Manakov, A.Y.; Penkov, N.V.; Rodionova, T.V.; Nesterov, A.N.; Fesenko, E.E. Kinetics of formation and dissociation of gas hydrates. Russ. Chem. Rev. 2017, 86, 845–869. [Google Scholar] [CrossRef]
- Podenko, L.S.; Drachuk, A.O.; Molokitina, N.S.; Nesterov, A.N. Multiple methane hydrate formation in powder poly (vinyl alcohol) cryogel for natural gas storage and transportation. J. Nat. Gas Sci. Eng. 2021, 88, 103811. [Google Scholar] [CrossRef]
- Em, Y.; Stoporev, A.; Semenov, A.; Glotov, A.; Smirnova, E.; Villevald, G.; Vinokurov, V.; Manakov, A.; Lvov, Y. Methane hydrate formation in halloysite clay nanotubes. ACS Sustain. Chem. Eng. 2020, 8, 7860–7868. [Google Scholar] [CrossRef]
- Gong, Y.; Semenov, M.E.; Emelianov, D.A.; Kiiamov, A.G.; Cherednichenko, K.A.; Novikov, A.A.; Semenov, A.P.; Li, T.; Vinokurov, V.; Stoporev, A.S. Carriers for Methane Hydrate Production: Cellulose-Based Materials as a Case Study. ACS Sustain. Chem. Eng. 2022, 10, 10119–10131. [Google Scholar] [CrossRef]
- Hassanpouryouzband, A.; Yang, J.; Tohidi, B.; Chuvilin, E.; Istomin, V.; Bukhanov, B.; Cheremisin, A. CO2 capture by injection of flue gas or CO2–N2 mixtures into hydrate reservoirs: Dependence of CO2 capture efficiency on gas hydrate reservoir conditions. Environ. Sci. Technol. 2018, 52, 4324–4330. [Google Scholar] [CrossRef]
- Farahani, M.V.; Hassanpouryouzband, A.; Yang, J.; Tohidi, B. Insights into the climate-driven evolution of gas hydrate-bearing permafrost sediments: Implications for prediction of environmental impacts and security of energy in cold regions. RSC Adv. 2021, 11, 14334–14346. [Google Scholar] [CrossRef]
- Le, T.X.; Bornert, M.; Brown, R.; Aimedieu, P.; Broseta, D.; Chabot, B.; King, A.; Tang, A.M. Combining Optical Microscopy and X-ray Computed Tomography Reveals Novel Morphologies and Growth Processes of Methane Hydrate in Sand Pores. Energies 2021, 14, 5672. [Google Scholar] [CrossRef]
- Farahani, M.V.; Guo, X.; Zhang, L.; Yang, M.; Hassanpouryouzband, A.; Zhao, J.; Yang, J.; Song, Y.; Tohidi, B. Effect of thermal formation/dissociation cycles on the kinetics of formation and pore-scale distribution of methane hydrates in porous media: A magnetic resonance imaging study. Sustain. Energy Fuels 2021, 5, 1567–1583. [Google Scholar] [CrossRef]
- Kou, X.; Li, X.-S.; Wang, Y.; Liu, J.-W.; Chen, Z.-Y. Effects of gas occurrence pattern on distribution and morphology characteristics of gas hydrates in porous media. Energy 2021, 226, 120401. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, Z.; Zhang, Z.; Shang, L.; Ma, S. Effect of silica sand size and saturation on methane hydrate formation in the presence of SDS. J. Nat. Gas Sci. Eng. 2018, 56, 266–280. [Google Scholar] [CrossRef]
- Liang, H.; Guan, D.; Liu, Y.; Zhang, L.; Zhao, J.; Yang, L.; Song, Y. Kinetic process of upward gas hydrate growth and water migration on the solid surface. J. Colloid Interface Sci. 2022, 626, 1003–1014. [Google Scholar] [CrossRef]
- Filarsky, F.; Schmuck, C.; Schultz, H.J. Impact of Modified Silica Beads on Methane Hydrate Formation in a Fixed-Bed Reactor. Ind. Eng. Chem. Res. 2019, 58, 16687–16695. [Google Scholar] [CrossRef]
- Filarsky, F.; Schmuck, C.; Schultz, H.J. Development of a Surface-Active Coating for Promoted Gas Hydrate Formation. Chem. Ing. Tech. 2019, 91, 85–91. [Google Scholar] [CrossRef] [Green Version]
- Altamash, T.; Esperança, J.M.S.S.; Tariq, M. Surface Coatings and Treatments for Controlled Hydrate Formation: A Mini Review. Physchem 2021, 1, 272–287. [Google Scholar] [CrossRef]
- Chirkova, Y.F.; Stoporev, A.S.; Pavelyev, R.S.; Varfolomeev, M.A. Synergistic effect of sulfonated castor oil and porous medium on kinetics of gas hydrates formation. Fuel 2023, 335, 127139. [Google Scholar] [CrossRef]
- Yang, L.; Wang, J.; Liu, N.; Xie, Y.; Cui, G.; Liu, D. Clathrate Hydrate Framework Construction Enhanced by Waste Bio-Shavings for Efficient Methane Storage. ACS Sustain. Chem. Eng. 2022, 10, 12127–12138. [Google Scholar] [CrossRef]
- Denning, S.; Majid, A.A.; Lucero, J.M.; Crawford, J.M.; Carreon, M.A.; Koh, C.A. Metal–Organic Framework HKUST-1 Promotes Methane Hydrate Formation for Improved Gas Storage Capacity. ACS Appl. Mater. Interfaces 2020, 12, 53510–53518. [Google Scholar] [CrossRef] [PubMed]
- Denning, S.; Lucero, J.M.; Majid, A.A.; Crawford, J.M.; Carreon, M.A.; Koh, C.A. Porous Organic Cage CC3: An Effective Promoter for Methane Hydrate Formation for Natural Gas Storage. J. Phys. Chem. C 2021, 125, 20512–20521. [Google Scholar] [CrossRef]
- Farrando-Perez, J.; Balderas-Xicohtencatl, R.; Cheng, Y.; Daemen, L.; Cuadrado-Collados, C.; Martinez-Escandell, M.; Ramirez-Cuesta, A.J.; Silvestre-Albero, J. Rapid and efficient hydrogen clathrate hydrate formation in confined nanospace. Nat. Commun. 2022, 13, 5953. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhang, G.; Wang, F. Hydrate Formation Loaded by an Activated Carbon Bed in 3D-Printed Containers. Energy Fuels 2021, 35, 15675–15683. [Google Scholar] [CrossRef]
- Shao, Z.; Sun, J.; Wang, J.; Lv, K.; Liao, B.; Wang, R.; Jiang, H. Effects of Modified Cellulose on Methane Hydrate Decomposition: Experiments and Molecular Dynamics Simulations. ACS Sustain. Chem. Eng. 2021, 9, 9689–9697. [Google Scholar] [CrossRef]
- Nambiar, A.; Babu, P.; Linga, P. CO2 capture using the clathrate hydrate process employing cellulose foam as a porous media. Can. J. Chem. 2015, 93, 808–814. [Google Scholar] [CrossRef]
- Yan, Q.; Dong, H.; Su, J.; Han, J.; Song, B.; Wei, Q.; Shi, Y. A review of 3D printing technology for medical applications. Engineering 2018, 4, 729–742. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Z.; Li, J.; Liu, C.; Lao, C.; Fu, Y.; Liu, C.; Li, Y.; Wang, P.; He, Y. 3D printing of ceramics: A review. J. Eur. Ceram. Soc. 2019, 39, 661–687. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, M.; Zhou, Z.; Gou, J.; Hui, D. 3D printing of polymer matrix composites: A review and prospective. Compos. Part B Eng. 2017, 110, 442–458. [Google Scholar] [CrossRef]
- Koltsov, S.I.; Statsenko, T.G.; Morozova, S.M. Modification of Commercial 3D Fused Deposition Modeling Printer for Extrusion Printing of Hydrogels. Polymers 2022, 14, 5539. [Google Scholar] [CrossRef]
- Chen, Z.; Khuu, N.; Xu, F.; Kheiri, S.; Yakavets, I.; Rakhshani, F.; Morozova, S.; Kumacheva, E. Printing Structurally Anisotropic Biocompatible Fibrillar Hydrogel for Guided Cell Alignment. Gels 2022, 8, 685. [Google Scholar] [CrossRef]
- Morozova, S.M.; Statsenko, T.G.; Ryabchenko, E.O.; Gevorkian, A.; Adibnia, V.; Lozhkin, M.S.; Kireynov, A.V.; Kumacheva, E. Multicolored Nanocolloidal Hydrogel Inks. Adv. Funct. Mater. 2021, 31, 2105470. [Google Scholar] [CrossRef]
- Torres-Mansilla, A.; Hincke, M.; Voltes, A.; López-Ruiz, E.; Baldión, P.A.; Marchal, J.A.; Álvarez-Lloret, P.; Gómez-Morales, J. Eggshell Membrane as a Biomaterial for Bone Regeneration. Polymers 2023, 15, 1342. [Google Scholar] [CrossRef]
- Sakib-Uz-Zaman, C.; Khondoker, M.A.H. Polymer-Based Additive Manufacturing for Orthotic and Prosthetic Devices: Industry Outlook in Canada. Polymers 2023, 15, 1506. [Google Scholar] [CrossRef]
- Churcher, P.L.; French, P.R.; Shaw, J.C.; Schramm, L.L. Rock properties of Berea sandstone, Baker dolomite, and Indiana limestone. In Proceedings of the SPE International Symposium on Oilfield Chemistry, Anaheim, CA, USA, 20–22 February 1991. [Google Scholar]
- Gong, L.; Nie, L.; Xu, Y. Geometrical and topological analysis of pore space in sandstones based on x-ray computed tomography. Energies 2020, 13, 3774. [Google Scholar] [CrossRef]
- Schön, J.H. Pore space properties. In Developments in Petroleum Science; Elsevier: Amsterdam, The Netherlands, 2015; Volume 65, pp. 21–84. [Google Scholar]
- Karimpouli, S.; Kadyrov, R. Multistep Super Resolution Double-U-net (SRDUN) for enhancing the resolution of Berea sandstone images. J. Pet. Sci. Eng. 2022, 216, 110833. [Google Scholar] [CrossRef]
- Zhang, Y.; Nishizawa, O.; Kiyama, T.; Chiyonobu, S.; Xue, Z. Flow behaviour of supercritical CO2 and brine in Berea sandstone during drainage and imbibition revealed by medical X-ray CT images. Geophys. J. Int. 2014, 197, 1789–1807. [Google Scholar] [CrossRef] [Green Version]
- Ettinger, R.A.; Radke, C.J. Influence of texture on steady foam flow in Berea sandstone. SPE Reserv. Eng. 1992, 7, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Liu, H. Prediction of immiscible two-phase flow properties in a two-dimensional Berea sandstone using the pore-scale lattice Boltzmann simulation. Eur. Phys. J. E 2018, 41, 124. [Google Scholar] [CrossRef]
- Stoporev, A.S.; Semenov, A.P.; Medvedev, V.I.; Kidyarov, B.I.; Manakov, A.Y.; Vinokurov, V.A. Nucleation of gas hydrates in multiphase systems with several types of interfaces. J. Therm. Anal. Calorim. 2018, 134, 783–795. [Google Scholar] [CrossRef]
- Hu, W.; Chen, C.; Sun, J.; Zhang, N.; Zhao, J.; Liu, Y.; Ling, Z.; Li, W.; Liu, W.; Song, Y. Three-body aggregation of guest molecules as a key step in methane hydrate nucleation and growth. Commun. Chem. 2022, 5, 33. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.D.; Song, M.; Susilo, R.; Englezos, P. Dynamics of methane−propane clathrate hydrate crystal growth from liquid water with or without the presence of n-heptane. Cryst. Growth Des. 2006, 6, 1428–1439. [Google Scholar] [CrossRef]
- Imasato, K.; Tokutomi, H.; Ohmura, R. Crystal Growth Behavior of Methane Hydrate in the Presence of Liquid Hydrocarbon. Cryst. Growth Des. 2015, 15, 428–433. [Google Scholar] [CrossRef]
- Adamova, T.P.; Stoporev, A.S.; Semenov, A.P.; Kidyarov, B.I.; Manakov, A.Y. Methane hydrate nucleation on water-methane and water-decane boundaries. Thermochim. Acta 2018, 668, 178–184. [Google Scholar] [CrossRef]
- Almenningen, S.; Lysyy, M.; Ersland, G. Quantification of CH4 hydrate film growth rates in micromodel pores. Cryst. Growth Des. 2021, 21, 4090–4099. [Google Scholar] [CrossRef]
Polymer | Extrusion Width (µm) | Layer Thickness (µm) | Extrusion Temperature (°C) | Table Temperature (°C) |
---|---|---|---|---|
PLA | 200 | 50 | 205 | 60 |
PLA* | 400 | 200 | 205 | 60 |
ABS | 200 | 50 | 250 | 100 |
PolyFlex | 200 | 50 | 225 | 60 |
UltraX | 200 | 50 | 300 | 100 |
ePC | 200 | 50 | 260 | 100 |
Sample | Porosity (%) | Effective Porosity (%) | Effective Porosity Volume (mm3) | Total Model Volume (mm3) | Equivalent Pore Diameter (mm) |
---|---|---|---|---|---|
Digital model | 19.6 | 19.6 | 556.1 | 2835.0 | 1.2 ± 0.7 |
PLA | 20.9 | 19.4 | 497.6 | 2569.7 | 1.0 ± 0.6 |
PLA* | 20.4 | 18.8 | 426.5 | 2262.1 | 2.0 ± 1.2 |
ABS | 20.4 | 18.4 | 500.2 | 2717.9 | 1.0 ± 0.5 |
PolyFlex | 16.3 | 7.0 | 167.0 | 2385.9 | 1.3 ± 0.6 |
UltraX | 20.4 | 17.1 | 429.9 | 2515.9 | 1.0 ± 0.5 |
ePC | 20.0 | 18.5 | 455.4 | 2464.5 | 1.4 ± 0.8 |
Sample | Water Volume (mL) | T (°C) | Initial P (MPa) | Final P (MPa) | Water-to-Hydrate Conversion (%) | ΔS (%) 1 |
---|---|---|---|---|---|---|
No insertion | 3 | 1 | 9.20 | 9.14 | 4.1 | – |
5 | 1 | 9.02 | 8.89 | 4.9 | – | |
PLA | 2 | 1 | 8.72 | 7.63 | 100.6 2 | – |
5 | 1 | 8.98 | 7.65 | 42.7 | 21 | |
PLA* | 3 | 1 | 9.25 | 9.16 | 5.6 | – |
2 | 1 | 9.25 | 9.19 | 5.9 | – | |
ABS | 2 | 1 | 9.20 | 8.51 | 65.2 | – |
2 (r1) 3 | 1 | 9.10 | 8.45 | 61.3 | – | |
5 | 1 | 8.99 | 8.04 | 30.7 | −56 | |
5 (r1) | 1 | 8.88 | 8.52 | 11.8 5 | −56 | |
5 (r2) 4 | 1 | 8.88 | 7.95 | 29.9 | −56 | |
PolyFlex | 2 | 1 | 9.25 | 9.17 | 7.2 | – |
UltraX | 2 | 1 | 9.28 | 8.73 | 52.9 | −60 |
ePC | 2 | 1 | 9.17 | 8.55 | 59.3 | – |
5 | 1 | 9.18 | 8.31 | 28.8 | −59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoporev, A.; Kadyrov, R.; Adamova, T.; Statsenko, E.; Nguyen, T.H.; Yarakhmedov, M.; Semenov, A.; Manakov, A. Three-Dimensional-Printed Polymeric Cores for Methane Hydrate Enhanced Growth. Polymers 2023, 15, 2312. https://doi.org/10.3390/polym15102312
Stoporev A, Kadyrov R, Adamova T, Statsenko E, Nguyen TH, Yarakhmedov M, Semenov A, Manakov A. Three-Dimensional-Printed Polymeric Cores for Methane Hydrate Enhanced Growth. Polymers. 2023; 15(10):2312. https://doi.org/10.3390/polym15102312
Chicago/Turabian StyleStoporev, Andrey, Rail Kadyrov, Tatyana Adamova, Evgeny Statsenko, Thanh Hung Nguyen, Murtazali Yarakhmedov, Anton Semenov, and Andrey Manakov. 2023. "Three-Dimensional-Printed Polymeric Cores for Methane Hydrate Enhanced Growth" Polymers 15, no. 10: 2312. https://doi.org/10.3390/polym15102312
APA StyleStoporev, A., Kadyrov, R., Adamova, T., Statsenko, E., Nguyen, T. H., Yarakhmedov, M., Semenov, A., & Manakov, A. (2023). Three-Dimensional-Printed Polymeric Cores for Methane Hydrate Enhanced Growth. Polymers, 15(10), 2312. https://doi.org/10.3390/polym15102312