Experimental and Numerical Analysis of Stitched Composite Laminates Subjected to Low-Velocity Edge-on Impact and Compression after Edge-on Impact
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Specimen Preparation
2.2. Edge-on Impact Test
2.3. CAEI Test
3. Experimental Results and Discussion
3.1. Edge-on Impact Responses
3.2. Surface Damage
3.3. Internal Damage
3.4. CAEI Damage
4. Numerical Simulations
4.1. Failure Criteria and Stiffness Degrading
4.1.1. Determination Criteria for Intralaminar Damage
- Fiber damage
- 2.
- Matrix damage
4.1.2. Determination Criteria for Interlaminar Damage
4.1.3. Damage Evolution
4.1.4. Model of the Resin Cylinder with Stitching
4.2. Finite Element Model
4.3. Analysis of Simulation Results
4.3.1. Mechanical Response
4.3.2. Progressive Damage from Edge-on Impact
4.3.3. Residual Strength
5. Conclusions
- (1)
- The edge-on impact history of laminate can be divided into a linear loading phase, a peak load abrupt drop phase, an oscillation plateau phase, and a punch rebound phase. The damage showed a high degree of localization when the peak load was reached, with noticeable dents, multiple longitudinally distributed delamination cracks, and semi-elliptical internal damage.
- (2)
- The higher the energy of the edge impact, the more severe the internal damage to the laminate and the greater its residual displacement. The stitching process improved the edge-on impact damage tolerance of the laminate. The stitching laminate can withstand a more significant peak load at the same impact energy, and the denser the stitching, the higher the peak load. At the same time, adding stitching can inhibit the expansion of the delamination crack. The delamination crack length decreases with increasing stitch density. The depth of the dents and the degree of expansion on the sides were also smaller.
- (3)
- A fast rise in load to the peak and then a rapid decline indicated that the specimen was damaged entirely and could not withstand the extra compression load. The higher the energy of the impact, the lower the peak loads. The stitched laminate has a higher peak load at the same energy, which increases with increasing density. The main damage to the CAEI of the unstitched laminate was characterized by delamination damage, while the primary damage to the stitched laminate was manifested by the destruction of strength. The incorporation of stitches can improve the residual strength of the laminate. At the same impact energy, the higher the stitch density, the higher the residual strength.
- (4)
- The simulation method was developed for the LVEI and CAEI of composite laminates. Based on the Hashin failure criterion described, a cohesive zone model was used to simulate the interlaminar, combined with a modified Camanho discount degradation scheme for stiffness discounting. The mechanical response and damage predicted using the model matched well with the experimental results, which verified the accuracy of the model.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, B.; Chen, Y.; Lee, J.; Fu, K.K.; Li, Y. In-plane compression response of woven CFRP composite after low-velocity impact: Modelling and experiment. Thin-Walled Struct. 2021, 158, 107186. [Google Scholar] [CrossRef]
- Shah, S.Z.; Karuppanan, S.; Megat-Yusoff, P.S.M.; Sajid, Z. Impact resistance and damage tolerance of fiber reinforced composites: A review. Comp. Struct. 2019, 217, 100–121. [Google Scholar] [CrossRef]
- Donough, M.J.; Prusty, B.G.; Van Donselaar, M.J.; Morozov, E.V.; Wang, H.; Hazell, P.J.; Philips, A.W.; John, N.A.S. In-plane and oblique edge-on impact on thick glass-fibre/epoxy composite laminates. Int. J. Impact Eng. 2023, 171, 104373. [Google Scholar] [CrossRef]
- Subadra, S.P.; Griskevicius, P.; Yousef, S. Low velocity impact and pseudo-ductile behaviour of carbon/glass/epoxy and carbon/glass/PMMA hybrid composite laminates for aircraft application at service temperature. Polym. Test. 2020, 89, 106711. [Google Scholar] [CrossRef]
- Mousavi, M.V.; Khoramishad, H. Investigation of energy absorption in hybridized fiber-reinforced polymer composites under high-velocity impact loading. Int. J. Impact Eng. 2020, 146, 103692. [Google Scholar] [CrossRef]
- Cai, J.; Bao, H.; Zuo, H.F.; Huang, Y. Safety evaluation of airworthiness requirement of bird-strike on aeroplane. Eng. Fail. Anal. 2019, 102, 407–416. [Google Scholar] [CrossRef]
- Talreja, R.; Phan, N. Assessment of damage tolerance approaches for composite aircraft with focus on barely visible impact damage. Comp. Struct. 2019, 219, 1–7. [Google Scholar] [CrossRef]
- Katnam, K.B.; Da Silva, L.F.M.; Young, T.M. Bonded repair of composite aircraft structures: A review of scientific challenges and opportunities. Prog. Aerosp. Sci. 2013, 61, 26–42. [Google Scholar] [CrossRef]
- Liu, H.C.; Du, W.X.; Nezhad, H.Y.; Starr, A.; Zhao, Y.F. A dissection and enhancement technique for combined damage characterisation in composite laminates using laser-line scanning thermography. Comp. Struct. 2021, 271, 114168. [Google Scholar] [CrossRef]
- Fotouhi, S.; Khayatzadeh, S.; Pui, X.W.; Damghani, M.; Bodaghi, M.; Fotouhi, M. Detection of barely visible impact damage in polymeric laminated composites using a biomimetic tactile whisker. Polymers 2021, 20, 3587. [Google Scholar] [CrossRef]
- Sonnenfeld, C.; Mendil-Jakani, H.; Agogue, R.; Nunez, P.; Beauchene, P. Thermoplastic/thermoset multilayer composites: A way improve the impact damage tolerance of thermosetting resin matrix to composites. Comp. Struct. 2017, 171, 298–305. [Google Scholar] [CrossRef]
- Ravindran, A.R.; Ladani, R.B.; Kinloch, A.J.; Wang, C.-H.; Mouritz, A.P. Improving the delamination resistance and impact damage tolerance of carbon fibre-epoxy composites using multi-scale fibre toughening. Comp. Part A 2021, 150, 106624. [Google Scholar] [CrossRef]
- Fenner, J.S.; Daniel, I.M. Hybrid nanoreinforced carbon/epoxy composites for enhanced damage tolerance and fatigue life. Comp. Part A 2014, 65, 47–57. [Google Scholar] [CrossRef]
- Larsson, F. Damage tolerance of a stitched carbon/epoxy laminate. Comp. Part A Appl. Sci. Manuf. 1997, 28, 923–934. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. Effect of stitch density and stitch thread thickness on low-velocity impact damage of stitched composites. Comp. Part A 2010, 41, 1857–1868. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y.; Ishikawa, T. Understanding effectiveness of stitching in suppression of impact damage: An empirical delamination reduction trend for stitched composites. Comp. Part A 2012, 43, 823–832. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y.; Ishikawa, T. Effect of stitch thread thickness on compression after impact strength and response of stitched composites. Comp. Sci. Technol. 2012, 72, 587–598. [Google Scholar] [CrossRef]
- Tan, K.T.; Watanabe, N.; Iwahori, Y. Finite element model for compression after impact behaviour of stitched composites. Comp. Part B 2015, 79, 56–60. [Google Scholar] [CrossRef]
- Song, C.Y.; Fan, W.; Liu, T.; Wang, S.J.; Song, W.; Gao, X.Z. A review on three-dimensional stitched composites and their research perspectives. Comp. Part A 2022, 153, 106730. [Google Scholar] [CrossRef]
- Yudhanto, A.; Watanabe, N.; Iwahori, Y.; Hoshi, H. Effect of stitch density on fatigue characteristics and damage mechanisms of stitched carbon/epoxy composites. Comp. Part A 2014, 60, 52–65. [Google Scholar] [CrossRef]
- Francesconi, L.; Aymerich, F. Effect of Z-pinning on the impact resistance of composite laminates with different layups. Comp. Part A 2018, 114, 136–148. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, Y.; Liu, D.; Guo, J.; Zhang, J.; Chen, Z. Damage tolerance of 2-dimentional UHMWPE/CF hybrid woven laminates subjected to low-velocity impact. Mater. Des. 2020, 191, 108604. [Google Scholar] [CrossRef]
- Kim, C.H.; Sim, H.W.; An, W.J.; Kweon, J.H.; Choi, J.H. Impact characteristics of composite panel stitched by I-fiber process. Comp. Part A 2019, 127, 105644. [Google Scholar] [CrossRef]
- Lin, W.H.; Wang, Y.Q. Low velocity impact behavior of auxetic CFRP composite laminates with in-plane negative poisson’s ratio. J. Comp. Mater. 2023, 57, 2029–2042. [Google Scholar] [CrossRef]
- Wang, Y.Q. Auxetic composite laminates with through-thickness negative possion’s ratio for mitigating low velocity impact damage: A numerical study. Materials 2022, 15, 6963. [Google Scholar] [CrossRef]
- Falaschetti, M.P.; Scafé, M.; Zavatta, N.; Troiani, E. Hygrothermal ageing influence on BVI-Damaged carbon/epoxy coupons under compression load. Polymers 2021, 13, 2038. [Google Scholar] [CrossRef] [PubMed]
- Biagini, D.; Pascoe, J.A.; Alderliesten, R. Investigation of compression after impact failure in carbon fiber reinforced polymers using acoustic emission. J. Comp. Mater. 2023, 57, 1819–1832. [Google Scholar] [CrossRef]
- Guida, M.; Marulo, F.; Meo, M.; Russo, S. Certification by birdstrike analysis on C27J fullscale ribless composite leading edge. Int. J. Impact Eng. 2013, 54, 105–113. [Google Scholar] [CrossRef]
- Arachchige, B.; Ghasemnejad, H.; Yasaee, M. Effect of bird-strike on sandwich composite aircraft wing leading edge. Adv. Eng. Softw. 2020, 148, 102839. [Google Scholar] [CrossRef]
- Malhotra, A.; Guild, F.J.; Pavier, M.J. Edge impact to composite laminates: Experiments and simulations. J. Mater. Sci. 2008, 43, 6661–6667. [Google Scholar] [CrossRef]
- Rhead, A.T.; Marchant, D.; Butler, R. Compressive strength of composite laminates following free edge impact. Comp. Part A 2010, 41, 1056–1065. [Google Scholar] [CrossRef]
- Ostré, B.; Bouvet, C.; Minot, C.; Aboissière, J. Experimental analysis of CFRP laminates subjected to compression after edge impact. Comp. Struct. 2016, 152, 767–778. [Google Scholar] [CrossRef]
- Thorsson, S.I.; Sringeri, S.P.; Waas, A.M.; Justusson, B.P.; Rassaian, M. Experimental investigation of composite laminates subject to low-velocity edge-on impact and compression after impact. Comp. Struct. 2018, 186, 335–346. [Google Scholar] [CrossRef]
- Arteiro, A.; Gray, P.J.; Camanho, P.P. Simulation of edge impact and compression after edge impact in CFRP laminates. Comp. Struct. 2020, 240, 112018. [Google Scholar] [CrossRef]
- Li, N.; Li, Z.Y.; Ju, C.; Yang, P.F.; Chen, P.H.; Zhao, J.L. Mechanical response and failure mechanism of composite laminates subjected to low velocity impact on free edge. Comp. Struct. 2023, 306, 116617. [Google Scholar] [CrossRef]
- Liu, J.H.; Xu, Y.X.; Yi, X.B.; Wei, T. Experimental and numerical simulation study on Near-edge/On-edge Low-Velocity impact and residual compressive strength of T300/69 laminates. Comp. Struct. 2022, 280, 114887. [Google Scholar] [CrossRef]
- Xu, W.J.; Liu, L.Q.; Xu, W. Experiments and finite element simulations of composite laminates following low velocity on-edge impact damage. Polymers 2022, 14, 1744. [Google Scholar] [CrossRef]
- Lai, J.M.; Peng, Z.; Huang, Z.C.; Li, M.Y.; Mo, M.Z.; Liu, B.X. Effect of stitching, stitch density, stacking sequences on low-velocity edge impact and compression after edge impact (CAEI) behavior of stitched CFRP laminates. Materials 2022, 15, 8822. [Google Scholar] [CrossRef]
- ASTM D7136/D7136M; Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM Committee, ASTM International Standards Organization: West Conshohocken, PA, USA, 2020. Available online: https://www.astm.org/d7136_d7136m-20.html (accessed on 2 November 2020).
- ASTM D7137/D7137M; Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM Committee, ASTM International Standards Organization: West Conshohocken, PA, USA, 2017. Available online: https://www.astm.org/d7137_d7137m-17.html (accessed on 25 October 2017).
- Hashin, Z. Fatigue failure criteria for unidirectional fiber composites1. J. Appl. Mech. 1981, 4, 846–852. [Google Scholar] [CrossRef]
- Alfano, G. On the influence of the shape of the interface law on the application of cohesive-zone models. Comp. Sci. Technol. 2006, 66, 723–730. [Google Scholar] [CrossRef]
- Camanho, P.P.; Davila, C.G.; de Moura, M.F. Numerical simulation of mixed-mode progressive delamination in composite materials. J. Comp. Mater. 2003, 37, 1415–1438. [Google Scholar] [CrossRef]
- Benzeggagh, M.; Kenane, M. Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Comp. Sci. Technol. 1996, 56, 439–449. [Google Scholar] [CrossRef]
- Li, X.; Ma, D.Y.; Liu, H.F.; Tan, W.; Gong, X.J.; Zhang, C.; Li, Y.L. Assessment of failure criteria and damage evolution methods for composite laminates under low-velocity impact. Comp. Struct. 2019, 207, 727–739. [Google Scholar] [CrossRef]
- Camanho, P.P.; Matthews, F.L. A Progressive Damage Model for Mechanically Fastened Joints in Composite Laminates. J. Comp. Mater. 1999, 33, 2248–2280. [Google Scholar] [CrossRef]
- Ma, J.; Yan, Y.; Liu, Y.J.; Yang, L. Compression strength of stitched foam-core sandwich composites with impact induced damage. J. Reinf. Plast. Comp. 2012, 31, 1236–1246. [Google Scholar] [CrossRef]
Impact Energy (J) | Drop Height (mm) | Maximum Impactor Velocity (m/s) |
---|---|---|
5 | 92.7 | 1.3 |
10 | 185.3 | 1.9 |
15 | 278.0 | 2.3 |
Impact Energy (J) | Specimen Number | Delamination Length (mm) | Mean Delamination Length (mm) | Maximum Delamination Width (μm) | Maximum Mean Delamination Width (μm) |
---|---|---|---|---|---|
5 | UP-1 | 19.62 | 21.06 | 310.4 | 332.8 |
UP-2 | 21.04 | 362.1 | |||
UP-3 | 22.53 | 325.9 | |||
SP10-1 | 18.34 | 15.98 | 155.1 | 206.9 | |
SP10-2 | 14.28 | 206.9 | |||
SP10-3 | 15.33 | 258.7 | |||
SP15-1 | 14.73 | 17.68 | 258.6 | 258.6 | |
SP15-2 | 19.35 | 206.9 | |||
SP15-3 | 18.97 | 310.4 | |||
10 | UP-1 | 40.28 | 41.75 | 362.2 | 431.1 |
UP-2 | 42.57 | 413.8 | |||
UP-3 | 42.39 | 517.2 | |||
SP10-1 | 23.22 | 26.72 | 235.1 | 327.9 | |
SP10-2 | 30.42 | 362.1 | |||
SP10-3 | 26.53 | 386.6 | |||
SP15-1 | 32.29 | 33.21 | 465.5 | 399.6 | |
SP15-2 | 31.28 | 416.1 | |||
SP15-3 | 36.04 | 317.3 | |||
15 | UP-1 | 68.38 | 69.73 | 1034.5 | 948.3 |
UP-2 | 70.25 | 827.6 | |||
UP-3 | 70.56 | 982.7 | |||
SP10-1 | 45.46 | 45.97 | 724.1 | 655.1 | |
SP10-2 | 47.69 | 568.9 | |||
SP10-3 | 44.77 | 672.4 | |||
SP15-1 | 50.72 | 50.32 | 775.9 | 789.1 | |
SP15-2 | 51.56 | 812.1 | |||
SP15-3 | 48.68 | 779.1 |
Material Parameters | Kevlar29 | R688-H3268 | Equivalent Tricot Resin Cylinder |
---|---|---|---|
Yong’s modulus (GPa) | 70.50 | 3.90 | 23.88 |
Strength (GPa) | 2.92 | 0.08 | 0.93 |
Poisson’s ratio | 0.36 | 0.30 | 0.32 |
Density (kg·m−3) | 1440 | 1065 | 1178 |
Unidirectional Lamina | |
---|---|
Density (kg·m−3) | 1760 |
Yong’s modulus (GPa) | E11 = 123; E22 = E33 = 10.1; G12 = G13 = 4.6; G23 = 3.082 |
Poisson’s ratio | μ12 = μ13 = 0.28; μ23 = 0.21; |
Strength (GPa) | XT = 2260; XC = 1370; YT = 51; YC = 130; S12 = 68; S13 = S23 = 40 |
Interface | |
Yong’s modulus (GPa) | E = 9.5; G = 8.1 |
Strength (GPa) | N = 50; S = 110 |
Fracture energy (N·mm−1) |
Edge-on Impact Energy (J) | Group | Value of Experiment (MPa) | Average Value of Experiment (MPa) | Average Value of Simulation (MPa) | Error (%) |
---|---|---|---|---|---|
5 | UP-1 | 95.16 | 94.84 | 100.3 | 5.76 |
UP-2 | 93.75 | ||||
UP-3 | 95.62 | ||||
SP10-1 | 120.79 | 121.35 | 109.37 | −9.87 | |
SP10-2 | 120.92 | ||||
SP10-3 | 122.34 | ||||
SP15-1 | 111.42 | 113.85 | 102.89 | −9.36 | |
SP15-2 | 115.89 | ||||
SP15-3 | 114.25 | ||||
10 | UP-1 | 85.79 | 84.24 | 80.14 | −4.87 |
UP-2 | 87.48 | ||||
UP-3 | 82.45 | ||||
SP10-1 | 101.14 | 101.14 | 99.2 | −1.92 | |
SP10-2 | 103.45 | ||||
SP10-3 | 98.83 | ||||
SP15-1 | 93.81 | 92.61 | 88.81 | −4.11 | |
SP15-2 | 93.65 | ||||
SP15-3 | 90.37 | ||||
15 | UP-1 | 70.65 | 72.23 | 74.23 | 2.76 |
UP-2 | 74.63 | ||||
UP-3 | 71.42 | ||||
SP10-1 | 90.85 | 91.55 | 94.68 | 3.42 | |
SP10-2 | 95.25 | ||||
SP10-3 | 88.56 | ||||
SP15-1 | 86.65 | 83.89 | 82.21 | −2.01 | |
SP15-2 | 81.43 | ||||
SP15-3 | 83.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, B.; Lai, J.; Liu, H.; Huang, Z.; Liu, B.; Peng, Z.; Zhang, W. Experimental and Numerical Analysis of Stitched Composite Laminates Subjected to Low-Velocity Edge-on Impact and Compression after Edge-on Impact. Polymers 2023, 15, 2484. https://doi.org/10.3390/polym15112484
Liu B, Lai J, Liu H, Huang Z, Liu B, Peng Z, Zhang W. Experimental and Numerical Analysis of Stitched Composite Laminates Subjected to Low-Velocity Edge-on Impact and Compression after Edge-on Impact. Polymers. 2023; 15(11):2484. https://doi.org/10.3390/polym15112484
Chicago/Turabian StyleLiu, Bangxiong, Jiamei Lai, Hesheng Liu, Zhichao Huang, Bin Liu, Ze Peng, and Wei Zhang. 2023. "Experimental and Numerical Analysis of Stitched Composite Laminates Subjected to Low-Velocity Edge-on Impact and Compression after Edge-on Impact" Polymers 15, no. 11: 2484. https://doi.org/10.3390/polym15112484
APA StyleLiu, B., Lai, J., Liu, H., Huang, Z., Liu, B., Peng, Z., & Zhang, W. (2023). Experimental and Numerical Analysis of Stitched Composite Laminates Subjected to Low-Velocity Edge-on Impact and Compression after Edge-on Impact. Polymers, 15(11), 2484. https://doi.org/10.3390/polym15112484