Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Preparation of the Macromolecular Initiator PS
2.3. Conversion of the Active Centre of the Macromolecular Initiator PS
2.4. Preparation of the Diblock Copolymer PS-b-PtBA
2.5. Preparation of PS-b-PAA Nanoself-Assembled Particles
2.6. Preparation of PS-b-PAA@Fe3O4 Nanocomposite Particles
2.7. Characterization Instruments
3. Results and Discussion
3.1. Characterization of PS-b-PtBA in LAP PISA
3.1.1. NMR and GPC Characterization
3.1.2. DLS and TEM Characterization
3.2. Characterization of PS-b-PAA Nanoself-Assembled Particle
3.2.1. NMR Characterization
3.2.2. TEM and DLS Characterization
3.3. Characterization of PS-b-PAA@Fe3O4 Nanocomposite Particles
3.3.1. TEM and DLS Characterization
3.3.2. TGA Characterization
3.3.3. XRD Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kuhn, W.; Hargitay, B.; Katchalsky, A.; Eisenberg, H. Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 1950, 165, 514–516. [Google Scholar] [CrossRef]
- Loy, J.E.; Guo, J.H.; Severtson, S.J. Role of adsorption fractionation in determining the CaCO3 scale inhibition performance of polydisperse sodium polyacrylate. Ind. Eng. Chem. Res. 2004, 43, 1882–1887. [Google Scholar] [CrossRef]
- Loiseau, J.; Doerr, N.; Suau, J.M.; Egraz, J.B.; Llauro, M.F.; Ladaviere, C. Synthesis and characterization of poly(acrylic acid) produced by RAFT polymerization. Application as a very efficient dispersant of CaCO3, kaolin, and TiO2. Macromolecules 2003, 36, 3066–3077. [Google Scholar] [CrossRef]
- Tomida, T.; Hamaguchi, K.; Tunashima, S.; Katoh, M.; Masuda, S. Binding properties of a water-soluble chelating polymer with divalent metal ions measured by ultrafiltration. Poly(acrylic acid). Ind. Eng. Chem. Res. 2001, 40, 3557–3562. [Google Scholar] [CrossRef]
- Tan, M.T.; Shi, Y.; Fu, Z.F.; Yang, W.T. In situ synthesis of diblock copolymer nanoassemblies via dispersion RAFT polymerization induced self-assembly and Ag/copolymer composite nanoparticles thereof. Polym. Chem. 2018, 9, 1082–1094. [Google Scholar] [CrossRef]
- Sun, B.; Jewell, C.M.; Fredin, N.J.; Lynn, D.M. Assembly of multilayered films using well-defined, end-labeled poly(acrylic acid): Influence of molecular weight on exponential growth in a synthetic weak polyelectrolyte system. Langmuir 2007, 23, 8452–8459. [Google Scholar] [CrossRef]
- Zhang, X.-Z.; Cao, B.; Liu, L.; Pan, K. Preparation of pH-Responsive Membranes by Surface-Initiated Atom Transfer Radical Polymerization. Polym. Mater. Sci. Eng. 2010, 26, 156–159. [Google Scholar]
- Yang, E.; Chen, Y.; Wang, F.; Zhou, G.; Zhao, J. Synthesis of Ploy(acrylic acid)-b-Poly(methyl acrylate) and Its Application in Emulsion Polymerization of Butyl Acrylate. Chemistry 2015, 78, 552–557. [Google Scholar]
- Brocken, L.; Price, P.D.; Whittaker, J.; Baxendale, I.R. Continuous flow synthesis of poly(acrylic acid) via free radical polymerisation. React. Chem. Eng. 2017, 2, 662–668. [Google Scholar] [CrossRef]
- Das, A.N.; Swain, A.; Begam, N.; Bhattacharyya, A.; Basu, J.K. Temperature-Driven Grafted Nanoparticle Penetration into Polymer Melt: Role of Enthalpic and Entropic Interactions. Macromolecules 2020, 53, 8674–8682. [Google Scholar]
- Bakshi, S.F.; Guz, N.; Zakharchenko, A.; Deng, H.; Tumanov, A.V.; Woodworth, C.D.; Minko, S.; Kolpashchikov, D.M.; Katz, E. Magnetic Field-Activated Sensing of mRNA in Living Cells. J. Am. Chem. Soc. 2017, 139, 12117–12120. [Google Scholar] [CrossRef]
- Huang, B.; Fan, X.; Wang, G.; Zhang, Y.; Huang, J. Synthesis of twin-tail tadpole-shaped (cyclic polystyrene)- block-[linear poly (tert-butyl acrylate)]2 by combination of glaser coupling reaction with living anionic polymerization and atom transfer radical polymerization. J. Polym. Sci. Part A Polym. Chem. 2012, 50, 2444–2451. [Google Scholar] [CrossRef]
- Jiang, Z.; Strzalka, J.W.; Walko, D.A.; Wang, J. Reconstruction of evolving nanostructures in ultrathin films with X-ray waveguide fluorescence holography. Nat. Commun. 2020, 11, 3197. [Google Scholar] [CrossRef]
- Lu, W.; Huang, C.; Hong, K.; Kang, N.-G.; Mays, J.W. Poly(1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties. Macromolecules 2016, 49, 9406–9414. [Google Scholar] [CrossRef]
- Tang, J.; Katashima, T.; Li, X.; Mitsukami, Y.; Yokoyama, Y.; Sakumichi, N.; Chung, U.-i.; Shibayama, M.; Sakai, T. Swelling Behaviors of Hydrogels with Alternating Neutral/Highly Charged Sequences. Macromolecules 2020, 53, 8244–8254. [Google Scholar] [CrossRef]
- Vlček, P.; Čadová, E.; Horský, J.; Janata, M. MALDI-TOF MS analysis of the self-termination products in the anionic methyl methacrylate/tert-butyl acrylate block copolymerization. Polym. Bull. 2015, 72, 2227–2239. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, J.; Avellan, A.; Gao, X.; Matyjaszewski, K.; Tilton, R.D.; Lowry, G.V. Temperature- and pH-Responsive Star Polymers as Nanocarriers with Potential for in Vivo Agrochemical Delivery. ACS Nano 2020, 14, 10954–10965. [Google Scholar] [CrossRef]
- Huo, H.; Liu, J.; Kannan, S.; Chen, L.; Zhao, Y.; Zhang, L.; Chang, G.; Zhang, Q.; Liu, F. Multicompartment Nanoparticles Bearing Hydrophilic/Hydrophobic Subdomains by Self-Assembly of Star Polymers in Aqueous Solution. Macromolecules 2020, 54, 35–43. [Google Scholar] [CrossRef]
- Yamada, S.; Wang, Z.; Yoshinaga, K. Incorporation of TiO2Nanoparticles, Formed via Sol–Gel Process in Micelle of Block Copolymer, into Poly(methyl methacrylate) to Fabricate High Refractive and Transparent Hybrid Materials. Chem. Lett. 2009, 38, 828–829. [Google Scholar] [CrossRef]
- Jo, S.; Jeon, S.; Jun, T.; Park, C.; Ryu, D.Y. Fluorine-Containing Styrenic Block Copolymers toward High χ and Perpendicular Lamellae in Thin Films. Macromolecules 2018, 51, 7152–7159. [Google Scholar] [CrossRef]
- Javakhishvili, I.; Hvilsted, S. Gold Nanoparticles Protected with Thiol-Derivatized Amphiphilic Poly(epsilon-caprolactone)-b-poly(acrylic acid). Biomacromolecules 2009, 10, 74–81. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Hong, R.; Meng, J.; Cheng, R.; Zhu, Z.; Wu, G.; Li, Q.; Wang, C.F.; Chen, S. Hydrophobic Poly(tert-butyl acrylate) Photonic Crystals towards Robust Energy-Saving Performance. Angew. Chem. Int. Ed. Engl. 2019, 58, 13556–13564. [Google Scholar] [CrossRef] [PubMed]
- Ding, H.; Zhong, M.; Wu, H.; Park, S.; Mohin, J.W.; Klosterman, L.; Yang, Z.; Yang, H.; Matyjaszewski, K.; Bettinger, C.J. Elastomeric Conducting Polyaniline Formed Through Topological Control of Molecular Templates. ACS Nano 2016, 10, 5991–5998. [Google Scholar] [CrossRef]
- D’Agosto, F.; Rieger, J.; Lansalot, M. RAFT-Mediated Polymerization-Induced Self-Assembly. Angew. Chem. Int. Ed. Engl. 2020, 59, 8368–8392. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hong, C.-Y.; Pan, C.-Y. Polymerization techniques in polymerization-induced self-assembly (PISA). Polym. Chem. 2020, 11, 3673–3689. [Google Scholar] [CrossRef]
- Torres-Rocha, O.L.; Wu, X.; Zhu, C.; Crudden, C.M.; Cunningham, M.F. Polymerization-Induced Self-Assembly (PISA) of 1,5-Cyclooctadiene Using Ring Opening Metathesis Polymerization. Macromol. Rapid Commun. 2019, 40, 1800326. [Google Scholar] [CrossRef]
- Varlas, S.; Lawrenson, S.B.; Arkinstall, L.A.; O’Reilly, R.K.; Foster, J.C. Self-assembled nanostructures from amphiphilic block copolymers prepared via ring-opening metathesis polymerization (ROMP). Prog. Polym. Sci. 2020, 107, 101278. [Google Scholar] [CrossRef]
- Wang, J.; Hu, X.; Zhu, N.; Guo, K. Continuous flow photo-RAFT and light-PISA. Chem. Eng. J. 2021, 420, 127663. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, L.; Dai, X.; Zhang, L.; Tan, J. Structural Difference in Macro-RAFT Agents Redirects Polymerization-Induced Self-Assembly. ACS Macro Lett. 2019, 8, 1102–1109. [Google Scholar] [CrossRef]
- Canning, S.L.; Smith, G.N.; Armes, S.P. A Critical Appraisal of RAFT-Mediated Polymerization-Induced Self-Assembly. Macromolecules 2016, 49, 1985–2001. [Google Scholar] [CrossRef]
- Chai, X.; Zhou, P.; Xia, Q.; Shi, B.; Wang, G. Fluorine-containing nano-objects with the same compositions but different segment distributions: Synthesis, characterization and comparison. Polym. Chem. 2022, 13, 6293–6301. [Google Scholar] [CrossRef]
- Luan, M.; Shen, D.; Zhou, P.; Li, D.; Li, P.; Shi, B.; Wang, G. One-pot synthesis of block copolymer dispersant by ICAR ATRP with ppm copper catalyst and the dispersibility on pigment. Prog. Org. Coat. 2022, 169, 106914. [Google Scholar] [CrossRef]
- Ning, Y.; Whitaker, D.J.; Mable, C.J.; Derry, M.J.; Penfold, N.J.W.; Kulak, A.N.; Green, D.C.; Meldrum, F.C.; Armes, S.P. Anionic block copolymer vesicles act as Trojan horses to enable efficient occlusion of guest species into host calcite crystals. Chem. Sci. 2018, 9, 8396–8401. [Google Scholar] [CrossRef]
- Shi, B.; Shen, D.; Li, W.; Wang, G. Self-Assembly of Copolymers Containing Crystallizable Blocks: Strategies and Applications. Macromol. Rapid Commun. 2022, 43, 2200071. [Google Scholar] [CrossRef]
- Warren, N.J.; Armes, S.P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185. [Google Scholar] [CrossRef]
- Zehm, D.; Ratcliffe, L.P.D.; Armes, S.P. Synthesis of Diblock Copolymer Nanoparticles via RAFT Alcoholic Dispersion Polymerization: Effect of Block Copolymer Composition, Molecular Weight, Copolymer Concentration, and Solvent Type on the Final Particle Morphology. Macromolecules 2012, 46, 128–139. [Google Scholar] [CrossRef]
- Goseki, R.; Ito, S.; Matsuo, Y.; Higashihara, T.; Hirao, A. Precise Synthesis of Macromolecular Architectures by Novel Iterative Methodology Combining Living Anionic Polymerization with Specially Designed Linking Chemistry. Polymers 2017, 9, 470. [Google Scholar] [CrossRef]
- Grune, E.; Appold, M.; Muller, A.H.E.; Gallei, M.; Frey, H. Anionic Copolymerization Enables the Scalable Synthesis of Alternating (AB)(n) Multiblock Copolymers with High Molecular Weight in n/2 Steps. ACS Macro Lett. 2018, 7, 807–810. [Google Scholar] [CrossRef]
- Hirao, A.; Goseki, R.; Ishizone, T. Advances in Living Anionic Polymerization: From Functional Monomers, Polymerization Systems, to Macromolecular Architectures. Macromolecules 2014, 47, 1883–1905. [Google Scholar] [CrossRef]
- Kang, B.-G.; Kang, N.-G.; Lee, J.-S. Living Anionic Polymerization of Styrene Derivatives Containing Triphenylamine Moieties through Introduction of Protecting Group. Macromolecules 2010, 43, 8400–8408. [Google Scholar] [CrossRef]
- Kang, B.-G.; Kang, N.-G.; Lee, J.-S. Effect of isomeric pyridine moieties in ethynylstyrene derivatives on their anionic polymerization. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 5199–5209. [Google Scholar] [CrossRef]
- Rieger, E.; Alkan, A.; Manhart, A.; Wagner, M.; Wurm, F.R. Sequence-Controlled Polymers via Simultaneous Living Anionic Copolymerization of Competing Monomers. Macromol. Rapid Commun. 2016, 37, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Boott, C.E.; Gwyther, J.; Harniman, R.L.; Hayward, D.W.; Manners, I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat. Chem. 2017, 9, 785–792. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Wang, J.; Zhou, P.; Wang, G. A polymerization-induced self-assembly process for all-styrenic nano-objects using the living anionic polymerization mechanism. Polym. Chem. 2020, 11, 2635–2639. [Google Scholar] [CrossRef]
- Wang, J.; Cao, M.; Zhou, P.; Wang, G. Exploration of a Living Anionic Polymerization Mechanism into Polymerization-Induced Self-Assembly and Site-Specific Stabilization of the Formed Nano-Objects. Macromolecules 2020, 53, 3157–3165. [Google Scholar] [CrossRef]
- Kaneyoshi, H.; Inoue, Y.; Matyjaszewski, K. Synthesis of block and graft copolymers with linear polyethylene segments by combination of degenerative transfer coordination polymerization and atom transfer radical polymerization. Macromolecules 2005, 38, 5425–5435. [Google Scholar] [CrossRef]
- Agarwal, V.; Zaidi, M.G.H.; Vishnoi, S.; Alam, S.; Rai, A.K. Fullerene [60]-Mediated Polymerization of Polyacrylic Acid in Supercritical Carbon Dioxide. Int. J. Polym. Anal. Charact. 2009, 14, 52–67. [Google Scholar] [CrossRef]
Samples | Solids Content (wt%) | Targeted MW Ratio Mn,PtBA/Mn,PS | The First Polymerization Stage | The Second Polymerization Stage | Morphology 4 | ||||
---|---|---|---|---|---|---|---|---|---|
Mn,PS (g/mol) 1 | Mw/Mn 1 | DPPS 2 | Mn,PS-b-PtBA(g/mol) 3 | Conv.tBA 3 | DPPtBA 3 | ||||
PS35-b-PtBA11 | 15 | 0.4/1 | 3700 | 1.09 | 35 | 5200 | 100 | 11 | Irregular morphology |
PS34-b-PtBA20 | 15 | 0.8/1 | 3600 | 1.08 | 34 | 6100 | 100 | 20 | Irregular morphology |
PS36-b-PtBA32 | 15 | 1.2/1 | 3800 | 1.08 | 36 | 7900 | 100 | 32 | Spherical micelles |
Samples | Solids Content (wt%) | Targeted MW Ratio Mn,PAA/Mn,PS | The First Polymerization Stage | The Second Polymerization Stage | Morphology 4 | ||||
---|---|---|---|---|---|---|---|---|---|
Mn,PS (g/mol) 1 | Mw/Mn 1 | DPPS 2 | Mn,PS-b-PAA(g/mol) 3 | Conv. Taa 3 | DPPtBA 3 | ||||
PS35-b-PAA11 | 15 | 0.4/1 | 3700 | 1.21 | 35 | 4500 | 100 | 11 | Spherical micelles |
PS34-b-PAA20 | 15 | 0.8/1 | 3600 | 1.09 | 34 | 5000 | 100 | 20 | Spherical micelles |
PS36-b-PAA32 | 15 | 1.2/1 | 3800 | 1.15 | 36 | 6100 | 100 | 32 | Spherical and short wormlike micelles |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Zhang, W.; Zhang, Y.; Li, H. Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core. Polymers 2023, 15, 2498. https://doi.org/10.3390/polym15112498
Wang J, Zhang W, Zhang Y, Li H. Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core. Polymers. 2023; 15(11):2498. https://doi.org/10.3390/polym15112498
Chicago/Turabian StyleWang, Jian, Wenjie Zhang, Yating Zhang, and Haolin Li. 2023. "Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core" Polymers 15, no. 11: 2498. https://doi.org/10.3390/polym15112498
APA StyleWang, J., Zhang, W., Zhang, Y., & Li, H. (2023). Preparation of Polymer-Based Nano-Assembled Particles with Fe3O4 in the Core. Polymers, 15(11), 2498. https://doi.org/10.3390/polym15112498