Controlled Release and Cell Viability of Ketoconazole Incorporated in PEG 4000 Derivatives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Incorporation of Ketoconazole in PEG 4000 and Its Derivatives
2.2. Characterization Methods
2.2.1. Atomic Force Microscopy (AFM)
2.2.2. Scanning Electron Microscopy (SEM)
2.3. Determination of Zeta Potential
2.4. Buffer Solution
Buffer Solution of pH 7.3
2.5. Standard Curve
2.6. Controlled Release
2.7. Cell Viability
2.8. Statistical Analysis
3. Results and Discussion
3.1. Atomic Force Microscopy Analyses (AFM) of PEG 4000 and Its Derivatives with and without Incorporation of the Drug
3.2. Scanning Electron Microscopy Analyses (SEM) of PEG 4000 and Its Derivatives with and without Incorporation of the Drug
3.3. Determination of the Zeta Potential (ZP)
3.4. Standard Curve
3.5. Controlled Release
3.6. Cell Viability
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, Y.K.; Kim, S. Recent advances in polymeric drug delivery systems. Biomater. Res. 2020, 24, 2–12. [Google Scholar] [CrossRef]
- Villanova, J.C.O.; Oréfice, R.L.; Cunha, A.S. Aplicações farmacêuticas de polímeros. Polimeros 2010, 20, 51–64. [Google Scholar] [CrossRef]
- Singh, A.P.; Biswas, A.; Shukla, A.; Maiti, P. Targeted therapy in chronic diseases using nanomaterial-based drug delivery vehicles. Signal Transduct. Target. Ther. 2019, 4, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Lyra, M.A.M.; Sobrinho-Soares, J.L.; Brasileiro, M.T.; de Roca, M.F.L.; Barraza, J.A.; Viana, O.d.S.; Rolim-Neto, P.J. Sistemas Matriciais Hidrofílicos e Mucoadesivos para Liberação Controlada de Fármacos. Lat. Am. J. Pharm. 2007, 26, 784–793. [Google Scholar]
- Wang, Q.; Dong, Z.; Du, Y.; Kennedy, J.F. Controlled release of ciprofloxacin hydrochloride from chitosan/polyethylene glycol blend films. Carbohydr. Polym. 2007, 69, 336–343. [Google Scholar] [CrossRef]
- Liu, K.; Dai, L.; Li, C.; Liu, J.; Wang, L.; Lei, J. Self-assembled targeted nanoparticles based on transferrin-modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate. Sci. Rep. 2016, 6, 29461. [Google Scholar] [CrossRef]
- Alves, T.V.G. Obtenção e Caracterização de Hidrogéis de Poliacrilamida-do-Metilcelulose como Sistemas Carreadores de Cloridrato de Propranolol. Master’s Thesis, Universidade Federal do Pará, Instituto de Ciências da Saúde, Belém, Brazil, 2011. [Google Scholar]
- Azevedo, M.L.S.; Silveira, B.M.; Novack, K.M.; Dos Santos, V.M.R. Study of controlled release of PMMA-g-PEG copolymer and derivatives incorporated with the indomethacin drug. Macromol.Symp. 2018, 381, 1800145–1800152. [Google Scholar] [CrossRef]
- Nguyen-Tri, P.; Ghassemi, P.; Carriere, P.; Nanda, S.; Assadi, A.A.; Nguyen, D.D. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers 2020, 12, 1142. [Google Scholar] [CrossRef]
- Reynaldo, J.R.; Novack, K.M.; Sousa, L.R.D.; de Vieira, P.M.A.; Amparo, T.R.; De Souza, G.H.B.; Teixeira, L.F.M.; Barboza, A.P.M.; Neves, B.R.A.; Alvarenga, M.E.; et al. Evaluation of Anti-Candida albicans Activity and Release of Ketoconazole in PMMA-G-PEG 4000 Films. Int. J. Mol. Sci. 2023, 23, 10775. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Mu, L.; Feng, S.S. Fabrication, characterization and in vitro release of paclitaxel (Taxol) loaded poly (lactic-co-glycolic acid) microspheres prepared by spray drying technique with lipid/cholesterol emulsifiers. J. Control Release 2001, 76, 239–254. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, L.G.; Lopes, S.A.; Teodolino, A.B.L.; Novack, K.M.; Barboza, A.P.M.; Nevas, B.R.A.; Azevedo, M.L.S.; De Sousa, L.R.; Dos Santos, V.M.R. Novel PEG 4000 derivatives and its use in controlled release of drug indomethacin. Quim. Nova 2020, 43, 685–691. [Google Scholar] [CrossRef]
- Necas, D.; Klapetek, P. Gwyddion: An open-source software for SPM data analysis Cent. Eur. J. Phys. 2012, 10, 181–188. [Google Scholar]
- Oliveira, R.D. Preparação, Caracterização e Aplicação de Filmes Lbl Com Nanopartículas de Prata Estabilizadas em Amido. Master’s Thesis, Universidade Estadual de Ponta Grossa, Ponta Grossa, Brazil, 2014. [Google Scholar]
- Owens, D.E.; Peppas, N.A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102. [Google Scholar] [CrossRef]
- Dos Santos, V.M.R.; Novack, K.M.; Silveira, B.M.; Rosa, J.S. Chemistry Modification of PMMA-g-PEG copolymer. Macromol. Symp. 2014, 343, 78–87. [Google Scholar]
- Chouhan, S.; Bajpal, A.K.; Bhatt, R. Analysis of topographical parameters and interfacial interaction of zinc oxide reinforced poly (vinyl alcohol-g-acrylonitrile) nanocomposite film surfaces using atomic force microscopy. Nano-Struct. Nano-Objects 2019, 18, 1–9. [Google Scholar] [CrossRef]
- Aburahma, M.H.; Badr-Eldin, S.M. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin. Drug Deliv. 2014, 11, 1865–1883. [Google Scholar] [CrossRef]
- KumariI, K.; Yadav, S. Linear regression analysis study. J. Pract. Cardiovasc. Sci. 2018, 4, 33–36. [Google Scholar] [CrossRef]
- Xu, Z.; Wu, Z.; Huang, S.; Ye, K.; Jian, Y.; Liu, J.; Liu, J.; Xinwu, L.X.; Li, B. All rights reserved.A metal-organic framework-based immunomodulatory nanoplatform for anti-atherosclerosis treatment. J. Control. Release 2023, 354, 615–625. [Google Scholar] [CrossRef]
- Li, M.; Yin, S.; Lin, M.; Chen, X.; Pan, Y.; Peng, Y.; Sun, J.; Kumar, A.; Liu, J. Current status and prospects of metal–organic frameworks for bone therapy and bone repair. J. Mater. Chem. B 2022, 10, 5105–5128. [Google Scholar] [CrossRef]
- Rao, C.; Liao, D.; Pan, Y.; Zhong, Y.; Zhang, W.; Ouyang, Q. Novel formulations of metal-organic frameworks for controlled drug delivery. Expert Opin. Drug Del. 2022, 19, 1183–1202. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qiu, Y.; Liu, Y.; Zhang, W.; Dai, Z.; Srivastava, D.; Kumar, A.; Ying, P.Y.; Liu, J. Recent advances in bimetallic metal–organic frameworks (BMOFs): Synthesis, applications and challenges. New J. Chem. 2022, 46, 13818–13837. [Google Scholar] [CrossRef]
- Elezovic, A.; Elezovic, A.; Hadziabdic, J. The influence of plasticizer in nail lacquer formulations on fluconazole permeability through the bovine hoof membrane. Acta Pol. Pharm. 2020, 77, 43–56. [Google Scholar] [CrossRef] [PubMed]
- ISO 10993-5; Biological Evaluation of Medical Devices-Part 5: Test dor In Vitro Cytotoxicity. International Standard Organization: Geneva, Switzerland, 2009; Volume 2007, pp. 1–11.
- Arhewoh, M.I.; Eraga, S.O.; Builders, P.F.; Uduh, U.A. Snail Mucin-Based Formulation of Ibuprofen for Transdermal Delivery. J. Sci. Pract. Pharm. 2014, 1, 31–36. [Google Scholar]
Sample | Zeta Potential (mV) |
---|---|
PEG 4000 | −15.0 ± 2.9 a,b |
PEG 4000 ACET | −11.5 ± 0.2 a,b |
PEG 4000 HYDR | −6.9 ± 5.5 a |
PEG 4000 ETHY | −19.9 ± 3.2 b |
PEG 4000 HAL | −9.9 ± 1.5 a,b |
PEG 4000 ACET INCORP | −16.2 ± 2.4 a,b |
PEG 4000 HYDR INCORP | +10.8 ± 9.0 c |
PEG 4000 ETHY INCORP | +4.6 ± 1.3 c |
PEG 4000 HAL INCORP | −15.9 ± 4.7 a,b |
Sample | Model | R2 | Equation |
---|---|---|---|
PEG 4000 INCORP | zero order | 0.8582 | Y = 0.0406 X + 3.9932 |
first order | 0.8421 | Y = 0.0067 X + 1.4437 | |
Higuchi | 0.9069 | Y = 1.4567 X − 1.7943 | |
PEG 4000 ETI INCORP | zero order | 0.9528 | Y = 0.0347 X + 6.3991 |
first order | 0.9401 | Y = 0.0042 X + 1.8816 | |
Higuchi | 0.9796 | Y = 1.8663 X − 8.2573 | |
PEG 4000 HAL INCORP | zero order | 0.9814 | Y = 0.0732 X + 5.2562 |
first order | 0.9619 | Y = 0.0079 X + 1.776 | |
Higuchi | 0.9963 | Y = 0.9048 X − 1.1621 | |
PEG 4000 ACET INCORP | zero order | 0.9911 | Y = 0.083 X + 4.7482 |
first order | 0.9731 | Y = 0.0089 X + 1.7202 | |
Higuchi | 0.9997 | Y = 0.8038 X − 0.2492 | |
PEG 4000 HYDR INCORP | zero order | 0.9999 | Y = 0.1361 X + 4.0815 |
first order | 0.9905 | Y = 0.0116 X + 1.7727 | |
Higuchi | 0.9943 | Y = 0.4912 X + 1.5557 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inácio, C.R.; Nascimento, G.S.; Barboza, A.P.M.; Neves, B.R.A.; Andrade, Â.L.; Teixeira, G.M.; Sousa, L.R.D.; de A. Vieira, P.M.; Novack, K.M.; dos Santos, V.M.R. Controlled Release and Cell Viability of Ketoconazole Incorporated in PEG 4000 Derivatives. Polymers 2023, 15, 2513. https://doi.org/10.3390/polym15112513
Inácio CR, Nascimento GS, Barboza APM, Neves BRA, Andrade ÂL, Teixeira GM, Sousa LRD, de A. Vieira PM, Novack KM, dos Santos VMR. Controlled Release and Cell Viability of Ketoconazole Incorporated in PEG 4000 Derivatives. Polymers. 2023; 15(11):2513. https://doi.org/10.3390/polym15112513
Chicago/Turabian StyleInácio, Carolina R., Gabriel S. Nascimento, Ana Paula M. Barboza, Bernardo R. A. Neves, Ângela Leão Andrade, Gabriel M. Teixeira, Lucas R. D. Sousa, Paula M. de A. Vieira, Kátia M. Novack, and Viviane M. R. dos Santos. 2023. "Controlled Release and Cell Viability of Ketoconazole Incorporated in PEG 4000 Derivatives" Polymers 15, no. 11: 2513. https://doi.org/10.3390/polym15112513
APA StyleInácio, C. R., Nascimento, G. S., Barboza, A. P. M., Neves, B. R. A., Andrade, Â. L., Teixeira, G. M., Sousa, L. R. D., de A. Vieira, P. M., Novack, K. M., & dos Santos, V. M. R. (2023). Controlled Release and Cell Viability of Ketoconazole Incorporated in PEG 4000 Derivatives. Polymers, 15(11), 2513. https://doi.org/10.3390/polym15112513