A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers
Abstract
:1. Introduction
2. Overview of Silanes
2.1. Chemistry of Silanes
2.2. Classification of Silanes
2.3. Factors Affecting Silane Hydrolysis
3. Hyperbranched Polymers
3.1. Synthetic Strategies of HBPs
3.1.1. Step-Growth Polymerization
3.1.2. Condensation Polymerization
3.1.3. Ring Opening Polymerization
3.1.4. Free Radical Polymerization
3.1.5. Cross-Coupling Reaction
3.1.6. Huisgen Reaction
3.1.7. Coupling Monomer Method
3.2. Degree of Branching in HBPs
3.3. Role of Silanes in HBPs
3.4. HBPs Containing Si Atom
4. Silane Polymers Applications
4.1. Silanes in Surface Coatings
4.2. Silanes in Corrosion Resistance
4.3. Silanes as Additives
4.4. Silane Polymers as CrossLinking Agents
4.5. Silane Polymers in Sensor Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Olofsson, K.; Andrén, O.C.J.; Malkoch, M. Recent Advances on Crosslinked Dendritic Networks. J. Appl. Polym. Sci. 2014, 131, 39876. [Google Scholar]
- Higashihara, T.; Segawa, Y.; Sinananwanich, W.; Ueda, M. Synthesis of Hyperbranched Polymers with Controlled Degree of Branching. Polym. J. 2012, 44, 14–29. [Google Scholar] [CrossRef]
- Seiler, M. Hyperbranched Polymers: Phase Behavior and New Applications in the Field of Chemical Engineering. Fluid Phase Equilib. 2006, 241, 155–174. [Google Scholar] [CrossRef]
- Gurunathan, T.; Mohanty, S.; Nayak, S.K. Hyperbranched Polymers for Coating Applications: A Review. Polym. Plast. Technol. Eng. 2016, 55, 92–117. [Google Scholar] [CrossRef]
- Wu, W.; Tang, R.; Li, Q.; Li, Z. Functional Hyperbranched Polymers with Advanced Optical, Electrical and Magnetic Properties. Chem. Soc. Rev. 2015, 44, 3997–4022. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, Y.; Graff, R.W.; Cao, X.; Gao, H. Synthesis of Hyperbranched Polymers with High Molecular Weight in the Homopolymerization of Polymerizable Trithiocarbonate Transfer Agent without Thermal Initiator. Macromolecules 2016, 49, 6471–6479. [Google Scholar] [CrossRef]
- Chen, S.; Xu, Z.; Zhang, D. Synthesis and Application of Epoxy-Ended Hyperbranched Polymers. Chem. Eng. J. 2018, 343, 283–302. [Google Scholar] [CrossRef]
- Lu, Y.; Nemoto, T.; Tosaka, M.; Yamago, S. Synthesis of Structurally Controlled Hyperbranched Polymers Using a Monomer Having Hierarchical Reactivity. Nat. Commun. 2017, 8, 1863. [Google Scholar] [CrossRef]
- Nabae, Y.; Kakimoto, M.A. Design and Synthesis of Hyperbranched Aromatic Polymers for Catalysis. Polymers 2018, 10, 1344. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, S.; Weng, Z.; Gao, C. Hyperbranched Polymers: Advances from Synthesis to Applications. Chem. Soc. Rev. 2015, 44, 4091–4130. [Google Scholar] [CrossRef]
- Praba, P.L.; Dhevi, D.M.; Gunasekhar, R.; Sathiyanathan, P.; Reza, M.S.; Kim, H.; Prabu, A.A. Materials Today: Proceedings Development of Energy Harvesting Piezoelectric Sensors Based on Electrospun Polyvinylidene Fluoride/Aliphatic Hyperbranched Polyester (Gen-1) (80/20) Blend. Mater. Today Proc. 2021, 47, 914–920. [Google Scholar] [CrossRef]
- Caminade, A.M.; Yan, D.; Smith, D.K. Dendrimers and Hyperbranched Polymers. Chem. Soc. Rev. 2015, 44, 3870–3873. [Google Scholar] [CrossRef]
- Jeon, I.Y.; Noh, H.J.; Baek, J.B. Hyperbranched Macromolecules: From Synthesis to Applications. Molecules 2018, 23, 657. [Google Scholar] [CrossRef]
- Yates, C.R.; Hayes, W. Synthesis and Applications of Hyperbranched Polymers. Eur. Polym. J. 2004, 40, 1257–1281. [Google Scholar] [CrossRef]
- Dhevi, D.M.; Anand Prabu, A.; Kim, K.J. Hyperbranched Polyester as a Crosslinker in Polyurethane Formation: Real-Time Monitoring Using in-situ FTIR. Polym. Bull. 2016, 73, 2867–2888. [Google Scholar] [CrossRef]
- Bradshaw, D.S.; Andrews, D.L. Mechanisms of Light Energy Harvesting in Dendrimers and Hyperbranched Polymers. Polymers 2011, 3, 2053–2077. [Google Scholar] [CrossRef]
- Jin, H.; Huang, W.; Zhu, X.; Zhou, Y.; Yan, D. Biocompatible or Biodegradable Hyperbranched Polymers: From Self-Assembly to Cytomimetic Applications. Chem. Soc. Rev. 2012, 41, 5986–5997. [Google Scholar] [CrossRef] [PubMed]
- Bhat, S.I.; Ahmadi, Y.; Ahmad, S. Recent Advances in Structural Modifications of Hyperbranched Polymers and Their Applications. Ind. Eng. Chem. Res. 2018, 57, 10754–10785. [Google Scholar] [CrossRef]
- Güç, E.; Günüdz, G.; Gündüz, U. Fatty Acid Based Hyperbranched Polymeric Nanoparticles for Hydrophobic Drug Delivery. Drug Dev. Ind. Pharm. 2010, 36, 1139–1148. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, T.; Newland, B.; Liu, W.; Wang, W.; Wang, W. Catechol Functionalized Hyperbranched Polymers as Biomedical Materials. Prog. Polym. Sci. 2018, 78, 47–55. [Google Scholar] [CrossRef]
- Zhao, K.; Song, H.; Duan, X.; Wang, Z.; Liu, J.; Ba, X. Novel Chemical Cross-Linked Ionogel Based on Acrylate Terminated Hyperbranched Polymer with Superior Ionic Conductivity for High Performance Lithium-Ion Batteries. Polymers 2019, 11, 444. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Y.; Dai, G. Advances in Amphiphilic Hyperbranched Copolymers with an Aliphatic Hyperbranched 2,2-Bis(Methylol)Propionic Acid-Based Polyester Core. Polym. Chem. 2020, 11, 964–973. [Google Scholar] [CrossRef]
- Sun, F.; Luo, X.; Kang, L.; Peng, X.; Lu, C. Synthesis of Hyperbranched Polymers and Their Applications in Analytical Chemistry. Polym. Chem. 2015, 6, 1214–1225. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, C.; Jin, H.; Jiang, B.; Zhu, X.; Zhou, Y.; Lu, Z.; Yan, D. A Supramolecular Janus Hyperbranched Polymer and Its Photoresponsive Self-Assembly of Vesicles with Narrow Size Distribution. J. Am. Chem. Soc. 2013, 135, 4765–4770. [Google Scholar] [CrossRef]
- El-Mahdy, G.A.; Atta, A.M.; Al-lohedan, H.A.; Ezzat, A.O. Synthesis of Water Soluble Hyperbranched Poly (Amine-Ester) as Corrosion Inhibitors for Steel. Int. J. Electrochem. Sci. 2014, 9, 7925–7934. [Google Scholar]
- Dhevi, D.M.; Prabu, A.A.; Kim, H.; Pathak, M. Studies on the Toughening of Epoxy Resin Modified with Varying Hyperbranched Polyester-Toluene Diisocyanate Content. J. Polym. Res. 2014, 21, 1–9. [Google Scholar] [CrossRef]
- Dhevi, D.M.; Prabu, A.A.; Pathak, M. Miscibility, Crystallization and Annealing Studies of Poly(vinylidene fluoride)/Hyperbranched Polyester Blends. Polymer 2014, 55, 886–895. [Google Scholar] [CrossRef]
- Dhevi, D.M.; Prabu, A.A.; Kim, K.J. Infrared Spectroscopic Studies on Crystalline Phase Transition of PVDF and PVDF/Hyperbranched Polyester Blend Ultrathin Films. Vib Spectros. 2018, 94, 74–82. [Google Scholar] [CrossRef]
- Gunasekhar, R.; Sathiyanathan, P.; Dhevi, D.M.; Reza, M.S.; Prabu, A.A.; Kim, H. Studies on Electrospun Polyvinylidene Fluoride/Aromatic Hyperbranched Polyester (Gen-1) Blend Nanoweb for Energy Harvesting Applications. Mater. Today Proc. 2021, 47, 885–888. [Google Scholar] [CrossRef]
- Yadav, P.; Shamim, M.; Kim, H.; Prabu, A.A. Studies on Electrospun Polyvinylidene Fluoride/Aliphatic Hyperbranched Polyester (3rd Gen) Based Piezoelectric Sensors. Mater. Today Proc. 2021, 47, 950–956. [Google Scholar] [CrossRef]
- Witucki, G.L. A Silane Primer: Chemistry and Applications of AIkoxy Silanes. J. Coat. Technol. 1992, 65, 57–60. [Google Scholar]
- Matinlinna, J.P.; Lung, C.Y.K.; Tsoi, J.K.H. Silane Adhesion Mechanism in Dental Applications and Surface Treatments: A Review. Dent. Mater. 2018, 34, 13–28. [Google Scholar] [CrossRef]
- Paulasaari, J.K.; Weber, W.P. Synthesis of Hyperbranched Polysiloxanes by Base-Catalyzed Proton-Transfer Polymerization. Comparison of Hyperbranched Polymer Microstructure and Properties to Those of Linear Analogues Prepared by Cationic or Anionic Ring-Opening Polymerization. Macromolecules 2000, 33, 2005–2010. [Google Scholar] [CrossRef]
- Sterman, S.; Marsden, J.G. Silane Coupling Agents. Ind. Eng. Chem. 1966, 58, 33–37. [Google Scholar] [CrossRef]
- Semenov, V. V Alkanes and Silanes: Similarities and Differences. Her. Russ. Acad. Sci. 2016, 86, 466–472. [Google Scholar] [CrossRef]
- Uneyama, K. Functionalized Fluoroalkyl and Alkenyl Silanes: Preparations, Reactions, and Synthetic Applications. J. Fluor. Chem. 2008, 129, 550–576. [Google Scholar] [CrossRef]
- Goyal, S. Silanes: Chemistry and Applications. J. Indian Prosthodont. Soc. 2006, 6, 14–18. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, J.S.; Lim, S.H.; Jang, S.H.; Kim, D.H.; Park, N.-H.; Jung, J.W.; Choi, J. The Investigation of the Silica-Reinforced Rubber Polymers with the Methoxy Type Silane Coupling Agents. Polymers 2020, 12, 3058. [Google Scholar] [CrossRef]
- Shokoohi, S.; Arefazar, A.; Khosrokhavar, R. Silane Coupling Agents in Polymer-Based Reinforced Composites: A Review. J. Reinf. Plast. Compos. 2008, 27, 473–485. [Google Scholar] [CrossRef]
- Kateklum, R.; Gauthier-Manuel, B.; Pieralli, C.; Mankhetkorn, S.; Wacogne, B. Improving the Sensitivity of Amino-Silanized Sensors Using Self-Structured Silane Layers: Application to Fluorescence PH Measurement. Sens. Actuators B Chem. 2017, 248, 605–612. [Google Scholar] [CrossRef]
- Brochier Salon, M.-C.; Abdelmouleh, M.; Boufi, S.; Belgacem, M.N.; Gandini, A. Silane Adsorption onto Cellulose Fibers: Hydrolysis and Condensation Reactions. J. Colloid Interface Sci. 2005, 289, 249–261. [Google Scholar] [CrossRef]
- Issa, A.A.; Luyt, A.S. Kinetics of Alkoxysilanes and Organoalkoxysilanes Polymerization: A Review. Polymers 2019, 11, 537. [Google Scholar] [CrossRef] [PubMed]
- Máková, V.; Holubová, B.; Krabicová, I.; Kulhánková, J.; Řezanka, M. Hybrid Organosilane Fibrous Materials and Their Contribution to Modern Science. Polymers 2021, 228, 123862. [Google Scholar] [CrossRef]
- Zhu, D.; Hu, N.; Schaefer, D.W. Water-Based Sol–Gel Coatings for Military Coating Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 9780128142011. [Google Scholar]
- Gadhave, R.V.; Gadhave, C.R.; Dhawale, P.V. Silane Terminated Prepolymers: An Alternative to Silicones and Polyurethanes. Open J. Polym. Chem. 2021, 11, 31–54. [Google Scholar] [CrossRef]
- Osterholtz, F.D.; Pohl, E.R. Kinetics of the Hydrolysis and Condensation of Organofunctional Alkoxysilanes: A Review. J. Adhes. Sci. Technol. 1992, 6, 127–149. [Google Scholar] [CrossRef]
- Antonucci, J.M.; Dickens, S.H.; Fowler, B.O.; Xu, H.H.K.; McDonough, W.G. Chemistry of Silanes: Interfaces in Dental Polymers and Composites. J. Res. Natl. Inst. Stand. Technol. 2005, 110, 541–558. [Google Scholar] [CrossRef]
- Gadhave, R.V.; Sheety, P.; Mahanwar, P.A.; Gadekar, P.T.; Desai, B.J. Silane Modification of Starch-Based Wood Adhesive: Review. Open J. Polym. Chem. 2019, 09, 53–62. [Google Scholar] [CrossRef]
- Qiao, L.G.; Shi, W.F. Synthesis and Characterization of Hyperbranched Polyurethane- Benzyltetrazole. Chin. J. Polym. Sci. Engl. Ed. 2011, 29, 670–683. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Löhden, G. New Polymer Syntheses, 79. Hyperbranched Poly(Ester-amide)s Based on 3-hydroxybenzoic Acid and 3,5-diaminobenzoic Acid. Macromol. Chem. Phys. 1995, 196, 1839–1854. [Google Scholar] [CrossRef]
- Praba, P.L.; Gunasekhar, R.; Dhevi, D.M.; Indumathy, B.; Yadav, P.; Reza, M.S.; Kim, H.; Prabu, A.A. Studies on Electrospun Polyvinylidene Fluoride/Aliphatic Hyperbranched Polyester (Generation-1) Blend based Piezoelectric Sensors. Mater. Today Proc. 2022, 50, 90–95. [Google Scholar] [CrossRef]
- Ishida, Y.; Sun, A.C.F.; Jikei, M.; Kakimoto, M.A. Synthesis of Hyperbranched Aromatic Polyamides Starting from Dendrons as ABx Monomers: Effect of Monomer Multiplicity on the Degree of Branching. Macromolecules 2000, 33, 2832–2838. [Google Scholar] [CrossRef]
- Kurniasih, I.N.; Keilitz, J.; Haag, R. Dendritic Nanocarriers Based on Hyperbranched Polymers. Chem. Soc. Rev. 2015, 44, 4145–4164. [Google Scholar] [CrossRef] [PubMed]
- Duro-Castano, A.; Movellan, J.; Vicent, M.J. Smart Branched Polymer Drug Conjugates as Nano-Sized Drug Delivery Systems. Biomater. Sci. 2015, 3, 1321–1334. [Google Scholar] [CrossRef]
- Žagar, E.; Žigon, M. Aliphatic Hyperbranched Polyesters Based on 2,2-Bis(Methylol)Propionic Acid—Determination of Structure, Solution and Bulk Properties. Prog. Polym. Sci. 2011, 36, 53–88. [Google Scholar] [CrossRef]
- Shanmugam, T.; Raghavan, A.; Nasar, A.S.; Yang, Z.; Peng, H.; Wang, W.; Liu, T.; Nasar, A.S.; Jikei, M.; Kakimoto, M.A.; et al. Stability and Utility of Pyridyl Disulfide Functionality in RAFT and Conventional Radical Polymerizations. J. Polym. Sci. Part A Polym. Chem. 2010, 116, 7207–7224. [Google Scholar]
- Ibrahim, A.A.; Abdel-Magied, A.E.-S.; Selim, M.S.; Ayoub, M.M.H. Utilization of Trimethylolpropane Based Hyperbranched Poly(Amine-Ester) as New Polymeric Admixture. Open J. Org. Polym. Mater. 2012, 2, 23–28. [Google Scholar] [CrossRef]
- Li, X.; Zhan, J.; Lin, Y.; Li, Y.; Li, Y. Facile Synthesis and Characterization of Aromatic and Semiaromatic Hyperbranched Poly(Ester-Amide)S. Macromolecules 2005, 38, 8235–8243. [Google Scholar] [CrossRef]
- Hi, S.L.; Ma, L.; Li, P.; Wang, M.; Guo, S.; Han, P.; Song, G. The Effect of Self-Synthesized Hydroxyl-Terminated Hyperbranched Polymer Interface Layer on the Properties of Carbon Fiber Reinforced Epoxy Composites. Appl. Surf. Sci. 2019, 479, 334–343. [Google Scholar] [CrossRef]
- Suraj Belgaonkar, M.; Kandasubramanian, B. Hyperbranched Polymer-Based Nanocomposites: Synthesis, Progress, and Applications. Eur. Polym. J. 2021, 147, 110301. [Google Scholar] [CrossRef]
- Ilg, M.; Plank, J. Synthesis and Properties of a Polycarboxylate Superplasticizer with a Jellyfish-Like Structure Comprising Hyperbranched Polyglycerols. Ind. Eng. Chem. Res. 2019, 58, 12913–12926. [Google Scholar] [CrossRef]
- Cheng, K.C.; Lai, W.J. Effect of Feed Rate of End-Capping Molecules on Structure of Hyperbranched Polymers Formed from Monomers A2 and B4 in Semibatch Process. Eur. Polym. J. 2017, 89, 339–348. [Google Scholar] [CrossRef]
- Kubisa, P. Hyperbranched Polyethers by Ring-Opening Polymerization: Contribution of Activated Monomer Mechanism. J. Polym. Sci. Part A Polym. Chem. 2003, 41, 457–468. [Google Scholar] [CrossRef]
- Morita, A.; Kudo, H.; Nishikubo, T. Synthesis of Hyperbranched Polymers by the Anionic Ring-Opening Polymerization of 3,3-Bis(Hydroxymethyl)Oxetane. Polym. J. 2004, 36, 413–421. [Google Scholar] [CrossRef]
- Chen, Q.; Ye, Z.; Tang, L.; Wu, T.; Jiang, Q.; Lai, N. Synthesis and Solution Properties of a Novel Hyperbranched Polymer Based on Chitosan for Enhanced Oil Recovery. Polymers 2020, 12, 2130. [Google Scholar] [CrossRef] [PubMed]
- Mansour, S.H.; Rozik, N.N.; Dirnberger, K.; Ikladious, N.E. Hyperbranched Polyesters Based on Polycondensation of 1,3,5-Tris(2- Hydroxyethyl) Cyanuric Acid and 3,5-Dihydroxybenzoic Acid. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 3278–3288. [Google Scholar] [CrossRef]
- Chen, X.; Ma, Y.; Cheng, Y.J.; Zhang, A.; Liu, W.; Zhou, H. Synergistic Effect between a Novel Silane-Containing Hyperbranched Polyphosphamide and Ammonium Polyphosphate on the Flame Retardancy and Smoke Suppression of Polypropylene Composites. Polym. Degrad. Stab. 2020, 181, 109348. [Google Scholar] [CrossRef]
- Ye, W.; Zaheer, M.; Li, L.; Wang, J.; Xu, H.; Wang, C.; Deng, Y. Hyperbranched PCL/PS Copolymer-Based Solid Polymer Electrolytes Enable Long Cycle Life of Lithium Metal Batteries. J. Electrochem. Soc. 2020, 167, 110532. [Google Scholar] [CrossRef]
- Gao, C.; Yan, D. Hyperbranched Polymers: From Synthesis to Applications. Prog. Polym. Sci. 2004, 29, 183–275. [Google Scholar] [CrossRef]
- Voit, B.I. Hyperbranched Polymers: A Chance and a Challenge. Comptes. Rendus. Chim. 2003, 6, 821–832. [Google Scholar] [CrossRef]
- Halter, D.; Frey, H. Degree of Branching in Hyperbranched Polymers. 2. Enhancement of the DB: Scope and Limitations. Acta Polym. 1997, 48, 298–309. [Google Scholar] [CrossRef]
- Pervin, S.; Prabu, A.A.; Kim, K.J. New Evaluation Methods of Average Molecular Weight and the Degree of Branching of Poly (1,4-Phenylene Sulfide) Samples through Their Partial Sulfonation. Fibers Polym. 2022, 23, 900–913. [Google Scholar] [CrossRef]
- Murillo, E.A.; Vallejo, P.P.; Sierra, L.; López, B.L. Characterization of Hyperbranched Polyol Polyesters Based on 2,2-Bis (Methylol Propionic Acid) and Pentaerythritol. J. Appl. Polym. Sci. 2009, 112, 200–207. [Google Scholar]
- Shanmugam, T.; Raghavan, A.; Nasar, A.S. Distribution of Dendritic, Terminal and Linear Units and Relationship between Degree of Branching and Molecular Weight of AB2-Type Hyperbranched Polymer: A 13C-NMR Study. J. Macromol. Sci. Part A Pure Appl. Chem. 2006, 43, 1387–1397. [Google Scholar] [CrossRef]
- Nasar, A.S.; Jikei, M.; Kakimoto, M.A. Synthesis and Properties of Polyurethane Elastomers Crosslinked with Amine-Terminated AB2-Type Hyperbranched Polyamides. Eur. Polym. J. 2003, 39, 1201–1208. [Google Scholar] [CrossRef]
- Frey, H.; Hölter, D. Degree of Branching in Hyperbranched Polymers. 3. Copolymerization of ABm-Monomers with AB and ABn-Monomers. Acta Polym. 1999, 50, 67–76. [Google Scholar] [CrossRef]
- Hawker, C.J.; Lee, R.; Frechet, J.M.J. One-Step Synthesis of Hyperbranched Dendritic Polyesters. J. Am. Chem. Soc. 1991, 113, 4583–4588. [Google Scholar] [CrossRef]
- Zhang, H.; Xue, L.; Li, J.; Ma, Q. Hyperbranched Polycarbosiloxanes: Synthesis by Piers-Rubinsztajn Reaction and Application as Precursors to Magnetoceramics. Polymers 2020, 12, 672. [Google Scholar] [CrossRef]
- Liu, X.; He, C.; Hao, X.; Tan, L.; Li, Y.; Ong, K.S. Hyperbranched Blue-Light-Emitting Alternating Copolymers of Acid. Macromolecules 2004, 37, 5965–5970. [Google Scholar] [CrossRef]
- Hartmann-Thompson, C.; Hu, J.; Kaganove, S.N.; Keinath, S.E.; Keeley, D.L.; Dvornic, P.R. Hydrogen-Bond Acidic Hyperbranched Polymers for Surface Acoustic Wave (SAW) Sensors. Chem. Mater. 2004, 16, 5357–5364. [Google Scholar] [CrossRef]
- Metroke, T.; Wang, Y.; Van Ooij, W.J.; Schaefer, D.W. Chemistry of Mixtures of Bis-[Trimethoxysilylpropyl]Amine and Vinyltriacetoxysilane: An NMR Analysis. J. Sol Gel Sci. Technol. 2009, 51, 23–31. [Google Scholar] [CrossRef]
- Zhu, J.; Xue, L.; Wei, W.; Mu, C.; Jiang, M.; Zhou, Z. Modification of Lignin with Silane Coupling Agent to Improve the Interface of Poly(L-lactic) Acid/Lignin Composites. BioResources 2015, 10, 4315–4325. [Google Scholar] [CrossRef]
- Xue, L.; Yang, Z.; Wang, D.; Wang, Y.; Zhang, J.; Feng, S. Synthesis and Characterization of Silicon-Containing Hyperbranched Polymers via Thiol-Ene Click Reaction. J. Organomet. Chem. 2013, 732, 1–7. [Google Scholar] [CrossRef]
- El-Bindary, A.; Kiwaan, H.; Shoair, A.G.; El-Ablack, F.; Eessa, A. Synthesis and Characterization of Hyperbranched Silane-Modified Alkyd as a Polymer for Environmentally Friendly Low VOC Polyurethane Coatings. Pigment RESIN Technol. 2020, 49, 102–109. [Google Scholar] [CrossRef]
- Zou, Y.; Qi, H.M.; Xu, M.L.; Huang, F.R.; Du, L. Synthesis and Characterization of a Novel Hyperbranched Poly(Diethynylbenzene-Silane). Adv. Mater. Res. 2012, 560–561, 174–178. [Google Scholar]
- Lotfi, M.; Yari, H.; Sari, M.G.; Azizi, A. Fabrication of a Highly Hard yet Tough Epoxy Nanocomposite Coating by Incorporating Graphene Oxide Nanosheets Dually Modified with Amino Silane Coupling Agent and Hyperbranched Polyester-Amide. Prog. Org. Coat. 2022, 162, 106570. [Google Scholar] [CrossRef]
- Miki, M.; Suzuki, T.; Yamada, Y. Structure—Gas Transport Property Relationship of Hyperbranched Polyimide-Silica Hybrid Membranes. J. Photopolym. Sci. Technol. 2013, 26, 319–326. [Google Scholar] [CrossRef]
- Zhang, H.R.; Liang, G.Z.; Gu, A.J.; Yuan, L. Facile Preparation of Hyperbranched Polysiloxane-Grafted Aramid Fibers with Simultaneously Improved UV Resistance, Surface Activity, and Thermal and Mechanical Properties. Ind. Eng. Chem. Res. 2014, 53, 2684–2696. [Google Scholar] [CrossRef]
- Mishra, A.K.; Narayan, R.; Aminabhavi, T.M.; Pradhan, S.K.; Raju, K. Hyperbranched Polyurethane-Urea-Imide/o-Clay-Silica Hybrids: Synthesis and Characterization. J. Appl. Polym. Sci. 2012, 125, E67–E75. [Google Scholar]
- Jena, G.; Anandkumar, B.; Sofia, S.; George, R.P.; Philip, J. Fabrication of Silanized GO Hybrid Coating on 316L SS with Enhanced Corrosion Resistance and Antibacterial Properties for Marine Applications. Surf. Coat. Technol. 2020, 402, 126295. [Google Scholar] [CrossRef]
- Ciriminna, R.; Albo, Y.; Fidalgo, A.; Ilharco, L.; Pagliaro, M. Silanes for Building Protection: A Case Study in Systems Thinking Approach to Materials Science Education. Educ. Sci. 2020, 10, 171. [Google Scholar] [CrossRef]
- Singh, H.; Rajput, J.K.; Arora, P. Jigyasa Role of (3-Aminopropyl)Tri Alkoxysilanes in Grafting of Chlorosulphonic Acid Immobilized Magnetic Nanoparticles and Their Application as Heterogeneous Catalysts for the Green Synthesis of α-Aminonitriles. RSC Adv. 2016, 6, 84658–84671. [Google Scholar] [CrossRef]
- Arabpour, A.; Shockravi, A.; Rezania, H.; Farahati, R. Investigation of Anticorrosive Properties of Novel Silane-Functionalized Polyamide/GO Nanocomposite as Steel Coatings. Surf. Interfaces 2020, 18, 100453. [Google Scholar] [CrossRef]
- Al-Saadi, S.; Singh Raman, R.K. Silane Coatings for Corrosion and Microbiologically Influenced Corrosion Resistance of Mild Steel: A Review. Materials 2022, 15, 7809. [Google Scholar] [CrossRef] [PubMed]
- Sołoducho, J.; Zając, D.; Spychalska, K.; Baluta, S.; Cabaj, J. Conducting Silicone-Based Polymers and Their Application. Molecules 2021, 26, 2012. [Google Scholar] [CrossRef]
- Magalhães, S.; Alves, L.; Medronho, B.; Fonseca, A.C.; Romano, A.; Coelho, J.F.J.; Norgren, M. Brief Overview on Bio-Based Adhesives and Sealants. Polymers 2019, 11, 1685. [Google Scholar] [CrossRef]
- Bhushan, B.; Kwang, J.K.; Gupta, S.; Lee, S.C. Nanoscale Adhesion, Friction and Wear Studies of Biomolecules on Silane Polymer-Coated Silica and Alumina-Based Surfaces. J. R. Soc. Interface 2009, 6, 719–733. [Google Scholar] [CrossRef]
- Chen, G.; Shu, H.; Wang, L.; Bashir, K.; Wang, Q.; Cui, X.; Li, X.; Luo, Z.; Chang, C.; Fu, Q. Facile One-Step Targeted Immobilization of an Enzyme Based on Silane Emulsion Self-Assembled Molecularly Imprinted Polymers for Visual Sensors. Analyst 2020, 145, 268–276. [Google Scholar] [CrossRef]
- Trovato, V.; Mezzi, A.; Brucale, M.; Abdeh, H.; Drommi, D.; Rosace, G.; Plutino, M.R. Sol-Gel Assisted Immobilization of Alizarin Red S on Polyester Fabrics for Developing Stimuli-Responsive Wearable Sensors. Polymers 2022, 14, 2788. [Google Scholar] [CrossRef]
- Herlem, G.; Segut, O.; Antoniou, A.; Achilleos, C.; Dupont, D.; Blondeau-Patissier, V.; Gharbi, T. Electrodeposition and Characterization of Silane Thin Films from 3-(Aminopropyl)Triethoxysilane. Surf. Coat. Technol. 2008, 202, 1437–1442. [Google Scholar] [CrossRef]
- Kros, A.; Jansen, J.A.; Holder, S.J.; Nolte, R.J.M.; Sommerdijk, N.A.J.M. Silane-Based Hybrids for Biomedical Applications. J. Adhes. Sci. Technol. 2002, 16, 143–155. [Google Scholar] [CrossRef]
S. No | Name of the Silane | Structure | Organofunctional Group Present |
---|---|---|---|
1. | Trichloromethoxy silane | Methoxy group | |
2. | Trimethoxyphenyl silane | Phenyl group | |
3. | ϒ-mercaptopropyl trimethoxy silane | Sulfo group | |
4. | ϒ-aminopropyl trimethoxy silane | Amino group | |
5. | ϒ- glycidoxypropyl-trimethoxysilane | Epoxy group | |
6. | Trichlorovinyl silane | Vinyl group | |
7. | Triethoxyvinyl silane | Vinyl group |
Type of Silane | Applications |
---|---|
Alkoxy/chloro silanes | Blocking agent, surface modification and coatings, coupling agent |
Amino silanes | Coupling agent, adhesion promoter, glass fiber reinforcement, cross-linker, pigment dispersion |
Phenyl silanes | Coupling agent, industrial coatings, surfactants, hybrid materials |
Mercapto silanes | Fillers, composites, coupling agents, adhesion promoters |
Vinyl silanes | Coupling agent, adhesion promoters, crosslinkers |
S. No | Type of Silane-HBP | Properties | Applications | Ref. |
---|---|---|---|---|
1. | Ferrocene linked Si-HBP | Precursors in ceramics construction, | High technology applications | [78] |
2. | Hyperbranched tetrahedral polymers | Electro-luminescence emitters | Photoluminescence Light emitting diode | [79] |
3. | Polycarbosiloxanes polymers | Surface acoustic wave generator | Sensor applications | [80] |
4. | polysiloxysilanes | Photo-initiators | Photo-initiating process | [66] |
5. | Poly phosphamide silanes | Composites for charring and blowing | Flame retardants | [81] |
6. | Organosilicon polymers | Crosslinkers | Heavy metal absorption | [82] |
7. | Hyperbranched polysiloxanes | Microstructures with more branching sites | Structural designing | [83] |
8. | Silane-modified alkyd polymer | Core material for polyurethane coating | Eco-friendly coatings | [84] |
9. | Hyperbranched Poly (diethynyl benzene Silane) | Optical properties | Optical emission | [85] |
10. | Silane functionalized graphene oxide-HBP | Stabilizer | Toughening agent | [86] |
11. | Amine terminated HBPI-silica hybrid | Coupling agent | Surface modification | [87] |
12. | Hyperbranched Polysiloxane | Surface wettability and UV resistance | High-performance fibers | [88] |
13. | Hyperbranched polyurethane-urea-imide/o- silica hybrids | Surface modifier | Hybrid coatings | [89,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Indumathy, B.; Sathiyanathan, P.; Prasad, G.; Reza, M.S.; Prabu, A.A.; Kim, H. A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers. Polymers 2023, 15, 2517. https://doi.org/10.3390/polym15112517
Indumathy B, Sathiyanathan P, Prasad G, Reza MS, Prabu AA, Kim H. A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers. Polymers. 2023; 15(11):2517. https://doi.org/10.3390/polym15112517
Chicago/Turabian StyleIndumathy, Balaraman, Ponnan Sathiyanathan, Gajula Prasad, Mohammad Shamim Reza, Arun Anand Prabu, and Hongdoo Kim. 2023. "A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers" Polymers 15, no. 11: 2517. https://doi.org/10.3390/polym15112517
APA StyleIndumathy, B., Sathiyanathan, P., Prasad, G., Reza, M. S., Prabu, A. A., & Kim, H. (2023). A Comprehensive Review on Processing, Development and Applications of Organofunctional Silanes and Silane-Based Hyperbranched Polymers. Polymers, 15(11), 2517. https://doi.org/10.3390/polym15112517