Polyolefin Recyclates for Rigid Packaging Applications: The Influence of Input Stream Composition on Recyclate Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Product Property Windows and Substitution Potential
2.3. Sample Preparation
2.4. Methods
3. Results
3.1. Substitution Potential
3.1.1. Polypropylene Recyclates
3.1.2. Polyethylene Recyclates
3.2. Additional Recyclate Properties
3.2.1. Thermal Properties
3.2.2. Thermo-Gravimetric Properties
3.2.3. Fourier-Transform Infrared Spectroscopy
4. Discussion
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bucknall, D.G. Plastics as a materials system in a circular economy. Philos. Trans. R. Soc. 2020, 378, 20190268. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. Chapter 19—Plastic waste in a circular economy. In Plastic Waste and Recycling; Letcher, T.M., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 481–512. [Google Scholar]
- Yuan, X.; Wang, X.; Sarkar, B.; Ok, Y.S. The COVID-19 pandemic necessitates a shift to a plastic circular economy. Nat. Rev. Earth Environ. 2021, 2, 659–660. [Google Scholar] [CrossRef]
- Ellen MacArthur Foundation. Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition. Available online: https://ellenmacarthurfoundation.org/towards-the-circular-economy-vol-1-an-economic-and-business-rationale-for-an (accessed on 10 August 2022).
- Shamsuyeva, M.; Endres, H.J. Plastics in the context of the circular economy and sustainable plastics recycling: Comprehensive review on research development, standardization and market. Compos. Part C Open Access 2021, 6, 100168. [Google Scholar] [CrossRef]
- Ragaert, K.; Delva, L.; Van Geem, K. Mechanical and chemical recycling of solid plastic waste. Waste Manag. 2017, 69, 24–58. [Google Scholar] [CrossRef]
- Plastics Europe. Plastics—The Facts 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 11 August 2022).
- Lange, J.-P. Managing Plastic Waste—Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E. Closing the loop on plastic packaging materials: What is quality and how does it affect their circularity? Sci. Total Environ. 2018, 630, 1394–1400. [Google Scholar] [CrossRef]
- Eriksen, M.K.; Damgaard, A.; Boldrin, A.; Astrup, T.F. Quality Assessment and Circularity Potential of Recovery Systems for Household Plastic Waste. J. Ind. Ecol. 2018, 23, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Tonini, D.; Albizatti, P.F.; Caro, D.; De Meester, S.; Garbarino, E.; Blengini, G.A. Quality of recycling: Urgent and undefined. Waste Manag. 2022, 146, 11–19. [Google Scholar] [CrossRef]
- Vadenbo, C.; Hellweg, S.; Astrup, T.F. Let’s Be Clear(er) about Substitution: A Reporting Framework to Account for Product Displacement in Life Cycle Assessment. J. Ind. Ecol. 2017, 21, 1078–1089. [Google Scholar] [CrossRef]
- Klotz, M.; Haupt, M.; Hellweg, S. Limited utilization options for secondary plastics may restrict their circularity. Waste Manag. 2022, 141, 251–270. [Google Scholar] [CrossRef]
- Guinée, J.B.; van den Bergh, J.C.J.M.; Boelens, J.; Fraanje, P.J.; Huppes, G.; Kandelaars, P.P.A.A.H.; Lexmond, T.M.; Moolenaar, S.W.; Olsthoorn, A.A.; Udo de Haes, H.A.; et al. Evaluation of risks of metal flows and accumulation in economy and environment. Ecol. Econ. 1999, 30, 47–65. [Google Scholar] [CrossRef]
- Velis, C. Waste pickers in Global South: Informal recycling sector in a circular economy era. Waste Manag. Res. 2017, 35, 329–331. [Google Scholar] [CrossRef]
- Wilson, D.C.; Velis, C.; Cheeseman, C. Role of informal sector recycling in waste management in developing countries. Habitat Int. 2006, 30, 797–808. [Google Scholar] [CrossRef]
- Kaza, S.; Yao Lisa, C.; Bhada-Tata, P.; van Woerden, F. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050; World Bank Group: Washington, DC, USA, 2018. [Google Scholar]
- Hahladakis, J.N.; Iacovidou, E. An overview of the challenges and trade-offs in closing the loop of post-consumer plastic waste (PCPW): Focus on recycling. J. Hazard. Mater. 2019, 380, 120887. [Google Scholar] [CrossRef]
- Gall, M.; Wiener, M.; Chagas de Oliveira, C.; Lang, R.W.; Hansen, E.G. Building a circular plastics economy with informal waste pickers: Recyclate quality, business model, and societal impacts. Resour. Conserv. Recycl. 2020, 156, 104685. [Google Scholar] [CrossRef]
- Cimpan, C.; Maul, A.; Jansen, M.; Pretz, T.; Wenzel, H. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling. J. Environ. Manag. 2015, 156, 181–199. [Google Scholar] [CrossRef]
- Gadaleta, G.; De Gisi, S.; Binetti, S.M.C.; Notarnicola, M. Outlining a comprehensive techno-economic approach to evaluate the performance of an advanced sorting plant for plastic waste recovery. Process Saf. Environ. Prot. 2020, 143, 248–261. [Google Scholar] [CrossRef]
- Serranti, S.; Bonifazi, G. 2—Techniques for separation of plastic wastes. In Use of Recycled Plastics in Eco-Efficient Concrete; Pacheco-Torgal, F., Khatib, J., Eds.; Woodhead Publishing: Sawston, UK, 2019; pp. 9–37. [Google Scholar]
- ISO 1133-1:2022; Plastics—Determination of the Melt Mass-Flow Rate (MFR) and Melt Volume-Flow Rate (MVR) of Thermoplastics—Part 1: Standard Method. 2nd ed. ISO/TC 61/SC 5 Physical-Chemical Properties. ISO: Geneva, Switzerland, 2022. Available online: https://www.iso.org/standard/83905.html (accessed on 3 January 2023).
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. 2nd ed. ISO/TC 61/SC 2 Mechanical Behavior. ISO: Geneva, Switzerland, 2012. Available online: https://www.iso.org/standard/56046.html (accessed on 3 January 2023).
- ISO 179-1:2010; Plastics—Determination of Charpy Impact Properties—Part 1: Non-Instrumented Impact Test. 2nd ed. ISO/TC 61/SC 2 Mechanical Behavior. ISO: Geneva, Switzerland, 2010. Available online: https://www.iso.org/standard/44852.html (accessed on 3 January 2023).
- ISO 19069-2:2016; Plastics—Polypropylene (PP) Moulding and Extrusion Materials—Part 2: Preparation of Test Specimens and Determination of Properties. 1st ed. ISO/TC 61/SC 9 Thermoplastic Materials. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/66828.html (accessed on 3 January 2023).
- ISO 17855-2:2016; Plastics—Polyethylene (PE) Moulding and Extrusion materials—Part 2: Preparation of Test Specimens and Determination of Properties. 1st ed. ISO/TC 61/SC 9 Thermoplastic Materials. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/66827.html (accessed on 3 January 2023).
- Gall, M.; Freudenthaler, J.P.; Fischer, J.; Lang, R.W. Characterization of Composition and Structure–Property Relationships of Commercial Post-Consumer Polyethylene and Polypropylene Recyclates. Polymers 2021, 13, 1574. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties—Part 1: General Principles. 3rd ed. ISO/TC 61/SC 2 Mechanical Behavior. ISO: Geneva, Switzerland, 2019. Available online: https://www.iso.org/standard/75824.html (accessed on 3 January 2023).
- ISO 11357-1:2016; Plastics—Differential scanning calorimetry (DSC)—Part 1: General principles. 3rd ed. ISO/TC 61/SC 5 Physical-Chemical Properties. ISO: Geneva, Switzerland, 2016. Available online: https://www.iso.org/standard/70024.html (accessed on 3 January 2023).
- ISO 11357-3:2018; Plastics—Differential Scanning Calorimetry (DSC)—Part 3: Determination of Temperature and Enthalpy of Melting and Crystallization. 3rd ed. ISO/TC 61/SC 5 Physical-Chemical Properties. ISO: Geneva, Switzerland, 2018. Available online: https://www.iso.org/standard/72460.html (accessed on 3 January 2023).
- Domininghaus, H. Kunststoffe: Eigenschaften und Anwendungen; Elsner, P., Eyerer, P., Hirth, T., Eds.; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Mejia, E.B.; Mourad, A.H.I.; Ba Faqer, A.S.; Halwish, D.F.; Al Hefeiti, H.O.; Al Kashadi, S.M.; Cherupurakal, N.; Mozumder, M.S. Impact on HDPE Mechanical Properties and Morphology due to Processing. In Proceedings of the 2019 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 26 March–10 April 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Langwieser, J.; Schweighuber, A.; Felgel-Farnholz, A.; Marschik, C.; Buchberger, W.; Fischer, J. Determination of the Influence of Multiple Closed Recycling Loops on the Property Profile of Different Polyolefins. Polymers 2022, 14, 2429. [Google Scholar] [CrossRef]
- Ehrenstein, G.W.; Riedel, G.; Trawiel, P. Thermal Analysis of Plastics: Theorie and Practice; Hanser: Munich, Germany, 2012. [Google Scholar]
- Eriksen, M.K.; Astrup, T.F. Characterisation of source-separated, rigid plastic waste and evaluation of recycling initiatives: Effects of product design and source-separation system. Waste Manag. 2019, 87, 161–172. [Google Scholar] [CrossRef]
- Gall, M.; Schweighuber, A.; Buchberger, W.; Lang, R.W.; Eriksen, M.K.; Astrup, T.F. Plastic Bottle Cap Recycling—Characterization of Recyclate Composition and Opportunities for Design for Circularity. Polymers 2020, 12, 10378. [Google Scholar]
- Yang, J.; Huang, Y.; Lv, Y.; Zhao, P.; Yang, Q.; Li, G.; Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; et al. The intrinsic thermal-oxidative stabilization effect of chemically reduced graphene oxide on polypropylene. J. Mater. Chem. A 2013, 1, 11184. [Google Scholar] [CrossRef]
- Ambrogi, V.; Cerruti, P.; Carfagna, C.; Malinconico, M.; Marturano, V.; Perrotti, M.; Persico, P. Natural antioxidants for polypropylene stabilization. Polym. Degrad. Stab. 2011, 96, 2152–2158. [Google Scholar] [CrossRef]
- Halikia, I.; Zoumpoulakis, L.; Christodoulou, E.; Prattis, D. Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. Eur. J. Miner. Process. Environ. Prot. 2001, 1, 89–102. [Google Scholar]
- Noda, I.; Dowrey, A.E.; Haynes, J.L.; Marcott, C. Group Frequency Assignments for Major Infrared Bands Observed in Common Synthetic Polymers. In Physical Properties of Polymers Handbook, 2nd ed.; Mark, J.E., Ed.; Springer: New York, NY, USA, 2007; pp. 395–406. [Google Scholar]
- Andreassen, E. Infrared and Raman spectroscopy of polypropylene. In Polypropylene: An A-Z Reference; Karger-Kocsis, J., Ed.; Springer: Dordrecht, The Netherlands, 1999; pp. 320–328. [Google Scholar]
- Verleye, G.A.; Roeges, N.P.; De Moor, M.O. Easy Identification of Plastics and Rubbers; Smithers Rapra Technology: Shawbury, UK, 2001. [Google Scholar]
- Alamo, R.G.; Mandelkern, L. Polyethylene, Linear High Density. In Polymer Data Handbook, 2nd ed.; Mark, J.E., Ed.; Oxford University Press: New York, NY, USA, 2009; pp. 642–643. [Google Scholar]
- Gulmine, J.V.; Janissek, P.R.; Heise, H.M.; Akcelrud, L. Polyethylene characterization by FTIR. Polym. Test. 2002, 21, 557–563. [Google Scholar] [CrossRef]
- Hummel, D.O. Atlas of Plastics Additives; Springer: Berlin/Heidelberg, Germany, 2002; p. 50. [Google Scholar]
- Almond, J.; Sugumaar, P.; Wenzel, M.N.; Hill, G.; Wallis, C. Determination of the carbonyl index of polyethylene and polypropylene using specified area under band methodology with ATR-FTIR spectroscopy. e-Polymers 2020, 20, 369–381. [Google Scholar] [CrossRef]
- Demets, R.; Van Kets, K.; Huysveld, S.; Dewulf, J.; De Meester, S.; Ragaert, K. Addressing the complex challenge of understanding and quantifying substitutability for recycled plastics. Resour. Conserv. Recycl. 2021, 174, 105826. [Google Scholar] [CrossRef]
- Huysfeld, S.; Ragaert, K.; Demets, R.; Nhu, T.T.; Civancik-Uslu, D.; Kusenberg, M.; Van Geem, K.M.; De Meester, S.; Dewulf, J. Technical and market substitutability of recycled materials: Calculating the environmental benefits of mechanical and chemical recycling of plastic packaging waste. Waste Manag. 2022, 152, 69–79. [Google Scholar] [CrossRef]
- Golkaram, M.; Mehta, R.; Taveau, M.; Schwarz, A.; Gankema, H.; Urbanus, J.H.; De Simon, L.; Cakir-Benthem, S.; van Harmelen, T. Quality model for recycled plastics (QMRP): An indicator for holistic and consistent quality assessment of recycled plastics using product functionality and material properties. J. Clean. Prod. 2022, 362, 132311. [Google Scholar] [CrossRef]
- Nessi, S.; Sinkko, T.; Bulgheroni, C.; Garcia-Gutierrez, P.; Giuntoli, J.; Konti, A.; Sanye Mengual, E.; Tonini, D.; Pant, R.; Marelli, L.; et al. Life Cycle Assessment (LCA) of alternative feedstocks for plastics production, EUR 30725 EN; Publications Office of the European Union: Luxembourg, 2021.
- Demets, R.; Roosen, M.; Vandermeersch, L.; Ragaert, K.; Walgraeve, C.; De Meester, S. Development and application of an analytical method to quantify odour removal in plastic waste recycling processes. Resour. Conserv. Recycl. 2020, 161, 104907. [Google Scholar] [CrossRef]
- Garofalo, E.; Scarfato, P.; Di Maio, L.; Protopapa, A.; Incarnato, L. Zeolites as effective desiccants to solve hygroscopicity issue of post-consumer mixed recycled polyolefins. J. Clean. Prod. 2021, 295, 126379. [Google Scholar] [CrossRef]
- European Parliament; Council of the European Union. Consolidated text: European Parliament and Council Directive 94/62/EC of 20 December 1994 on Packaging and Packaging Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A01994L0062-20180704 (accessed on 6 February 2023).
- European Commission. Proposal for a Revision of EU Legislation on Packaging and Packaging Waste. Available online: https://environment.ec.europa.eu/publications/proposal-packaging-and-packaging-waste_en (accessed on 6 February 2023).
Informal Recyclates | Color | Formal Recyclates | Color |
---|---|---|---|
i-rPP_1 | natural | f-rPP_1 | grey |
i-rPP_2 | blue | f-rPP_2 | white |
i-rPP_3 | white | f-rPP_3 | natural |
i-rPP_4 | red | f-rPP_4 | black |
i-rPE_1 | blue | f-rPE_1 | white |
i-rPE_2 | grey | f-rPE_2 | natural |
i-rPE_3 | yellow | f-rPE_3 | black |
i-rPE_4 | white | f-rPE_4 | grey |
Material | Composition |
---|---|
i-rPP_1 | 100% trays |
i-rPP_2 | 100% chairs |
i-rPP_3 | 85% food packaging, 10% home appliances, 4% personal care bottle tops, 1% others |
i-rPP_4 | 85% home appliances, 10% food packaging, 4% personal care bottle tops, 1% others |
i-rPE_1 | 100% crates |
i-rPE_2 | 100% beverage bottle caps |
i-rPE_3 | 94% food packaging, 2% motor oil, 4% others |
i-rPE_4 | 75% home care, 10% food packaging, 10% personal care, 5% motor oil |
MFR | Young’s Modulus | Charpy nIS | |
---|---|---|---|
[g/10 min] | [MPa] | [kJ/m] | |
i-rPP_1 | 5.6 | 1490 | 4.4 |
i-rPP_2 | 23.4 | 1670 | 3.3 |
i-rPP_3 | 22.1 | 1090 | 8.0 |
i-rPP_4 | 28.8 | 1170 | 4.8 |
f-rPP_1 | 15.0 | 1150 | 6.2 |
f-rPP_2 | 13.3 | 1320 | 6.8 |
f-rPP_3 | 17.7 | 1090 | 6.6 |
f-rPP_4 | 14.9 | 1150 | 6.2 |
i-rPE_1 | 5.8 | 1210 | 3.3 |
i-rPE_2 | 7.0 | 948 | 3.6 |
i-rPE_3 | 0.3 | 715 | 20.6 |
i-rPE_4 | 0.3 | 673 | 22.5 |
f-rPE_1 | 0.3 | 899 | 23.5 |
f-rPE_2 | 0.2 | 900 | 26.8 |
f-rPE_3 | 0.2 | 818 | 20.8 |
f-rPE_4 | 0.3 | 833 | 39.9 |
T | H | T | H | |
---|---|---|---|---|
[°C] | [J/g] | [°C] | [J/g] | |
i-rPP_1 | 124.4 | 0.4 | 163.8 | 101.2 |
i-rPP_2 | 125.9 | 1.3 | 163.4 | 86.2 |
i-rPP_3 | 127.4 | 11.0 | 163.6 | 65.1 |
i-rPP_4 | 127.9 | 15.0 | 162.8 | 67.7 |
f-rPP_1 | 124.1 | 3.7 | 161.0 | 90.3 |
f-rPP_2 | 124.4 | 1.2 | 162.6 | 74.4 |
f-rPP_3 | 124.5 | 2.1 | 158.9 | 56.7 |
f-rPP_4 | 126.8 | 12.1 | 161.8 | 59.8 |
i-rPE_1 | 132.4 | 140.2 | 162.8 | 22.4 |
i-rPE_2 | 132.2 | 197.9 | - | - |
i-rPE_3 | 131.1 | 188.4 | - | - |
i-rPE_4 | 131.1 | 190.4 | - | - |
f-rPE_1 | 132.8 | 177.7 | 160.4 | 3.7 |
f-rPE_2 | 132.5 | 201.4 | - | - |
f-rPE_3 | 131.3 | 173.1 | 159.3 | 2.6 |
f-rPE_4 | 131.5 | 190.8 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mager, M.; Berghofer, M.; Fischer, J. Polyolefin Recyclates for Rigid Packaging Applications: The Influence of Input Stream Composition on Recyclate Quality. Polymers 2023, 15, 2776. https://doi.org/10.3390/polym15132776
Mager M, Berghofer M, Fischer J. Polyolefin Recyclates for Rigid Packaging Applications: The Influence of Input Stream Composition on Recyclate Quality. Polymers. 2023; 15(13):2776. https://doi.org/10.3390/polym15132776
Chicago/Turabian StyleMager, Moritz, Michael Berghofer, and Joerg Fischer. 2023. "Polyolefin Recyclates for Rigid Packaging Applications: The Influence of Input Stream Composition on Recyclate Quality" Polymers 15, no. 13: 2776. https://doi.org/10.3390/polym15132776
APA StyleMager, M., Berghofer, M., & Fischer, J. (2023). Polyolefin Recyclates for Rigid Packaging Applications: The Influence of Input Stream Composition on Recyclate Quality. Polymers, 15(13), 2776. https://doi.org/10.3390/polym15132776