Modification of Cellulosic Materials with Boron-Nitrogen Compounds
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhukov, A.D.; Ter-Zakaryan, K.A.; Semenov, V.S. Insulation systems with the expanded polyethylene application. Sci. IFAC Pap. 2018, 51, 803–807. [Google Scholar] [CrossRef]
- Umnyakova, N. Heat exchange peculiarities in ventilated facades air cavities due to different wind speed. In Advances and Trends in Engineering Sciences and Technologies; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA; London, UK, 2017; Volume II, pp. 655–660. [Google Scholar]
- Lyapidevskaya, O.B.; Rubtsov, O.I.; Bessonov, I.V. Foam Polyethylene Made of Recycled Polyethylene. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1079, 0420737. [Google Scholar] [CrossRef]
- Ter-Zakaryan, K.A.; Zhukov, A.D.; Bobrova, E.Y.; Bessonov, I.V.; Mednikova, E.A. Foam Polymers in Multifunctional Insulating Coatings. Polymers 2021, 13, 3698. [Google Scholar] [CrossRef]
- Ter-Zakaryan, K.A.; Zhukov, A.D.; Bessonov, I.V.; Bobrova, E.Y.; Pshunov, T.A.; Dotkulov, K.T. Modified Polyethylene Foam for Critical Environments. Polymers 2022, 14, 4688. [Google Scholar] [CrossRef]
- Zhukov, A.D.; Stepina, I.V.; Bazhenova, S.I. Ensuring the Durability of Buildings through the Use of Insulation Systems Based on Polyethylene Foam. Buildings 2022, 12, 1937. [Google Scholar] [CrossRef]
- Ter-Zakaryan, K.A.; Zhukov, A.D. Short Overview of Practical Application and Further Prospects of Materials Based on Crosslinked Polyethylene. In Crosslinkable Polyethylene. Materials Horizons: From Nature to Nanomaterials; Thomas, J., Thomas, S., Ahmad, Z., Eds.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Gnip, I.J.; Keršulis, V.J.; Vaitkus, S.J. Predicting the deformability of expanded polystyrene in long-term compression. Mech. Compos. Mater. 2005, 41, 407–414. [Google Scholar] [CrossRef]
- Bobrova, E.Y.; Pilipenko, A.S.; Zhukov, A.D. Insulating sheath system and energy efficiency of buildings. E3S Web Conf. 2019, 91, 02019. [Google Scholar] [CrossRef]
- Zhukov, A.D.; Bobrova, E.Y.; Zelenshchikov, D.B.; Mustafaev, R.M.; Khimich, A.O. Insulation systems and green sustainable construction. Adv. Mater. Struct. Mech. Eng. 2014, 1025–1026, 1031–1034. [Google Scholar] [CrossRef]
- Medvedev, A.; Bobrova, E.; Poserenin, A.; Zarmanyan, E. Evaluation of mineral fiber properties using x-ray fluorescence analysis and measurement of natural radioactivity. MATEC Web Conf. 2018, 170, 03018. [Google Scholar] [CrossRef]
- Efimov, B.; Rubtsov, O.; Bessonov, I.; Medvedev, A. Construction and insulation of agricultural buildings and structures. E3S Web Conf. 2020, 164, 02030. [Google Scholar] [CrossRef]
- Gudkov, P.; Kagan, P.; Pilipenko, A.; Zhukova, E.; Zinovieva, E.; Ushakov, N. Usage of thermal isolation systems for low-rise buildings as a component of information models. E3S Web Conf. 2019, 97, 01039. [Google Scholar] [CrossRef]
- Koteneva, I.V.; Kotlyarova, I.A.; Sidorov, V.I. Complex protection of wood with compositions based on boron-nitrogen compounds. Stroit. Mater. 2010, 6, 56–60. [Google Scholar]
- Khademibami, L.; Bobadilha, G.S. Recent developments studies on wood protection research in academia: A review. Front. For. Glob. Chang. 2022, 5, 28. [Google Scholar] [CrossRef]
- Lebow, S.; Lebow, P.; Woodward, B.; Kirker, G.; Arango, R. Fifty-year durability evaluation of posts treated with industrial wood preservatives. For. Prod. J. 2015, 65, 307–313. [Google Scholar] [CrossRef]
- Stirling, R.; Uzunovic, A.; Morris, P.I. Control of black stain fungi with biocides in semitransparent wood coatings. For. Prod. J. 2011, 61, 359–364. [Google Scholar] [CrossRef]
- Konkler, M.J.; Morrell, J.J. Effect of post-treatment steaming on preservative migration from pentachlorophenol-treated wood. Int. Wood Prod. J. 2019, 10, 70–77. [Google Scholar] [CrossRef]
- Smith, S.T. 2018 railroad tie survey. J. Transp. Technol. 2019, 9, 276–286. [Google Scholar] [CrossRef] [Green Version]
- Schultz, T.P.; Nicholas, D.D. Solid wood processing; protection of wood against biodeterioration. In Encyclopedia of Forest Sciences; Burley, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1274–1282. [Google Scholar] [CrossRef]
- American Wood Protection Association. U1-19 User Specification for Treated Wood; American Wood Protection Association: Birmingham, AL, USA, 2019; pp. 5–74. [Google Scholar]
- Preston, A.; Jin, L.; Nicholas, D.; Zahora, A.; Walcheski, P.; Archer, K.; Schultz, T. Field stake tests with copper-based preservatives. In Proceedings of the 39th Annual Meeting of the International Research Group on Wood P(IRG), Istanbul, Turkey, 15–19 May 2008. [Google Scholar]
- Nguyen, T.T.H.; Li, S.; Li, J.; Liang, T. Micro-distribution and fixation of a rosin-based micronized-copper preservative in poplar wood. Int. Biodeterior. Biodegrad. 2013, 83, 63–70. [Google Scholar] [CrossRef]
- Akgul, A.; Akgul, A. Mycoremediation of copper: Exploring the metal tolerance of brown rot fungi. Bioresources 2018, 13, 7155–7171. [Google Scholar] [CrossRef]
- Ferrarini, S.F.; Dos Santos, H.S.; Miranda, L.G.; Azevedo, C.M.N.; Maia, S.M.; Pires, M. Decontamination of CCA-treated eucalyptus wood waste by acid leaching. Waste Manag. 2016, 49, 253–262. [Google Scholar] [CrossRef]
- Gillenwaters, B.; Scheffrahn, R.H.; Warner, J. Prevention of colony establishment by the West Indian Drywood termite using reduced rates of borate and silica dust or solution. J. Econ. Entomol. 2018, 111, 2298–2302. [Google Scholar] [CrossRef]
- Yan, L.; Morrell, J.J. Kinetic color analysis for assessing the effects of borate and glycerol on thermal modification of wood. Wood Sci. Technol. 2019, 53, 263–274. [Google Scholar] [CrossRef]
- Williams, L.H. Borate wood-protection compounds: A review of research and commercial use. APT Bull. J. Preser. Tech. 1996, 27, 46–51. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, W.; Cao, J. Boron fixation effect of quaternary ammonium compounds (QACs) on sodium fluoroborate (NaBF4)-treated wood. Holzforschung 2018, 72, 711–718. [Google Scholar] [CrossRef]
- Murthy, N.; Kiran, M.C.; Chawla, V.K.; Upadhayay, V.K.; Prakash, V. Evaluation of new boron fixation system for wood preservation. Int. J. Eng. Res. Manag. 2019, 6, 28–31. [Google Scholar]
- Verly Lopes, D.J.; Barnes, H.M.; dos Santos Bobadilha, G. Influence of heat treatment and tannin impregnation on boron depletion and wood durability. Forests 2020, 11, 201. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, S.; Tripathi, S. Effect of silicic acid on boron leaching in plywood manufacture. Appl. Biol. Res. 2021, 23, 122–128. [Google Scholar] [CrossRef]
- Ibañez, C.M.; Camargo, Á; Gherscovic, D.; Camera, R. Application of nanometric acrylics to reduce boron leaching. Pro. Ligno 2021, 17, 3–10. [Google Scholar]
- American Wood Protection Association. AWPA Book of Standards; American Wood Protection Association: Birmingham, AL, USA, 2019. [Google Scholar]
- Kotlyarova, I.A.; Koteneva, I.V.; Sidorov, V.I. Modification of cellulose monoethanolamine (N→v)trihydroxyborate. Him. Promyshlennost’ Segodnya 2011, 12, 26–30. [Google Scholar]
- Koteneva, I.V.; Kotlyarova, I.A. Modifying the surface of cellulose and wood by four-coordinated borazotnyh compounds. In Proceedings of the Second International Scientific-Practical Conference “Problems of Innovative Bispherical Social and Economic Development in the Construction, Housing and Communal and Road Complexes”, Boston, MA, USA, 11–15 January 2010; Volume 1, pp. 166–172. [Google Scholar]
- Stepina, I.V. Change in crystalline structure of cellulose caused by wood preservation. Mater. Sci. Forum 2018, 923, 51–55. [Google Scholar] [CrossRef]
- Stepina, I.; Sodomon, M.; Semenov, V.; Kononov, G.; Petukhov, V. Compability of modified heracleum Sosnovskyi cellulose-based materials with some polymers. Cellul. Chem. Technol. 2022, 56, 815–826. [Google Scholar] [CrossRef]
- Stepina, I. Creating an effective wood protectors from boric acid and aminoalcohols. IOP Conf. Ser. Earth Environ. Sci. 2019, 403, 012151. [Google Scholar] [CrossRef]
- Zhukov, A.D.; Bobrova, E.Y.; Bessonov, I.V.; Medvedev, A.A.; Demissi, B.A. Application of statistical methods for solving problems of construction materials science. Nanotechnologies Constr. Sci. Online J. 2020, 12, 313–319. [Google Scholar] [CrossRef]
- Zhukov, A.D.; Ter-Zakaryan, K.A.; Semenov, V.S.; Kozlov, S.D.; Zinovieva, E.A.; Fomina, E.D. Insulation systems for buildings and structures based on polyethylene foam. MATEC Web Conf. 2018, 251, 01014. [Google Scholar] [CrossRef]
- Mazalov, M.N. X-ray electron spectroscopy and its application in chemistry. Soros Educ. J. 2000, 4, 37–44. [Google Scholar]
- Wagner, C.D.; Naumkin, A.V.; Kraut-Vass, A.; Allison, J.W.; Powell, C.J.; Rumble, J.R. NIST Standard Reference Database 20, Version 3.4. Web Vers. 2004. Available online: https://srdata.nist.gov/xps (accessed on 7 September 2012).
- Alekperov, E.R.; Reznik, A.M. Boron Complexes: Synthesis, Application; Moscow State University Press: Moscow, Russia, 2000; p. 208. [Google Scholar]
- Petropavlovskii, G.A. Hydrophilic Partially Substituted Cellulose Ethers and Their Modification by Chemical Crosslinking; Nauka: Leningrad, Russia.
- Gwon, J.G.; Lee, S.Y.; Doh, G.H.; Kim, J.H. Characterization of chemically modified wood fibers using FTIR spectroscopy for biocomposites. J. Appl. Polym. Sci. 2010, 116, 3212–3219. [Google Scholar] [CrossRef]
- Karlivan, V.P. Methods of Cellulose Research; Zinatne: Riga, Latvia, 1981; p. 234. [Google Scholar]
- Koteneva, I.V.; Sidorov, V.I.; Kotlyarova, I.A. FTIR spectroscopy of cellulose modified with borazot compounds. In Proceedings of the Seventh All-Russian Scientific Practical Conference Fundamental Sciences in Modern Construction, Moscow State Construction University. Moscow, Russia, 12–18 September 2010; pp. 93–97. [Google Scholar]
- Koteneva, I.V.; Sidorov, V.I.; Kotlyarova, I.A. Analysis of modified cellulose by infrared spectroscopy. Him. Rastit. Syr’ya 2011, 1, 21–24. [Google Scholar]
- Nikitin, V.M.; Obolenskaya, A.V.; Shchegolev, V.P. Chemistry of Wood and Cellulose; Forest Industry: Moscow, Russia, 1978; 368p. [Google Scholar]
- Briggs, D.; Sih, M.P. Surface Analysis by Auger and X-ray Photoelectron Spectroscopy Methods; Mir: Moscow, Russia, 1987; 598p. [Google Scholar]
Name of the Factor | Symbol, Xi | The Average Value of the Factor, i | Variation Interval, ΔXi | Factor Values at Levels | |
---|---|---|---|---|---|
−1 | +1 | ||||
Particle size of crushed cellulose materials, mm | X1 | 0.8 | 0.2 | 0.6 | 1.0 |
Modifier concentration, % | X2 | 30 | 20 | 10 | 50 |
Concentration Compositions, % | Post-Test Appearance | Score | Bioresistance, % |
---|---|---|---|
Composition 1 | |||
10 | mycelium overgrowth on the surface | 3 | 50 |
30 | superficial mycelial growth | 2 | 70 |
50 | visually and under the microscope are clean | 0 | 100 |
Composition 2 | |||
10 | mycelium overgrowth on the surface | 3 | 50 |
30 | superficial mycelial growth | 2 | 70 |
50 | visually and under the microscope are clean | 0 | 100 |
Control | |||
80–85% of the surface is overgrown with mushrooms | 5 | 0 |
Elmt | Cellulose + Composition 1 | Cellulose + Composition 2 | Control |
---|---|---|---|
c, at.% | c, at.% | c, at.% | |
C 1s | 65.90 | 74.28 | 70.85 |
O 1s | 33.08 | 25.49 | 29.15 |
N 1s | 0.54 | 0.23 | - |
B 1s | 0.48 | 0.19 | - |
B 1s | N 1s | Handbook [42] | NIST B1s [43] | |
---|---|---|---|---|
Cellulose + Composition 1 | 192.6 | 400.8 | BN: 190.7, 398.3 B2O3: 193.4 BOH: 193.2 | 190.5, 398.2 193.6, 533.2 H3BO3: 193.4 |
Cellulose + Composition 2 | 191.9 | 399.1 |
Samples | Symmetry Index (a/в) | Max νoн, cm−1 | Crystallinity Index (D1430/D900) | Strip~1630–1655 cm−1 (intensity in relation to neighboring peaks) |
---|---|---|---|---|
unmodified cellulose | 1 | 3340 | 1.35 | 1647 |
cellulose + ba | 0.53 | 3427 | 2.18 | 1641 (increase) |
cellulose + mea | 0.69 | 3424 | 1.78 | 1636 (increase) |
cellulose + dea | 0.69 | 3395 | 2.02 | 1644 (increase) |
cellulose + ba + mea | 0.62 | 3408 | 1.82 | 1643(increase) |
cellulose a + ba + dea | 0.57 | 3416 | 1.94 | 1636 (increase) |
cellulose + mea + ba | 0.64 | 3428 | 1.85 | 1640 (increase) |
cellulose + dea + ba | 0.68 | 3413 | 1.93 | 1636 (increase) |
Samples | Relative Intensity D1600/D1730 |
---|---|
unmodified wood | 1.04 |
wood + ba | 1.14 |
wood + mea | 4.02 |
wood + dea | 2.02 |
wood + ba + mea | 3.27 |
wood ba + dea | 1.82 |
wood + mea + ba | 4.07 |
wood + dea + ba | 2.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stepina, I.; Zhukov, A.; Bazhenova, S. Modification of Cellulosic Materials with Boron-Nitrogen Compounds. Polymers 2023, 15, 2788. https://doi.org/10.3390/polym15132788
Stepina I, Zhukov A, Bazhenova S. Modification of Cellulosic Materials with Boron-Nitrogen Compounds. Polymers. 2023; 15(13):2788. https://doi.org/10.3390/polym15132788
Chicago/Turabian StyleStepina, Irina, Aleksey Zhukov, and Sofia Bazhenova. 2023. "Modification of Cellulosic Materials with Boron-Nitrogen Compounds" Polymers 15, no. 13: 2788. https://doi.org/10.3390/polym15132788
APA StyleStepina, I., Zhukov, A., & Bazhenova, S. (2023). Modification of Cellulosic Materials with Boron-Nitrogen Compounds. Polymers, 15(13), 2788. https://doi.org/10.3390/polym15132788