A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials
Abstract
:1. Introduction
- -
- To classify hydrogels based on various factors (source, cross-linking method, polymer composition, crystallinity, electrical charge, form, and pore size);
- -
- To provide an overview of the basic research on natural hydrogels based on chitosan, cellulose, starch, and other polysaccharides;
- -
- To summarize the various methods of hydrogel synthesis and provide information on hydrogel characterization;
- -
- To give a view of the various applications of polysaccharide-based superabsorbent polymers;
- -
- To discuss the practical applications of hydrogels based on polysaccharides in various fields, including agriculture, wastewater treatment, and biomedical engineering;
- -
- To identify the current technology’s challenges and limitations and suggest future research and development directions.
2. Classification of Superabsorbent Polymers
2.1. Source
2.1.1. Hydrogels Based on Natural Polymers
- -
- Polysaccharide-based hydrogels
- -
- Hydrogels based on polypeptides
2.1.2. Hydrogels Based on Synthetic Polymers
2.1.3. Hybrid Hydrogels
2.2. Type of Cross-Linking
2.3. Polymer Composition (or Network Nature)
- -
- Homopolymeric hydrogels: Their network is made from a single species of monomer, which serves as the network’s basic component [35]. This monomer can be cross-linked according to its nature and the polymerization process;
- -
- Copolymeric hydrogels: Its network comprises two or more distinct monomers, at least one of which is hydrophilic, arranged in a random configuration, sequenced or alternated along the polymeric network’s chain [36];
- -
- Interpenetrated polymer network (IPN) hydrogels: They consist of two independently bonded natural and/or synthetic polymers arranged as a network, where just one is cross-linked. They are synthesized by immersing a pre-polymerized hydrogel in a monomer solution in the presence of an initiator [37]. In addition, these hydrogel systems have better fracture toughness with maximum compressive stress than traditional hydrogels, owing to the ability of one network to maintain the SAP’s elasticity. Another ability is to self-heal when the charge is removed, such as for the SAP prepared from elastic chemical cross-links and self-healing physical cross-links formed together to ensure entanglement [38].
2.4. Crystallinity (Network Morphology)
2.5. Electrical Charge or Ionic Particles
- -
- Non-ionic;
- -
- Ionic (anionic or cationic);
- -
- Amphoteric (ampholytic) electrolyte, containing acid and basic groups;
- -
- Zwitterionic, containing anionic and cationic groups in each repetitive unit.
2.6. Form
2.7. Pore Size
3. SAPs Based on Polysaccharides: Synthesis and Types
3.1. Polysaccharides
- -
- Animal polysaccharides: Divided into glycosaminoglycans (such as hyaluronic acid, heparin, and keratan sulfate) and chitin/chitosan. They comprise many functional groups such as -NH2, -OH, -COOH, and -SO3H;
- -
- Plant polysaccharides: Generated from plant cell metabolites. The most abundant are starch and cellulose;
- -
- Microbial polysaccharides: Produced by many bacteria such as Pseudomonas elodea and Sphingomonas paucimobilis.
3.2. Methods of Preparing Natural SAPs
3.2.1. Physical Cross-Linking: Reversible Hydrogels
3.2.2. Chemical Cross-Linking: Permanent Hydrogels
3.3. Cellulose-Based Hydrogels
3.4. Chitosan-Based Hydrogels
3.5. Starch-Based Hydrogels
3.6. Composite Hydrogels
3.7. Hydrogels Based on Other Polysaccharides
4. Bio-Based SAP Characterization
4.1. Gel Fraction Study
4.2. Structural Analysis
4.2.1. FTIR
4.2.2. NMR
4.2.3. XRD
4.2.4. UV–Vis
4.2.5. Raman
4.3. Morphological Analyses
4.3.1. SEM
4.3.2. AFM
4.4. Mechanical and Thermal Analyses
4.4.1. Thermal Analysis
4.4.2. Mechanical Analysis
Dynamic Mechanical Analysis
Rheology
4.5. Biodegradability
- -
- Soil burial: An established and standardized technique where the tested SAP is buried in soil, then washed and weighed after a defined time, and the result is expressed as a weight loss percentage for a predetermined time [213].
- -
- -
- Microbial degradation: Using a microbial oxidative degradation analyzer, the hydrogel is mixed with sea sand and compost, calculating the quantity of dissipated CO2 and producing H2O during degradation [217].
4.6. Swelling Mechanism of Hydrogels in Water and Various Parameters Affecting It
4.6.1. Reagents’ Concentration Effect
Effect of Initiator Concentration
Effect of Cross-Linker Concentration
Effect of Monomer Ratio
4.6.2. Temperature Effect
4.6.3. pH Effect
4.6.4. Ionic Strength Effect
4.7. Loading and Release of Nutrients
5. Applications of Polysaccharide-Based Superabsorbent Polymers
5.1. Agriculture
5.1.1. Water Reservoir
5.1.2. Slow/Controlled-Release Fertilizers
5.2. Wastewater Treatment
5.3. Biomedicine
5.4. Other Applications
6. Conclusions
7. Prospects
- -
- The hydrogel field has received great attention from researchers to improve their environmental responses to promote their application in various fields. Indeed, the focus should be on natural hydrogels, biohydrogels, which are biodegradable, non-toxic, economical, and more sustainable, especially in medical fields, agriculture, food industries, and water purification systems, so as not to affect the environment and human health, while avoiding an increase in the current plastic soup caused by hydrogels based on petrochemical polymers, having a huge environmental impact.
- -
- This type of superabsorbent polymer has many more beneficial properties than synthetic SAPs, given the economic and environmental side. However, there are still some challenges to overcome, such as limiting the formulation complexity of some SAPs, such as chitosan-based hydrogels, as it is known that chitosan is difficult to dissolve without using acids for a long time.
- -
- The importance of extracting polysaccharides from some wastes to make hydrogels instead of commercialized ones should be recognized to reduce the product’s cost and valorize industrial wastes. In addition, incorporating waste materials into hydrogels as reinforcements can be a solution to valorize some waste materials and also improve the mechanical and adsorption/absorption properties.
- -
- It is necessary to agree on a general protocol to be followed or to set a uniform standard for the calculation of the absorption and water retention capacity of hydrogels while defining standard conditions to be applied, such as the duration of the test, temperature, and humidity, to compare the results of one hydrogel with others.
- -
- In the agricultural field, it is necessary to try to include swelling tests in the soil because the SAP’s ability for absorption in the soil is not as good as in laboratory-scale absorption experiments since some conditions are not controllable, such as temperature, humidity, and pH of the irrigation water.
- -
- As synthetic hydrogels are still applied in several sectors, semi-synthetic hydrogels, known as intelligent SAPs, will require a lot of research efforts in the future, as this combination of natural and synthetic polymers will improve the durability of these synthetic hydrogels.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grant, J.; Grant, R.; Grant, C. Grant & Hackh’s Chemical Dictionary: (American, International, European and British Usage): Containing the Words Generally Used in Chemistry, and Many of the Terms Used in the Related Sciences of Physics, Medicine, Engineering, Biology, Pharmacy, Astrophysics, Agriculture, Mineralogy, etc., Based on Recent Scientific Literature; McGraw-Hill: New York, NY, USA, 1987. [Google Scholar]
- Zhang, Z.; Fu, H.; Li, Z.; Huang, J.; Xu, Z.; Lai, Y.; Qian, X.; Zhang, S. Hydrogel materials for sustainable water resources harvesting & treatment: Synthesis, mechanism and applications. Chem. Eng. J. 2022, 439, 135756. [Google Scholar] [CrossRef]
- Bora, A.; Karak, N. Starch and itaconic acid-based superabsorbent hydrogels for agricultural application. Eur. Polym. J. 2022, 176, 111430. [Google Scholar] [CrossRef]
- Palem, R.R.; Shimoga, G.; Kang, T.J.; Lee, S.-H. Fabrication of multifunctional Guar gum-silver nanocomposite hydrogels for biomedical and environmental applications. Int. J. Biol. Macromol. 2020, 159, 474–486. [Google Scholar] [CrossRef] [PubMed]
- Kopač, T.; Ručigaj, A.; Krajnc, M. The mutual effect of the crosslinker and biopolymer concentration on the desired hydrogel properties. Int. J. Biol. Macromol. 2020, 159, 557–569. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhu, W.; Dai, L.; Si, C.; Ni, Y. Fabrication of thermo-and pH-sensitive cellulose nanofibrils-reinforced hydrogel with biomass nanoparticles. Carbohydr. Polym. 2019, 215, 289–295. [Google Scholar] [CrossRef] [PubMed]
- Mahinroosta, M.; Farsangi, Z.J.; Allahverdi, A.; Shakoori, Z. Hydrogels as intelligent materials: A brief review of synthesis, properties and applications. Mater. Today Chem. 2018, 8, 42–55. [Google Scholar] [CrossRef]
- Tanaka, T. Gels. Sci. Am. 1981, 244, 124-S. [Google Scholar] [CrossRef]
- Wichterle, O.; Lim, D. Hydrophilic gels for biological use. Nature 1960, 185, 117–118. [Google Scholar] [CrossRef]
- Junior, C.R.; Fernandes, R.d.S.; de Moura, M.R.; Aouada, F.A. On the preparation and physicochemical properties of pH-responsive hydrogel nanocomposite based on poly (acid methacrylic)/laponite RDS. Mater. Today Commun. 2020, 23, 100936. [Google Scholar] [CrossRef]
- Boztepe, C.; Künkül, A.; Yüceer, M. Application of artificial intelligence in modeling of the doxorubicin release behavior of pH and temperature responsive poly (NIPAAm-co-AAc)-PEG IPN hydrogel. J. Drug Deliv. Sci. Technol. 2020, 57, 101603. [Google Scholar] [CrossRef]
- Li, D.; Gao, H.; Li, M.; Chen, G.; Guan, L.; He, M.; Tian, J.; Cao, R. Nanochitin/metal ion dual reinforcement in synthetic polyacrylamide network-based nanocomposite hydrogels. Carbohydr. Polym. 2020, 236, 116061. [Google Scholar] [CrossRef] [PubMed]
- Ionescu, O.M.; Mignon, A.; Minsart, M.; Caruntu, I.-D.; Giusca, S.E.; Gardikiotis, I.; Van Vlierberghe, S.; Profire, L. Acrylate-endcapped urethane-based hydrogels: An in vivo study on wound healing potential. Mater. Sci. Eng. C 2021, 130, 112436. [Google Scholar] [CrossRef] [PubMed]
- Sepulveda-Medina, P.I.; Wang, C.; Li, R.; Fukuto, M.; Weiss, R.; Vogt, B.D. Kinetically controlled morphology in copolymer-based hydrogels crosslinked by crystalline nanodomains determines efficacy of ice inhibition. Mol. Syst. Des. Eng. 2020, 5, 645–655. [Google Scholar] [CrossRef]
- Hossain, L.; Ledesma, R.M.B.; Tanner, J.; Garnier, G. Effect of crosslinking on nanocellulose superabsorbent biodegradability. Carbohydr. Polym. Technol. Appl. 2022, 3, 100199. [Google Scholar] [CrossRef]
- Qureshi, M.A.; Nishat, N.; Jadoun, S.; Ansari, M.Z. Polysaccharide based superabsorbent hydrogels and their methods of synthesis: A review. Carbohydr. Polym. Technol. Appl. 2020, 1, 100014. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, H.; Li, W.; Liu, Z.; Liu, Y.; Wei, H.; Li, J. Synthesis and characterization of double-network hydrogels based on sodium alginate and halloysite for slow release fertilizers. Int. J. Biol. Macromol. 2020, 164, 557–565. [Google Scholar] [CrossRef]
- Reshma, G.; Reshmi, C.; Nair, S.V.; Menon, D. Superabsorbent sodium carboxymethyl cellulose membranes based on a new cross-linker combination for female sanitary napkin applications. Carbohydr. Polym. 2020, 248, 116763. [Google Scholar]
- Sethi, S.; Thakur, S.; Sharma, D.; Singh, G.; Sharma, N.; Kaith, B.S.; Khullar, S. Malic acid cross-linked chitosan based hydrogel for highly effective removal of chromium (VI) ions from aqueous environment. React. Funct. Polym. 2022, 177, 105318. [Google Scholar] [CrossRef]
- Liu, Z.; Bhandari, B.; Prakash, S.; Mantihal, S.; Zhang, M. Linking rheology and printability of a multicomponent gel system of carrageenan-xanthan-starch in extrusion based additive manufacturing. Food Hydrocoll. 2019, 87, 413–424. [Google Scholar] [CrossRef]
- Jang, J.; Kang, K.; Raeis-Hosseini, N.; Ismukhanova, A.; Jeong, H.; Jung, C.; Kim, B.; Lee, J.Y.; Park, I.; Rho, J. Self-powered humidity sensor using chitosan-based plasmonic metal–hydrogel–metal filters. Adv. Opt. Mater. 2020, 8, 1901932. [Google Scholar] [CrossRef]
- Algharib, S.A.; Dawood, A.; Zhou, K.; Chen, D.; Li, C.; Meng, K.; Maa, M.K.; Ahmed, S.; Huang, L.; Xie, S. Designing, structural determination and biological effects of rifaximin loaded chitosan-carboxymethyl chitosan nanogel. Carbohydr. Polym. 2020, 248, 116782. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Qu, J.; Zhao, X.; Zhang, M. Degradable conductive self-healing hydrogels based on dextran-graft-tetraaniline and N-carboxyethyl chitosan as injectable carriers for myoblast cell therapy and muscle regeneration. Acta Biomater. 2019, 84, 180–193. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Guo, R.; Shi, X.; Lian, S.; Zhou, Q.; Chen, Y.; Liu, W.; Li, W. Synthesis of cellulose-based superabsorbent hydrogel with high salt tolerance for soil conditioning. Int. J. Biol. Macromol. 2022, 209, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Feng, Z.; Lyu, Y.; Yang, J.; Lin, L.; Bai, H.; Li, Y.; Feng, Y.; Chen, Y. Electroactive injectable hydrogel based on oxidized sodium alginate and carboxymethyl chitosan for wound healing. Int. J. Biol. Macromol. 2023, 230, 123231. [Google Scholar] [CrossRef]
- Kong, B.; Sun, L.; Liu, R.; Chen, Y.; Shang, Y.; Tan, H.; Zhao, Y.; Sun, L. Recombinant human collagen hydrogels with hierarchically ordered microstructures for corneal stroma regeneration. Chem. Eng. J. 2022, 428, 131012. [Google Scholar] [CrossRef]
- Chiani, E.; Beaucamp, A.; Hamzeh, Y.; Azadfallah, M.; Thanusha, A.; Collins, M.N. Synthesis and characterization of gelatin/lignin hydrogels as quick release drug carriers for Ribavirin. Int. J. Biol. Macromol. 2023, 224, 1196–1205. [Google Scholar] [CrossRef]
- Madduma-Bandarage, U.S.; Madihally, S.V. Synthetic hydrogels: Synthesis, novel trends, and applications. J. Appl. Polym. Sci. 2021, 138, 50376. [Google Scholar] [CrossRef]
- Mahmud, M.; Daik, R.; Adam, Z. Influence of poly (ethylene glycol) on the characteristics of γ radiation-crosslinked poly (vinyl pyrrolidone)-low molecular weight chitosan network hydrogels. Sains Malays 2018, 47, 1189–1197. [Google Scholar] [CrossRef]
- Samimi Gharaie, S.; Dabiri, S.M.H.; Akbari, M. Smart shear-thinning hydrogels as injectable drug delivery systems. Polymers 2018, 10, 1317. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Cheng, J.; Xu, S.; Cheng, X.; Zhao, J.; Low, Z.W.K.; Chee, P.L.; Lu, Z.; Zheng, L.; Kai, D. PVA/pectin composite hydrogels inducing osteogenesis for bone regeneration. Mater. Today Bio 2022, 16, 100431. [Google Scholar] [CrossRef]
- Wang, L.-Y.; Wang, M.-J. Removal of heavy metal ions by poly (vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze–thaw method. ACS Sustain. Chem. Eng. 2016, 4, 2830–2837. [Google Scholar] [CrossRef]
- Maitra, J.; Shukla, V.K. Cross-linking in hydrogels—A review. Am. J. Polym. Sci. 2014, 4, 25–31. [Google Scholar]
- Lu, L.; Yuan, S.; Wang, J.; Shen, Y.; Deng, S.; Xie, L.; Yang, Q.J. The formation mechanism of hydrogels. Curr. Stem Cell Res. Ther. 2018, 13, 490–496. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Han, J.; Lin, H. Fabrication and characterization of a self-crosslinking chitosan hydrogel under mild conditions without the use of strong bases. Carbohydr. Polym. 2017, 156, 372–379. [Google Scholar] [CrossRef]
- Mahdy, A.; Helal, R.H.; Moneam, Y.K.A.; Senna, M.M. Electron beam radiation synthesis of hydrogel based on biodegradable starch/poly (ethylene oxide)(ST/PEO) blend and its application in controlled release of parasitic worm’s drugs. J. Drug Deliv. Sci. Technol. 2022, 74, 103531. [Google Scholar] [CrossRef]
- Balan, K.E.; Boztepe, C.; Künkül, A. Modeling the effect of physical crosslinking degree of pH and temperature responsive poly (NIPAAm-co-VSA)/alginate IPN hydrogels on drug release behavior. J. Drug Deliv. Sci. Technol. 2022, 75, 103671. [Google Scholar] [CrossRef]
- Fitzgerald, M.M.; Bootsma, K.; Berberich, J.A.; Sparks, J.L. Tunable stress relaxation behavior of an alginate-polyacrylamide hydrogel: Comparison with muscle tissue. Biomacromolecules 2015, 16, 1497–1505. [Google Scholar] [CrossRef]
- Chen, W.-T.; Zeng, L.; Li, P.; Liu, Y.; Huang, J.-L.; Guo, H.; Rao, P.; Li, W.-H. Convenient hydrogel adhesion with crystalline zones. J. Ind. Eng. Chem. 2023, 117, 103–108. [Google Scholar] [CrossRef]
- Raveendran, R.L.; Valsala, M.; Anirudhan, T.S. Development of nanosilver embedded injectable liquid crystalline hydrogel from alginate and chitosan for potent antibacterial and anticancer applications. J. Ind. Eng. Chem. 2022, 119, 261–273. [Google Scholar] [CrossRef]
- Ahmed, E.M. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015, 6, 105–121. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Properties and development of hydrogels. In Hydrogels Based on Natural Polymers; Elsevier: Amsterdam, The Netherlands, 2020; pp. 3–16. [Google Scholar]
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Zhang, W.; Jiang, Y.; Wang, H.; Chen, G.; Guo, M. Physicochemical, structural, and biological properties of polysaccharides from dandelion. Molecules 2019, 24, 1485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Michaud, P. Polysaccharides from microalgae, what’s future. Adv. Biotechnol. Microbiol. 2018, 8, 29–30. [Google Scholar] [CrossRef]
- Ahmad, S.I.; Ahmad, R.; Khan, M.S.; Kant, R.; Shahid, S.; Gautam, L.; Hasan, G.M.; Hassan, M.I. Chitin and its derivatives: Structural properties and biomedical applications. Int. J. Biol. Macromol. 2020, 164, 526–539. [Google Scholar] [CrossRef] [PubMed]
- Liao, J.; Huang, H. Magnetic chitin hydrogels prepared from Hericium erinaceus residues with tunable characteristics: A novel biosorbent for Cu2+ removal. Carbohydr. Polym. 2019, 220, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Muanprasat, C.; Chatsudthipong, V. Chitosan oligosaccharide: Biological activities and potential therapeutic applications. Pharmacol. Ther. 2017, 170, 80–97. [Google Scholar] [CrossRef]
- Dragan, E.S.; Loghin, D.F.A. Fabrication and characterization of composite cryobeads based on chitosan and starches-g-PAN as efficient and reusable biosorbents for removal of Cu2+, Ni2+, and Co2+ ions. Int. J. Biol. Macromol. 2018, 120, 1872–1883. [Google Scholar] [CrossRef]
- Shariatinia, Z. Carboxymethyl chitosan: Properties and biomedical applications. Int. J. Biol. Macromol. 2018, 120, 1406–1419. [Google Scholar] [CrossRef]
- Tong, X.; Pan, W.; Su, T.; Zhang, M.; Dong, W.; Qi, X. Recent advances in natural polymer-based drug delivery systems. React. Funct. Polym. 2020, 148, 104501. [Google Scholar] [CrossRef]
- Ban, M.T.; Mahadin, N.; Abd Karim, K.J. Synthesis of hydrogel from sugarcane bagasse extracted cellulose for swelling properties study. Mater. Today Proc. 2022, 50, 2567–2575. [Google Scholar] [CrossRef]
- Barus, D.A.; Humaidi, S.; Ginting, R.T.; Sitepu, J. Enhanced adsorption performance of chitosan/cellulose nanofiber isolated from durian peel waste/graphene oxide nanocomposite hydrogels. Environ. Nanotechnol. Monit. Manag. 2022, 17, 100650. [Google Scholar] [CrossRef]
- Lacoste, C.; Lopez-Cuesta, J.-M.; Bergeret, A. Development of a biobased superabsorbent polymer from recycled cellulose for diapers applications. Eur. Polym. J. 2019, 116, 38–44. [Google Scholar] [CrossRef]
- Madramootoo, C.A.; Jain, A.; Oliva, C.; Wang, Y.; Abbasi, N.A. Growth and yield of tomato on soil amended with waste paper based hydrogels. Sci. Hortic. 2023, 310, 111752. [Google Scholar] [CrossRef]
- Moharrami, P.; Motamedi, E. Application of cellulose nanocrystals prepared from agricultural wastes for synthesis of starch-based hydrogel nanocomposites: Efficient and selective nanoadsorbent for removal of cationic dyes from water. Bioresour. Technol. 2020, 313, 123661. [Google Scholar] [CrossRef]
- Olad, A.; Doustdar, F.; Gharekhani, H.J. Fabrication and characterization of a starch-based superabsorbent hydrogel composite reinforced with cellulose nanocrystals from potato peel waste. Colloids Surf. A Physicochem. Eng. Asp. 2020, 601, 124962. [Google Scholar] [CrossRef]
- Kolya, H.; Kang, C.-W. Synthesis of starch-based smart hydrogel derived from rice-cooked wastewater for agricultural use. Int. J. Biol. Macromol. 2023, 226, 1477–1489. [Google Scholar] [CrossRef]
- Noor, N.; Jhan, F.; Gani, A.; Raina, I.A.; Shah, M.A. Nutraceutical and toxicological evaluation of hydrogels architected using resistant starch nanoparticles and gum acacia for controlled release of kaempferol. Food Struct. 2023, 35, 100307. [Google Scholar] [CrossRef]
- Abdullah, M.; Azfaralariff, A.; Lazim, A.M. Methylene blue removal by using pectin-based hydrogels extracted from dragon fruit peel waste using gamma and microwave radiation polymerization techniques. J. Biomater. Sci. Polym. Ed. 2018, 29, 1745–1763. [Google Scholar] [CrossRef] [PubMed]
- da Costa, T.B.; da Silva, T.L.; Costa, C.S.D.; da Silva, M.G.C.; Vieira, M.G.A. Chromium adsorption using Sargassum filipendula algae waste from alginate extraction: Batch and fixed-bed column studies. Chem. Eng. J. Adv. 2022, 11, 100341. [Google Scholar] [CrossRef]
- Łabowska, M.B.; Michalak, I.; Detyna, J. Methods of extraction, physicochemical properties of alginates and their applications in biomedical field—A review. Open Chem. 2019, 17, 738–762. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chen, M.; Yang, X.; Zhang, L. Preparation of a novel hydrogel of sodium alginate using rural waste bone meal for efficient adsorption of heavy metals cadmium ion. Sci. Total Environ. 2023, 863, 160969. [Google Scholar] [CrossRef]
- Silva, M.P.; Badruddin, I.J.; Tonon, T.; Rahatekar, S.; Gomez, L.D. Environmentally benign alginate extraction and fibres spinning from different European Brown algae species. Int. J. Biol. Macromol. 2023, 226, 434–442. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, X.; Duan, D.; Xu, J.; Gao, X. Preparation and characterization of agar, agarose, and agaropectin from the red alga Ahnfeltia plicata. J. Oceanol. Limnol. 2019, 37, 815–824. [Google Scholar] [CrossRef]
- Álvarez-Viñas, M.; González-Ballesteros, N.; Torres, M.D.; López-Hortas, L.; Vanini, C.; Domingo, G.; Rodríguez-Argüelles, M.C.; Domínguez, H. Efficient extraction of carrageenans from Chondrus crispus for the green synthesis of gold nanoparticles and formulation of printable hydrogels. Int. J. Biol. Macromol. 2022, 206, 553–566. [Google Scholar] [CrossRef]
- Firdayanti, L.; Yanti, R.; Rahayu, E.S.; Hidayat, C. Carrageenan extraction from red seaweed (Kappaphycopsis cottonii) using the bead mill method. Algal Res. 2023, 69, 102906. [Google Scholar] [CrossRef]
- Mandal, S.; Hwang, S.; Shi, S.Q. Guar gum, a low-cost sustainable biopolymer, for wastewater treatment: A review. Int. J. Biol. Macromol. 2022, 226, 368–382. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.D.; Meftahizadeh, H.; Barani, M.; Rahdar, A.; Hosseinikhah, S.M.; Hatami, M.; Ghorbanpour, M. Guar (Cyamopsis tetragonoloba L.) plant gum: From biological applications to advanced nanomedicine. Int. J. Biol. Macromol. 2021, 193, 1972–1985. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, X.; Ji, H.; Svensson, B.; Bai, Y. Improved production of gamma-cyclodextrin from high-concentrated starch using enzyme pretreatment under swelling condition. Carbohydr. Polym. 2022, 284, 119124. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Wu, L.; Pan, X.; Zhang, C.; Shi, M.; Gao, R.; Qi, X.; Dong, W. Pullulan-derived nanocomposite hydrogels for wastewater remediation: Synthesis and characterization. J. Colloid Interface Sci. 2019, 542, 253–262. [Google Scholar] [CrossRef]
- Wani, S.M.; Mir, S.A.; Khanday, F.; Masoodi, F. Advances in pullulan production from agro-based wastes by Aureobasidium pullulans and its applications. Innov. Food Sci. Emerg. Technol. 2021, 74, 102846. [Google Scholar] [CrossRef]
- Ye, G.; Li, G.; Wang, C.; Ling, B.; Yang, R.; Huang, S. Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydr. Polym. 2019, 207, 218–223. [Google Scholar] [CrossRef]
- Hu, X.; Yan, L.; Wang, Y.; Xu, M. Freeze-thaw as a route to build manageable polysaccharide cryogel for deep cleaning of crystal violet. Chem. Eng. J. 2020, 396, 125354. [Google Scholar] [CrossRef]
- Qi, X.; Su, T.; Tong, X.; Xiong, W.; Zeng, Q.; Qian, Y.; Zhou, Z.; Wu, X.; Li, Z.; Shen, L. Facile formation of salecan/agarose hydrogels with tunable structural properties for cell culture. Carbohydr. Polym. 2019, 224, 115208. [Google Scholar] [CrossRef] [PubMed]
- Racovita, S.; Lungan, M.; Bunia, I.; Popa, M.; Vasiliu, S. Adsorption and release studies of cefuroxime sodium from acrylic ion exchange resin microparticles coated with gellan. React. Funct. Polym. 2016, 105, 103–113. [Google Scholar] [CrossRef]
- Mesomo, M.; Silva, M.F.; Boni, G.; Padilha, F.F.; Mazutti, M.; Mossi, A.; de Oliveira, D.; Cansian, R.L.; Di Luccio, M.; Treichel, H. Xanthan gum produced by Xanthomonas campestris from cheese whey: Production optimisation and rheological characterisation. J. Sci. Food Agric. 2009, 89, 2440–2445. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Liu, Y.; Wang, J.; Chen, H.; Cheng, D. Environmentally friendly hydrogel: A review of classification, preparation and application in agriculture. Sci. Total Environ. 2022, 846, 157303. [Google Scholar] [CrossRef]
- Kühbeck, D.; Mayr, J.; Häring, M.; Hofmann, M.; Quignard, F.; Díaz, D.D. Evaluation of the nitroaldol reaction in the presence of metal ion-crosslinked alginates. New J. Chem. 2015, 39, 2306–2315. [Google Scholar] [CrossRef] [Green Version]
- Lv, X.; Zhang, W.; Liu, Y.; Zhao, Y.; Zhang, J.; Hou, M. Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system. Carbohydr. Polym. 2018, 198, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ma, Y.; Pan, X.; Chen, S.; Zhuang, H.; Wang, S. A composite hydrogel of chitosan/heparin/poly (γ-glutamic acid) loaded with superoxide dismutase for wound healing. Carbohydr. Polym. 2018, 180, 168–174. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, Y.; Song, J.; Yang, J.; Pan, C.; Xu, T.; Zhang, L. Novel balanced charged alginate/PEI polyelectrolyte hydrogel that resists foreign-body reaction. ACS Appl. Mater. Interfaces 2018, 10, 6879–6886. [Google Scholar] [CrossRef]
- Poudel, A.J.; He, F.; Huang, L.; Xiao, L.; Yang, G. Supramolecular hydrogels based on poly (ethylene glycol)-poly (lactic acid) block copolymer micelles and α-cyclodextrin for potential injectable drug delivery system. Carbohydr. Polym. 2018, 194, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Dai, H.; Ou, S.; Liu, Z.; Huang, H. Pineapple peel carboxymethyl cellulose/polyvinyl alcohol/mesoporous silica SBA-15 hydrogel composites for papain immobilization. Carbohydr. Polym. 2017, 169, 504–514. [Google Scholar] [CrossRef] [PubMed]
- Faivre, J.; Sudre, G.; Montembault, A.; Benayoun, S.; Banquy, X.; Delair, T.; David, L. Bioinspired microstructures of chitosan hydrogel provide enhanced wear protection. Soft Matter 2018, 14, 2068–2076. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Li, R.; Liu, Z.; Gao, X.; Long, S.; Zhang, G. Integrated Functional High-Strength Hydrogels with Metal-Coordination Complexes and H-Bonding Dual Physically Cross-linked Networks. Macromol. Rapid Commun. 2018, 39, 1800400. [Google Scholar] [CrossRef]
- Ren, L.; Xu, J.; Zhang, Y.; Zhou, J.; Chen, D.; Chang, Z. Preparation and characterization of porous chitosan microspheres and adsorption performance for hexavalent chromium. Int. J. Biol. Macromol. 2019, 135, 898–906. [Google Scholar] [CrossRef]
- Xu, C.; Zhan, W.; Tang, X.; Mo, F.; Fu, L.; Lin, B. Self-healing chitosan/vanillin hydrogels based on Schiff-base bond/hydrogen bond hybrid linkages. Polym. Test. 2018, 66, 155–163. [Google Scholar] [CrossRef]
- Lalevée, G.; David, L.; Montembault, A.; Blanchard, K.; Meadows, J.; Malaise, S.; Crépet, A.; Grillo, I.; Morfin, I.; Delair, T. Highly stretchable hydrogels from complex coacervation of natural polyelectrolytes. Soft Matter 2017, 13, 6594–6605. [Google Scholar] [CrossRef]
- Le, X.T.; Rioux, L.-E.; Turgeon, S.L. Formation and functional properties of protein–polysaccharide electrostatic hydrogels in comparison to protein or polysaccharide hydrogels. Adv. Colloid Interface Sci. 2017, 239, 127–135. [Google Scholar] [CrossRef]
- Pereira, D.R.; Silva-Correia, J.; Oliveira, J.M.; Reis, R.L.; Pandit, A.; Biggs, M.J. Nanocellulose reinforced gellan-gum hydrogels as potential biological substitutes for annulus fibrosus tissue regeneration. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 897–908. [Google Scholar] [CrossRef]
- Zeng, Q.; Wan, S.; Yang, S.; Zhao, X.; He, F.; Zhang, Y.; Cao, X.; Wen, Q.; Feng, Y.; Yu, G. Super stretchability, strong adhesion, flexible sensor based on Fe3+ dynamic coordination sodium alginate/polyacrylamide dual-network hydrogel. Colloids Surf. A Physicochem. Eng. Asp. 2022, 652, 129733. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, X.; Ma, M.; Xu, F. Modulation of assembly and dynamics in colloidal hydrogels via ionic bridge from cellulose nanofibrils and poly (ethylene glycol). ACS Macro Lett. 2015, 4, 829–833. [Google Scholar] [CrossRef]
- Akhtar, M.F.; Hanif, M.; Ranjha, N.M. Methods of synthesis of hydrogels: A review. Saudi Pharm. J. 2016, 24, 554–559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caló, E.; Khutoryanskiy, V.V. Biomedical applications of hydrogels: A review of patents and commercial products. Eur. Polym. J. 2015, 65, 252–267. [Google Scholar] [CrossRef] [Green Version]
- Reddy, N.; Reddy, R.; Jiang, Q. Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 2015, 33, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Kowalski, G.; Ptaszek, P.; Kuterasiński, Ł. Swelling of hydrogels based on carboxymethylated starch and poly (acrylic acid): Nonlinear rheological approach. Polymers 2020, 12, 2564. [Google Scholar] [CrossRef]
- Zhao, Y.; He, M.; Zhao, L.; Wang, S.; Li, Y.; Gan, L.; Li, M.; Xu, L.; Chang, P.R.; Anderson, D.P. Epichlorohydrin-cross-linked hydroxyethyl cellulose/soy protein isolate composite films as biocompatible and biodegradable implants for tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 2781–2795. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.H.; Lee, W.; Jeon, S.-B.; Kim, K.-W.; Lee, Y. Enhanced Gold (III) adsorption using glutaraldehyde-crosslinked chitosan beads: Effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. Sep. Purif. Technol. 2020, 248, 116989. [Google Scholar] [CrossRef]
- Hadad, S.; Hamrahjoo, M.; Dehghani, E.; Salami-Kalajahi, M.; Eliseeva, S.N.; Moghaddam, A.R.; Roghani-Mamaqani, H. Starch acetate and carboxymethyl starch as green and sustainable polymer electrolytes for high performance lithium ion batteries. Appl. Energy 2022, 324, 119767. [Google Scholar] [CrossRef]
- Caroline, D.; Rekha, M. Exploring the efficacy of ethylene glycol dimethacrylate crosslinked cationised pullulan for gene delivery in cancer cells. J. Drug Deliv. Sci. Technol. 2022, 68, 103067. [Google Scholar] [CrossRef]
- Rattanawongwiboon, T.; Hemvichian, K.; Lertsarawut, P.; Suwanmala, P. Chitosan-poly (ethylene glycol) diacrylate beads prepared by radiation-induced crosslinking and their promising applications derived from encapsulation of essential oils. Radiat. Phys. Chem. 2020, 170, 108656. [Google Scholar] [CrossRef]
- Cheng, S.; Liu, X.; Zhen, J.; Lei, Z. Preparation of superabsorbent resin with fast water absorption rate based on hydroxymethyl cellulose sodium and its application. Carbohydr. Polym. 2019, 225, 115214. [Google Scholar] [CrossRef] [PubMed]
- Zain, G.; Nada, A.A.; El-Sheikh, M.A.; Attaby, F.A.; Waly, A.I. Superabsorbent hydrogel based on sulfonated-starch for improving water and saline absorbency. Int. J. Biol. Macromol. 2018, 115, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Gadhave, R.V.; Mahanwar, P.A.; Gadekar, P.T. Effect of glutaraldehyde on thermal and mechanical properties of starch and polyvinyl alcohol blends. Des. Monomers Polym. 2019, 22, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Lv, S.; Wei, D.; Zhang, S.; Zhang, S.; Li, Z.; Liu, L.; He, T. Structure and properties of starch/chitosan food packaging film containing ultra-low dosage GO with barrier and antibacterial. Food Hydrocoll. 2023, 137, 108329. [Google Scholar] [CrossRef]
- Radhakrishnan, J.; Subramanian, A.; Krishnan, U.M.; Sethuraman, S. Injectable and 3D bioprinted polysaccharide hydrogels: From cartilage to osteochondral tissue engineering. Biomacromolecules 2017, 18, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fan, M.; Tan, H.; Ren, B.; Yuan, G.; Jia, Y.; Li, J.; Xiong, D.; Xing, X.; Niu, X. Magnetic and self-healing chitosan-alginate hydrogel encapsulated gelatin microspheres via covalent cross-linking for drug delivery. Mater. Sci. Eng. C 2019, 101, 619–629. [Google Scholar] [CrossRef]
- Hozumi, T.; Kageyama, T.; Ohta, S.; Fukuda, J.; Ito, T. Injectable hydrogel with slow degradability composed of gelatin and hyaluronic acid cross-linked by Schiff’s base formation. Biomacromolecules 2018, 19, 288–297. [Google Scholar] [CrossRef]
- Li, Z.; Shao, L.; Hu, W.; Zheng, T.; Lu, L.; Cao, Y.; Chen, Y. Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydr. Polym. 2018, 191, 183–190. [Google Scholar] [CrossRef]
- Yin, H.; Song, P.; Chen, X.; Huang, Q.; Huang, H. A self-healing hydrogel based on oxidized microcrystalline cellulose and carboxymethyl chitosan as wound dressing material. Int. J. Biol. Macromol. 2022, 221, 1606–1617. [Google Scholar] [CrossRef]
- Tavsanli, B.; Okay, O. Preparation and fracture process of high strength hyaluronic acid hydrogels cross-linked by ethylene glycol diglycidyl ether. React. Funct. Polym. 2016, 109, 42–51. [Google Scholar] [CrossRef]
- Dou, J.; Gan, D.; Huang, Q.; Liu, M.; Chen, J.; Deng, F.; Zhu, X.; Wen, Y.; Zhang, X.; Wei, Y. Functionalization of carbon nanotubes with chitosan based on MALI multicomponent reaction for Cu2+ removal. Int. J. Biol. Macromol. 2019, 136, 476–485. [Google Scholar] [CrossRef] [PubMed]
- Linh, N.T.B.; Abueva, C.D.; Lee, B.-T. Enzymatic in situ formed hydrogel from gelatin–tyramine and chitosan-4-hydroxylphenyl acetamide for the co-delivery of human adipose-derived stem cells and platelet-derived growth factor towards vascularization. Biomed. Mater. 2017, 12, 015026. [Google Scholar] [CrossRef] [PubMed]
- Klinpituksa, P.; Kosaiyakanon, P. Superabsorbent polymer based on sodium carboxymethyl cellulose grafted polyacrylic acid by inverse suspension polymerization. Int. J. Polym. Sci. 2017, 2017, 3476921. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Sha, Z.; Huang, Y.; Bai, Y.; Xi, N.; Zhang, Y. Glow discharge electrolysis plasma induced synthesis of cellulose-based ionic hydrogels and their multiple response behaviors. RSC Adv. 2015, 5, 6505–6511. [Google Scholar] [CrossRef]
- Fekete, T.; Borsa, J.; Takács, E.; Wojnárovits, L. Synthesis of carboxymethylcellulose/starch superabsorbent hydrogels by gamma-irradiation. Chem. Cent. J. 2017, 11, 46. [Google Scholar] [CrossRef] [Green Version]
- Senna, M.M.; Mostafa, A.E.-K.B.; Mahdy, S.R.; El-Naggar, A.W.M. Characterization of blend hydrogels based on plasticized starch/cellulose acetate/carboxymethyl cellulose synthesized by electron beam irradiation. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2016, 386, 22–29. [Google Scholar] [CrossRef]
- Wang, Y.; Xiong, Y.; Wang, J.; Zhang, X. Ultrasonic-assisted fabrication of montmorillonite-lignin hybrid hydrogel: Highly efficient swelling behaviors and super-sorbent for dye removal from wastewater. Colloids Surf. A Physicochem. Eng. Asp. 2017, 520, 903–913. [Google Scholar] [CrossRef]
- Hong, T.T.; Okabe, H.; Hidaka, Y.; Hara, K. Radiation synthesis and characterization of super-absorbing hydrogel from natural polymers and vinyl monomer. Environ. Pollut. 2018, 242, 1458–1466. [Google Scholar] [CrossRef]
- Tran, T.H.; Okabe, H.; Hidaka, Y.; Hara, K. Removal of metal ions from aqueous solutions using carboxymethyl cellulose/sodium styrene sulfonate gels prepared by radiation grafting. Carbohydr. Polym. 2017, 157, 335–343. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.; Qiu, D.; Li, Y.; Yao, L.; Duan, J. Ultrasonic assisted microwave synthesis of poly (Chitosan-co-gelatin)/polyvinyl pyrrolidone IPN hydrogel. Ultrason. Sonochem. 2018, 40, 714–719. [Google Scholar] [CrossRef]
- Lu, M.; Liu, Y.; Huang, Y.-C.; Huang, C.-J.; Tsai, W.-B. Fabrication of photo-crosslinkable glycol chitosan hydrogel as a tissue adhesive. Carbohydr. Polym. 2018, 181, 668–674. [Google Scholar] [CrossRef] [PubMed]
- Palem, R.R.; Rao, K.M.; Shimoga, G.; Saratale, R.G.; Shinde, S.K.; Ghodake, G.S.; Lee, S.-H. Physicochemical characterization, drug release, and biocompatibility evaluation of carboxymethyl cellulose-based hydrogels reinforced with sepiolite nanoclay. Int. J. Biol. Macromol. 2021, 178, 464–476. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Li, M.-C.; Liu, C.; Chen, W.; Yu, G.; Zhang, D.; Li, Z.; Mei, C. A flexible Zn-ion capacitor based on wood derived porous carbon and polyacrylamide/cellulose nanofiber hydrogel. Ind. Crops Prod. 2023, 193, 116216. [Google Scholar] [CrossRef]
- Shahzamani, M.; Taheri, S.; Roghanizad, A.; Naseri, N.; Dinari, M. Preparation and characterization of hydrogel nanocomposite based on nanocellulose and acrylic acid in the presence of urea. Int. J. Biol. Macromol. 2020, 147, 187–193. [Google Scholar] [CrossRef]
- Geng, H. Preparation and characterization of cellulose/N, N′-methylene bisacrylamide/graphene oxide hybrid hydrogels and aerogels. Carbohydr. Polym. 2018, 196, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Palantöken, S.; Bethke, K.; Zivanovic, V.; Kalinka, G.; Kneipp, J.; Rademann, K. Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties. J. Appl. Polym. Sci. 2020, 137, 48380. [Google Scholar] [CrossRef] [Green Version]
- Hossieni-Aghdam, S.J.; Foroughi-Nia, B.; Zare-Akbari, Z.; Mojarad-Jabali, S.; Farhadnejad, H. Facile fabrication and characterization of a novel oral pH-sensitive drug delivery system based on CMC hydrogel and HNT-AT nanohybrid. Int. J. Biol. Macromol. 2018, 107, 2436–2449. [Google Scholar] [CrossRef] [PubMed]
- Zare-Akbari, Z.; Farhadnejad, H.; Furughi-Nia, B.; Abedin, S.; Yadollahi, M.; Khorsand-Ghayeni, M. PH-sensitive bionanocomposite hydrogel beads based on carboxymethyl cellulose/ZnO nanoparticle as drug carrier. Int. J. Biol. Macromol. 2016, 93, 1317–1327. [Google Scholar] [CrossRef]
- Feng, Z.; Odelius, K.; Hakkarainen, M. Tunable chitosan hydrogels for adsorption: Property control by biobased modifiers. Carbohydr. Polym. 2018, 196, 135–145. [Google Scholar] [CrossRef]
- Yu, P.; Wang, H.-Q.; Bao, R.-Y.; Liu, Z.; Yang, W.; Xie, B.-H.; Yang, M.-B.J. Self-assembled sponge-like chitosan/reduced graphene oxide/montmorillonite composite hydrogels without cross-linking of chitosan for effective Cr (VI) sorption. ACS Sustain. Chem. Eng. 2017, 5, 1557–1566. [Google Scholar] [CrossRef]
- Yu, R.; Shi, Y.; Yang, D.; Liu, Y.; Qu, J.; Yu, Z.-Z. Graphene oxide/chitosan aerogel microspheres with honeycomb-cobweb and radially oriented microchannel structures for broad-spectrum and rapid adsorption of water contaminants. ACS Appl. Mater. Interfaces 2017, 9, 21809–21819. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Simeone, A.; Odelius, K.; Hakkarainen, M. Biobased nanographene oxide creates stronger chitosan hydrogels with improved adsorption capacity for trace pharmaceuticals. ACS Sustain. Chem. Eng. 2017, 5, 11525–11535. [Google Scholar] [CrossRef]
- Su, C.; Yang, H.; Zhao, H.; Liu, Y.; Chen, R. Recyclable and biodegradable superhydrophobic and superoleophilic chitosan sponge for the effective removal of oily pollutants from water. Chem. Eng. J. 2017, 330, 423–432. [Google Scholar] [CrossRef]
- Vilela, P.B.; Dalalibera, A.; Duminelli, E.C.; Becegato, V.A.; Paulino, A.T. Adsorption and removal of chromium (VI) contained in aqueous solutions using a chitosan-based hydrogel. Environ. Sci. Pollut. Res. 2019, 26, 28481–28489. [Google Scholar] [CrossRef] [PubMed]
- Vilela, P.B.; Matias, C.A.; Dalalibera, A.; Becegato, V.A.; Paulino, A.T. Polyacrylic acid-based and chitosan-based hydrogels for adsorption of cadmium: Equilibrium isotherm, kinetic and thermodynamic studies. J. Environ. Chem. Eng. 2019, 7, 103327. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Wang, G.; Hao, C.; Li, X.; Li, T. Adsorption performance of a polysaccharide composite hydrogel based on crosslinked glucan/chitosan for heavy metal ions. Compos. B Eng. 2019, 169, 45–54. [Google Scholar] [CrossRef]
- Pauletto, P.; Gonçalves, J.; Pinto, L.; Dotto, G.; Salau, N. Single and competitive dye adsorption onto chitosan–based hybrid hydrogels using artificial neural network modeling. J. Colloid Interface Sci. 2020, 560, 722–729. [Google Scholar] [CrossRef]
- Vieira, T.; Artifon, S.E.; Cesco, C.T.; Vilela, P.B.; Becegato, V.A.; Paulino, A.T. Chitosan-based hydrogels for the sorption of metals and dyes in water: Isothermal, kinetic, and thermodynamic evaluations. Colloid Polym. Sci. 2021, 299, 649–662. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Z.; Peng, Y.; Feng, L.; Li, X.; Zhao, C.; Sarfaraz, K. Novel cationic polymer modified magnetic chitosan beads for efficient adsorption of heavy metals and dyes over a wide pH range. Int. J. Biol. Macromol. 2020, 156, 289–301. [Google Scholar] [CrossRef]
- Sabaa, M.W.; Elzanaty, A.M.; Abdel-Gawad, O.F.; Arafa, E.G. Synthesis, characterization and antimicrobial activity of Schiff bases modified chitosan-graft-poly (acrylonitrile). Int. J. Biol. Macromol. 2018, 109, 1280–1291. [Google Scholar] [CrossRef]
- Bahramzadeh, E.; Yilmaz, E.; Adali, T. Chitosan-graft-poly (N-hydroxy ethyl acrylamide) copolymers: Synthesis, characterization and preliminary blood compatibility in vitro. Int. J. Biol. Macromol. 2019, 123, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Wang, G.; Xing, R.; Chen, X.; Liu, S.; Qin, Y.; Li, K.; Wang, X.; Li, R.; Li, P. Synthesis of superabsorbent polymers based on chitosan derivative graft acrylic acid-co-acrylamide and its property testing. Int. J. Biol. Macromol. 2019, 132, 575–584. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Wang, G.; Li, P.; Xing, R.; Liu, S.; Qin, Y.; Yu, H.; Chen, X.; Li, K. Synthesis of chitosan derivative graft acrylic acid superabsorbent polymers and its application as water retaining agent. Int. J. Biol. Macromol. 2018, 115, 754–761. [Google Scholar] [CrossRef]
- Jing, H.; Huang, X.; Du, X.; Mo, L.; Ma, C.; Wang, H. Facile synthesis of pH-responsive sodium alginate/carboxymethyl chitosan hydrogel beads promoted by hydrogen bond. Carbohydr. Polym. 2022, 278, 118993. [Google Scholar] [CrossRef]
- Ferreira Tomaz, A.; Sobral de Carvalho, S.M.; Cardoso Barbosa, R.; Silva, S.M.L.; Sabino Gutierrez, M.A.; B. de Lima, A.G.; L. Fook, M.V. Ionically crosslinked chitosan membranes used as drug carriers for cancer therapy application. Materials 2018, 11, 2051. [Google Scholar] [CrossRef] [Green Version]
- Papagiannopoulos, A.; Nikolakis, S.-P.; Pamvouxoglou, A.; Koutsopoulou, E. Physicochemical properties of electrostatically crosslinked carrageenan/chitosan hydrogels and carrageenan/chitosan/Laponite nanocomposite hydrogels. Int. J. Biol. Macromol. 2023, 225, 565–573. [Google Scholar] [CrossRef]
- Sang, Z.; Qian, J.; Han, J.; Deng, X.; Shen, J.; Li, G.; Xie, Y. Comparison of three water-soluble polyphosphate tripolyphosphate, phytic acid, and sodium hexametaphosphate as crosslinking agents in chitosan nanoparticle formulation. Carbohydr. Polym. 2020, 230, 115577. [Google Scholar] [CrossRef]
- Yang, J.; Liang, G.; Xiang, T.; Situ, W. Effect of crosslinking processing on the chemical structure and biocompatibility of a chitosan-based hydrogel. Food Chem. 2021, 354, 129476. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Kartik, R.; Sangeetha, E.; Dhamodharan, R. Super water absorbing polymeric gel from chitosan, citric acid and urea: Synthesis and mechanism of water absorption. Carbohydr. Polym. 2018, 191, 152–160. [Google Scholar] [CrossRef]
- Dong, G.; Mu, Z.; Liu, D.; Shang, L.; Zhang, W.; Gao, Y.; Zhao, M.; Zhang, X.; Chen, S.; Wei, M. Starch phosphate carbamate hydrogel based slow-release urea formulation with good water retentivity. Int. J. Biol. Macromol. 2021, 190, 189–197. [Google Scholar] [CrossRef]
- Alharbi, K.; Ghoneim, A.; Ebid, A.; El-Hamshary, H.; El-Newehy, M.H. Controlled release of phosphorous fertilizer bound to carboxymethyl starch-g-polyacrylamide and maintaining a hydration level for the plant. Int. J. Biol. Macromol. 2018, 116, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Yao, M.; Sun, H.; Guo, Z.; Sun, X.; Yu, Q.; Wu, X.; Yu, C.; Zhang, H.; Yao, F.; Li, J. A starch-based zwitterionic hydrogel coating for blood-contacting devices with durability and bio-functionality. Chem. Eng. J. 2021, 421, 129702. [Google Scholar] [CrossRef]
- Guo, Y.; Qiao, D.; Zhao, S.; Zhang, B.; Xie, F. Starch-based materials encapsulating food ingredients: Recent advances in fabrication methods and applications. Carbohydr. Polym. 2021, 270, 118358. [Google Scholar] [CrossRef]
- Mohamed, A.K.; Mahmoud, M.E. Nanoscale Pisum sativum pods biochar encapsulated starch hydrogel: A novel nanosorbent for efficient chromium (VI) ions and naproxen drug removal. Bioresour. Technol. 2020, 308, 123263. [Google Scholar] [CrossRef]
- Ghobashy, M.M.; Abd El-Wahab, H.; Ismail, M.A.; Naser, A.; Abdelhai, F.; El-Damhougy, B.K.; Nady, N.; Meganid, A.S.; Alkhursani, S.A. Characterization of Starch-based three components of gamma-ray cross-linked hydrogels to be used as a soil conditioner. Mater. Sci. Eng. B 2020, 260, 114645. [Google Scholar] [CrossRef]
- Sharmin, E.; Kafyah, M.T.; Alzaydi, A.A.; Fatani, A.A.; Hazazzi, F.A.; Babgi, S.K.; Alqarhi, N.M.; Sindi, A.A.H.; Akram, D.; Alam, M. Synthesis and characterization of polyvinyl alcohol/corn starch/linseed polyol-based hydrogel loaded with biosynthesized silver nanoparticles. Int. J. Biol. Macromol. 2020, 163, 2236–2247. [Google Scholar] [CrossRef]
- Ounkaew, A.; Kasemsiri, P.; Jetsrisuparb, K.; Uyama, H.; Hsu, Y.-I.; Boonmars, T.; Artchayasawat, A.; Knijnenburg, J.T.; Chindaprasirt, P. Synthesis of nanocomposite hydrogel based carboxymethyl starch/polyvinyl alcohol/nanosilver for biomedical materials. Carbohydr. Polym. 2020, 248, 116767. [Google Scholar] [CrossRef]
- Chaudhuri, S.D.; Mandal, A.; Dey, A.; Chakrabarty, D. Tuning the swelling and rheological attributes of bentonite clay modified starch grafted polyacrylic acid based hydrogel. Appl. Clay Sci. 2020, 185, 105405. [Google Scholar] [CrossRef]
- Doosti, M.; Dorraji, M.S.S.; Mousavi, S.N.; Rasoulifard, M.H.; Hosseini, S.H. Enhancing quercetin bioavailability by super paramagnetic starch-based hydrogel grafted with fumaric acid: An in vitro and in vivo study. Colloids Surf. B Biointerfaces 2019, 183, 110487. [Google Scholar] [CrossRef]
- Zhao, C.; Zhang, M.; Liu, Z.; Guo, Y.; Zhang, Q. Salt-tolerant superabsorbent polymer with high capacity of water-nutrient retention derived from sulfamic acid-modified starch. ACS Omega 2019, 4, 5923–5930. [Google Scholar] [CrossRef]
- Meng, Y.; Ye, L. Synthesis and swelling property of superabsorbent starch grafted with acrylic acid/2-acrylamido-2-methyl-1-propanesulfonic acid. J. Sci. Food Agric. 2017, 97, 3831–3840. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, S.; Roh, H.-g.; Oh, S.; Kim, S.; Kim, M.; Kim, D.; Park, J. Preparation and characterization of superabsorbent polymers based on starch aldehydes and carboxymethyl cellulose. Polymers 2018, 10, 605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Qiao, X.; Han, W.; Jiang, T.; Liu, F.; Zhao, X. Alginate-chitosan oligosaccharide-ZnO composite hydrogel for accelerating wound healing. Carbohydr. Polym. 2021, 266, 118100. [Google Scholar] [CrossRef]
- Marciano, J.S.; Ferreira, R.R.; de Souza, A.G.; Barbosa, R.F.; de Moura Junior, A.J.; Rosa, D.S. Biodegradable gelatin composite hydrogels filled with cellulose for chromium (VI) adsorption from contaminated water. Int. J. Biol. Macromol. 2021, 181, 112–124. [Google Scholar] [CrossRef]
- Yang, S.-C.; Liao, Y.; Karthikeyan, K.; Pan, X. Mesoporous cellulose-chitosan composite hydrogel fabricated via the co-dissolution-regeneration process as biosorbent of heavy metals. Environ. Pollut. 2021, 286, 117324. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Z.; Li, Y.; Ding, X.; Li, D.; Shen, C.; Xu, F.J. Dual-crosslinked amorphous polysaccharide hydrogels based on chitosan/alginate for wound healing applications. Macromol. Rapid Commun. 2018, 39, 1800069. [Google Scholar] [CrossRef]
- Mittal, H.; Al Alili, A.; Morajkar, P.P.; Alhassan, S.M. GO crosslinked hydrogel nanocomposites of chitosan/carboxymethyl cellulose—A versatile adsorbent for the treatment of dyes contaminated wastewater. Int. J. Biol. Macromol. 2021, 167, 1248–1261. [Google Scholar] [CrossRef] [PubMed]
- Baghbadorani, N.B.; Behzad, T.; Etesami, N.; Heidarian, P. Removal of Cu2+ ions by cellulose nanofibers-assisted starch-g-poly (acrylic acid) superadsorbent hydrogels. Compos. B Eng. 2019, 176, 107084. [Google Scholar] [CrossRef]
- Supramaniam, J.; Adnan, R.; Kaus, N.H.M.; Bushra, R. Magnetic nanocellulose alginate hydrogel beads as potential drug delivery system. Int. J. Biol. Macromol. 2018, 118, 640–648. [Google Scholar] [CrossRef]
- Ruan, C.-Q.; Strømme, M.; Lindh, J. Preparation of porous 2, 3-dialdehyde cellulose beads crosslinked with chitosan and their application in adsorption of Congo red dye. Carbohydr. Polym. 2018, 181, 200–207. [Google Scholar] [CrossRef]
- Kim, U.-J.; Kim, H.J.; Choi, J.W.; Kimura, S.; Wada, M. Cellulose-chitosan beads crosslinked by dialdehyde cellulose. Cellulose 2017, 24, 5517–5528. [Google Scholar] [CrossRef]
- Mohamadhoseini, M.; Mohamadnia, Z. Alginate-based self-healing hydrogels assembled by dual cross-linking strategy: Fabrication and evaluation of mechanical properties. Int. J. Biol. Macromol. 2021, 191, 139–151. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Lei, L.; Song, Q.; Li, X. Calcium ion cross-linking alginate/dexamethasone sodium phosphate hybrid hydrogel for extended drug release. Colloids Surf. B Biointerfaces 2019, 175, 569–575. [Google Scholar] [CrossRef]
- Cargnin, M.A.; Gasparin, B.C.; dos Santos Rosa, D.; Paulino, A.T. Performance of lactase encapsulated in pectin-based hydrogels during lactose hydrolysis reactions. LWT 2021, 150, 111863. [Google Scholar] [CrossRef]
- Hu, X.; Yan, L.; Wang, Y.; Xu, M. Microwave-assisted synthesis of nutgall tannic acid–based salecan polysaccharide hydrogel for tunable release of β-lactoglobulin. Int. J. Biol. Macromol. 2020, 161, 1431–1439. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Yan, L.; Wang, Y.; Xu, M. Self-assembly of binary oppositely charged polysaccharides into polyelectrolyte complex hydrogel film for facile and efficient Pb2+ removal. Chem. Eng. J. 2020, 388, 124189. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Gan, J.; Geng, D.; Bian, X.; Cheng, Y.; Tang, N. A pH-sensitive hydrogel based on carboxymethylated konjac glucomannan crosslinked by sodium trimetaphosphate: Synthesis, characterization, swelling behavior and controlled drug release. Int. J. Biol. Macromol. 2023, 123392. [Google Scholar] [CrossRef]
- Resmi, R.; Parvathy, J.; John, A.; Joseph, R. Injectable self-crosslinking hydrogels for meniscal repair: A study with oxidized alginate and gelatin. Carbohydr. Polym. 2020, 234, 115902. [Google Scholar] [CrossRef]
- Thombare, N.; Mishra, S.; Siddiqui, M.; Jha, U.; Singh, D.; Mahajan, G.R. Design and development of guar gum based novel, superabsorbent and moisture retaining hydrogels for agricultural applications. Carbohydr. Polym. 2018, 185, 169–178. [Google Scholar] [CrossRef]
- Thombare, N.; Jha, U.; Mishra, S.; Siddiqui, M. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydr. Polym. 2017, 168, 274–281. [Google Scholar] [CrossRef]
- Liu, J.; Fang, Q.; Lin, H.; Yu, X.; Zheng, H.; Wan, Y. Alginate-poloxamer/silk fibroin hydrogels with covalently and physically cross-linked networks for cartilage tissue engineering. Carbohydr. Polym. 2020, 247, 116593. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; Zhang, H.; Song, T.; Liu, X.; Gao, Y.; Zhou, J.; Li, Y. Sustainable dual release of antibiotic and growth factor from pH-responsive uniform alginate composite microparticles to enhance wound healing. ACS Appl. Mater. Interfaces 2019, 11, 22730–22744. [Google Scholar] [CrossRef]
- Tao, G.; Cai, R.; Wang, Y.; Zuo, H.; He, H. Fabrication of antibacterial sericin based hydrogel as an injectable and mouldable wound dressing. Mater. Sci. Eng. C 2021, 119, 111597. [Google Scholar] [CrossRef] [PubMed]
- Singha, N.R.; Karmakar, M.; Mahapatra, M.; Mondal, H.; Dutta, A.; Roy, C.; Chattopadhyay, P.K. Systematic synthesis of pectin-g-(sodium acrylate-co-N-isopropylacrylamide) interpenetrating polymer network for superadsorption of dyes/M (II): Determination of physicochemical changes in loaded hydrogels. Polym. Chem. 2017, 8, 3211–3237. [Google Scholar] [CrossRef]
- Katayama, T.; Nakauma, M.; Todoriki, S.; Phillips, G.O.; Tada, M. Radiation-induced polymerization of gum arabic (Acacia senegal) in aqueous solution. Food Hydrocoll. 2006, 20, 983–989. [Google Scholar] [CrossRef]
- Pulat, M.; Akalın, G.O.; Karahan, N.D. Lipase release through semi-interpenetrating polymer network hydrogels based on chitosan, acrylamide, and citraconic acid. Artif. Cells Nanomed. Biotechnol. 2014, 42, 121–127. [Google Scholar] [CrossRef]
- Plungpongpan, K.; Koyanukkul, K.; Kaewvilai, A.; Nootsuwan, N.; Kewsuwan, P.; Laobuthee, A. Preparation of PVP/MHEC blended hydrogels via gamma irradiation and their calcium ion uptaking and releasing ability. Energy Procedia 2013, 34, 775–781. [Google Scholar] [CrossRef] [Green Version]
- Elbarbary, A.M.; Abd El-Rehim, H.A.; El-Sawy, N.M.; Hegazy, E.-S.A.; Soliman, E.-S.A. Radiation induced crosslinking of polyacrylamide incorporated low molecular weights natural polymers for possible use in the agricultural applications. Carbohydr. Polym. 2017, 176, 19–28. [Google Scholar] [CrossRef]
- Akalin, G.O.; Pulat, M. Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. J. Nanomater. 2018, 2018, 9676949. [Google Scholar] [CrossRef]
- Chalmers, J.M.; Griffiths, P.R. Handbook of Vibrational Spectroscopy; Wiley: Hoboken, NJ, USA, 2002; Volume 4. [Google Scholar]
- Li, X.; Li, Q.; Xu, X.; Su, Y.; Yue, Q.; Gao, B. Characterization, swelling and slow-release properties of a new controlled release fertilizer based on wheat straw cellulose hydrogel. J. Taiwan Inst. Chem. Eng. 2016, 60, 564–572. [Google Scholar] [CrossRef]
- Li, W.; Wang, S.; Li, Y.; Ma, C.; Huang, Z.; Wang, C.; Li, J.; Chen, Z.; Liu, S. One-step hydrothermal synthesis of fluorescent nanocrystalline cellulose/carbon dot hydrogels. Carbohydr. Polym. 2017, 175, 7–17. [Google Scholar] [CrossRef] [PubMed]
- Karvinen, J.; Kellomäki, M. Characterization of self-healing hydrogels for biomedical applications. Eur. Polym. J. 2022, 181, 111641. [Google Scholar] [CrossRef]
- Nie, G.; Zang, Y.; Yue, W.; Wang, M.; Baride, A.; Sigdel, A.; Janaswamy, S. Cellulose-based hydrogel beads: Preparation and characterization. Carbohydr. Polym. Technol. Appl. 2021, 2, 100074. [Google Scholar] [CrossRef]
- Rihawy, M.; Alzier, A.; Allaf, A. Investigation of chloramphenicol release from PVA/CMC/HEA hydrogel using ion beam analysis, UV and FTIR techniques. Appl. Radiat. Isot. 2019, 153, 108806. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, F.; Liu, L.; Yao, J. Synthesis and urea sustained-release behavior of an eco-friendly superabsorbent based on flax yarn wastes. Carbohydr. Polym. 2013, 91, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Raman, C.V. A new radiation. Indian J. Phys. 1928, 2, 387–398. [Google Scholar] [CrossRef]
- Liu, J.; Li, Q.; Su, Y.; Yue, Q.; Gao, B. Characterization and swelling–deswelling properties of wheat straw cellulose based semi-IPNs hydrogel. Carbohydr. Polym. 2014, 107, 232–240. [Google Scholar] [CrossRef]
- Peers, S.; Alcouffe, P.; Montembault, A.; Ladavière, C. Embedment of liposomes into chitosan physical hydrogel for the delayed release of antibiotics or anaesthetics, and its first ESEM characterization. Carbohydr. Polym. 2020, 229, 115532. [Google Scholar] [CrossRef]
- Aijaz, M.O.; Haider, S.; Al-Mubaddel, F.S.; Khan, R.; Haider, A.; Alghyamah, A.A.; Almasry, W.A.; Javed Khan, M.S.; Javid, M.; Ur Rehman, W. Thermal, swelling and stability kinetics of chitosan based semi-interpenetrating network hydrogels. Fibers Polym. 2017, 18, 611–618. [Google Scholar] [CrossRef]
- Capanema, N.S.; Mansur, A.A.; de Jesus, A.C.; Carvalho, S.M.; de Oliveira, L.C.; Mansur, H.S. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int. J. Biol. Macromol. 2018, 106, 1218–1234. [Google Scholar] [CrossRef]
- Zeng, M.; Feng, Z.; Huang, Y.; Liu, J.; Ren, J.; Xu, Q.; Fan, L. Chemical structure and remarkably enhanced mechanical properties of chitosan-graft-poly (acrylic acid)/polyacrylamide double-network hydrogels. Polym. Bull. 2017, 74, 55–74. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons: Hoboken, NJ, USA, 1980. [Google Scholar]
- Mulijani, S.; Irawadi, T.T.; Katresna, T.C. Composite copolymer acrylamide/bacterial cellulose hydrogel Synthesis and characterization by the application of gamma irradiation. Adv. Mater. Res. 2014, 974, 91–96. [Google Scholar] [CrossRef]
- Clark, A.H. Structural and mechanical properties of biopolymer gels. In Food Polymers, Gels and Colloids; Elsevier: Amsterdam, The Netherlands, 1991; pp. 322–338. [Google Scholar]
- Ross-Murphy, S.; Shatwell, K. Polysaccharide strong and weak gels. Biorheology 1993, 30, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Barbucci, R.; Rappuoli, R.; Borzacchiello, A.; Ambrosio, L. Synthesis, chemical and rheological characterization of new hyaluronic acid-based hydrogels. J. Biomater. Sci. Polym. Ed. 2000, 11, 383–399. [Google Scholar] [CrossRef]
- Xuejun, X.; Netti, P.; Ambrosio, L.; Nicolais, L.; Sannino, A. Preparation and characterization of a hydrogel from low-molecular weight hyaluronic acid. J. Bioact. Compat. Polym. 2004, 19, 5–15. [Google Scholar] [CrossRef]
- Leja, K.; Lewandowicz, G. Polymer biodegradation and biodegradable polymers—a review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Jungsinyatam, P.; Suwanakood, P.; Saengsuwan, S. Multicomponent biodegradable hydrogels based on natural biopolymers as environmentally coating membrane for slow-release fertilizers: Effect of crosslinker type. Sci. Total Environ. 2022, 843, 157050. [Google Scholar] [CrossRef]
- Kuang, J.; Yuk, K.Y.; Huh, K.M. Polysaccharide-based superporous hydrogels with fast swelling and superabsorbent properties. Carbohydr. Polym. 2011, 83, 284–290. [Google Scholar] [CrossRef]
- Ahn, J.; Ryu, J.; Song, G.; Whang, M.; Kim, J. Network structure and enzymatic degradation of chitosan hydrogels determined by crosslinking methods. Carbohydr. Polym. 2019, 217, 160–167. [Google Scholar] [CrossRef]
- Kono, H.; Fujita, S. Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1, 2, 3, 4-butanetetracarboxylic dianhydride. Carbohydr. Polym. 2012, 87, 2582–2588. [Google Scholar] [CrossRef]
- Wach, R.A.; Mitomo, H.; Yoshii, F.; Kume, T. Hydrogel of biodegradable cellulose derivatives. II. Effect of some factors on radiation-induced crosslinking of CMC. J. Appl. Polym. Sci. 2001, 81, 3030–3037. [Google Scholar] [CrossRef]
- De, S.K.; Aluru, N.; Johnson, B.; Crone, W.; Beebe, D.J.; Moore, J. Equilibrium swelling and kinetics of pH-responsive hydrogels: Models, experiments, and simulations. J. Microelectromech. Syst. 2002, 11, 544–555. [Google Scholar] [CrossRef] [Green Version]
- Nagasawa, N.; Yagi, T.; Kume, T.; Yoshii, F. Radiation crosslinking of carboxymethyl starch. Carbohydr. Polym. 2004, 58, 109–113. [Google Scholar] [CrossRef]
- Alam, M.N.; Christopher, L.P. Natural cellulose-chitosan cross-linked superabsorbent hydrogels with superior swelling properties. ACS Sustain. Chem. Eng. 2018, 6, 8736–8742. [Google Scholar] [CrossRef]
- Xiao, M.; Hu, J.C.; Zhang, L.M. Synthesis and Swelling Behavior of Biodegradable Cellulose-Based Hydrogels. Adv. Mater. Res. 2014, 1033, 352–356. [Google Scholar] [CrossRef]
- Alam, M.N.; Islam, M.S.; Christopher, L.P. Sustainable production of cellulose-based hydrogels with superb absorbing potential in physiological saline. ACS Omega 2019, 4, 9419–9426. [Google Scholar] [CrossRef] [PubMed]
- Caykara, T.; Şengül, G.; Birlik, G. Preparation and Swelling Properties of Temperature-Sensitive Semi-Interpenetrating Polymer Networks Composed of Poly [(N-tert-butylacrylamide)-co-acrylamide] and Hydroxypropyl Cellulose. Macromol. Mater. Eng. 2006, 291, 1044–1051. [Google Scholar] [CrossRef]
- Akar, E.; Altınışık, A.; Seki, Y. Preparation of pH-and ionic-strength responsive biodegradable fumaric acid crosslinked carboxymethyl cellulose. Carbohydr. Polym. 2012, 90, 1634–1641. [Google Scholar] [CrossRef]
- Motasadizadeh, H.; Tavakoli, M.; Damoogh, S.; Mottaghitalab, F.; Gholami, M.; Atyabi, F.; Farokhi, M.; Dinarvand, R. Dual drug delivery system of teicoplanin and phenamil based on pH-sensitive silk fibroin/sodium alginate hydrogel scaffold for treating chronic bone infection. Biomater. Adv. 2022, 139, 213032. [Google Scholar] [CrossRef]
- Gharekhani, H.; Olad, A.; Mirmohseni, A.; Bybordi, A. Superabsorbent hydrogel made of NaAlg-g-poly (AA-co-AAm) and rice husk ash: Synthesis, characterization, and swelling kinetic studies. Carbohydr. Polym. 2017, 168, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Mignon, A.; Trenson, G.; Van Vlierberghe, S.; Boon, N.; De Belie, N.J. A chitosan based pH-responsive hydrogel for encapsulation of bacteria for self-sealing concrete. Cem. Concr. Compos. 2018, 93, 309–322. [Google Scholar] [CrossRef]
- Mahdavinia, G.R.; Etemadi, H.; Soleymani, F. Magnetic/pH-responsive beads based on caboxymethyl chitosan and κ-carrageenan and controlled drug release. Carbohydr. Polym. 2015, 128, 112–121. [Google Scholar] [CrossRef] [PubMed]
- Spagnol, C.; Rodrigues, F.H.; Pereira, A.G.; Fajardo, A.R.; Rubira, A.F.; Muniz, E.C. Superabsorbent hydrogel nanocomposites based on starch-g-poly (sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose 2012, 19, 1225–1237. [Google Scholar] [CrossRef]
- Demitri, C.; Scalera, F.; Madaghiele, M.; Sannino, A.; Maffezzoli, A. Potential of cellulose-based superabsorbent hydrogels as water reservoir in agriculture. Int. J. Polym. Sci. 2013, 2013, 435073. [Google Scholar] [CrossRef] [Green Version]
- Mignon, A.; Devisscher, D.; Vermeulen, J.; Vagenende, M.; Martins, J.; Dubruel, P.; De Belie, N.; Van Vlierberghe, S. Characterization of methacrylated polysaccharides in combination with amine-based monomers for application in mortar. Carbohydr. Polym. 2017, 168, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Raafat, A.I.; Eid, M.; El-Arnaouty, M.B. Radiation synthesis of superabsorbent CMC based hydrogels for agriculture applications. Nucl. Instrum. Methods Phys. Res. B Beam Interact. Mater. At. 2012, 283, 71–76. [Google Scholar] [CrossRef]
- Essawy, H.A.; Ghazy, M.B.; Abd El-Hai, F.; Mohamed, M.F. Superabsorbent hydrogels via graft polymerization of acrylic acid from chitosan-cellulose hybrid and their potential in controlled release of soil nutrients. Int. J. Biol. Macromol. 2016, 89, 144–151. [Google Scholar] [CrossRef]
- Abobatta, W. Impact of hydrogel polymer in agricultural sector. Adv. Agric. Environ. Sci. 2018, 1, 59–64. [Google Scholar] [CrossRef]
- Lin, X.; Guo, L.; Shaghaleh, H.; Hamoud, Y.A.; Xu, X.; Liu, H. A TEMPO-oxidized cellulose nanofibers/MOFs hydrogel with temperature and pH responsiveness for fertilizers slow-release. Int. J. Biol. Macromol. 2021, 191, 483–491. [Google Scholar] [CrossRef]
- Supare, K.; Mahanwar, P.A. Starch-derived superabsorbent polymers in agriculture applications: An overview. Polym. Bull. 2022, 79, 5795–5824. [Google Scholar] [CrossRef]
- Songara, J.C.; Patel, J.N. Synthesis of guar gum-based hydrogel for sugarcane field solid conditioning. J. Indian Chem. Soc. 2021, 98, 100220. [Google Scholar] [CrossRef]
- Song, B.; Liang, H.; Sun, R.; Peng, P.; Jiang, Y.; She, D. Hydrogel synthesis based on lignin/sodium alginate and application in agriculture. Int. J. Biol. Macromol. 2020, 144, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Fidelia, N.; Chris, B. Environmentally friendly superabsorbent polymers for water conservation in agricultural lands. J. Soil Sci. Environ. Manag. 2011, 2, 206–211. [Google Scholar]
- Salmawi, K.M.E.; El-Naggar, A.A.; Ibrahim, S.M. Gamma irradiation synthesis of carboxymethyl cellulose/acrylic acid/clay superabsorbent hydrogel. Adv. Polym. Technol. 2018, 37, 515–521. [Google Scholar] [CrossRef]
- Song, J.; Zhao, H.; Zhao, G.; Xiang, Y.; Liu, Y. Novel semi-IPN nanocomposites with functions of both nutrient slow-release and water retention. 1. Microscopic structure, water absorbency, and degradation performance. J. Agric. Food Chem. 2019, 67, 7587–7597. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chen, Y.-H. Thermo and pH-responsive methylcellulose and hydroxypropyl methylcellulose hydrogels containing K2SO4 for water retention and a controlled-release water-soluble fertilizer. Sci. Total Environ. 2019, 655, 958–967. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Ma, R.; Shao, J.; Huang, S.; Liu, Y.; Jiang, Y.; Cheng, D. Novel water-and fertilizer-management strategy: Nutrient-water carrier. J. Clean. Prod. 2021, 291, 125961. [Google Scholar] [CrossRef]
- Chiaregato, C.G.; França, D.; Messa, L.L.; dos Santos Pereira, T.; Faez, R. A review of advances over 20 years on polysaccharide-based polymers applied as enhanced efficiency fertilizers. Carbohydr. Polym. 2022, 279, 119014. [Google Scholar] [CrossRef]
- Qiao, D.; Liu, H.; Yu, L.; Bao, X.; Simon, G.P.; Petinakis, E.; Chen, L. Preparation and characterization of slow-release fertilizer encapsulated by starch-based superabsorbent polymer. Carbohydr. Polym. 2016, 147, 146–154. [Google Scholar] [CrossRef]
- Olad, A.; Zebhi, H.; Salari, D.; Mirmohseni, A.; Tabar, A.R. Slow-release NPK fertilizer encapsulated by carboxymethyl cellulose-based nanocomposite with the function of water retention in soil. Mater. Sci. Eng. C 2018, 90, 333–340. [Google Scholar] [CrossRef]
- Jyothi, A.N.; Pillai, S.S.; Aravind, M.; Salim, S.A.; Kuzhivilayil, S.J. Cassava starch-graft-poly (acrylonitrile)-coated urea fertilizer with sustained release and water retention properties. Adv. Polym. Technol. 2018, 37, 2687–2694. [Google Scholar] [CrossRef]
- Xiao, X.; Yu, L.; Xie, F.; Bao, X.; Liu, H.; Ji, Z.; Chen, L. One-step method to prepare starch-based superabsorbent polymer for slow release of fertilizer. Chem. Eng. J. 2017, 309, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Haydari, I.; Lissaneddine, A.; Aziz, K.; Ouazzani, N.; Mandi, L.; El Ghadraoui, A.; Aziz, F. Optimization of preparation conditions of a novel low-cost natural bio-sorbent from olive pomace and column adsorption processes on the removal of phenolic compounds from olive oil mill wastewater. Environ. Sci. Pollut. Res. 2022, 29, 80044–80061. [Google Scholar] [CrossRef]
- Pavithra, S.; Thandapani, G.; Sugashini, S.; Sudha, P.; Alkhamis, H.H.; Alrefaei, A.F.; Almutairi, M.H. Batch adsorption studies on surface tailored chitosan/orange peel hydrogel composite for the removal of Cr (VI) and Cu (II) ions from synthetic wastewater. Chemosphere 2021, 271, 129415. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.; Zhang, B.; Wang, J.; Xu, J.; Manzoor, K.; Ahmad, S.; Ikram, S. New method for hydrogel synthesis from diphenylcarbazide chitosan for selective copper removal. Int. J. Biol. Macromol. 2019, 136, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Yang, J.; Lin, L.; Peng, K.; Chen, Y.; Jin, S.; Yao, W. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 2020, 393, 124728. [Google Scholar] [CrossRef]
- Cao, J.; He, G.; Ning, X.; Wang, C.; Fan, L.; Yin, Y.; Cai, W. Hydroxypropyl chitosan-based dual self-healing hydrogel for adsorption of chromium ions. Int. J. Biol. Macromol. 2021, 174, 89–100. [Google Scholar] [CrossRef]
- Wang, N.; Ouyang, X.-K.; Yang, L.-Y.; Omer, A.M. Fabrication of a magnetic cellulose nanocrystal/metal–organic framework composite for removal of Pb (II) from water. ACS Sustain. Chem. Eng. 2017, 5, 10447–10458. [Google Scholar] [CrossRef]
- Ge, H.; Huang, H.; Xu, M.; Chen, Q. Cellulose/poly (ethylene imine) composites as efficient and reusable adsorbents for heavy metal ions. Cellulose 2016, 23, 2527–2537. [Google Scholar] [CrossRef]
- Kumar, R.; Sharma, R.K.; Singh, A.P. Removal of organic dyes and metal ions by cross-linked graft copolymers of cellulose obtained from the agricultural residue. J. Environ. Chem. Eng. 2018, 6, 6037–6048. [Google Scholar] [CrossRef]
- Tao, X.; Wang, S.; Li, Z.; Zhou, S. Green synthesis of network nanostructured calcium alginate hydrogel and its removal performance of Cd2+ and Cu2+ ions. Mater. Chem. Phys. 2021, 258, 123931. [Google Scholar] [CrossRef]
- Facchi, D.P.; Cazetta, A.L.; Canesin, E.A.; Almeida, V.C.; Bonafé, E.G.; Kipper, M.J.; Martins, A.F. New magnetic chitosan/alginate/Fe3O4@ SiO2 hydrogel composites applied for removal of Pb (II) ions from aqueous systems. Chem. Eng. J. 2018, 337, 595–608. [Google Scholar] [CrossRef]
- Dinari, M.; Shirani, M.A.; Maleki, M.H.; Tabatabaeian, R. Green cross-linked bionanocomposite of magnetic layered double hydroxide/guar gum polymer as an efficient adsorbent of Cr (VI) from aqueous solution. Carbohydr. Polym. 2020, 236, 116070. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.-d.; Li, Y.; Dai, T.-t.; He, X.-m.; Chen, M.-s.; Liu, C.-m.; Liang, R.-h.; Chen, J. Preparation of pectin/poly (m-phenylenediamine) microsphere and its application for Pb2+ removal. Carbohydr. Polym. 2021, 260, 117811. [Google Scholar] [CrossRef]
- Hu, X.; Yan, L.; Wang, Y.; Xu, M. Ice segregation induced self-assembly of salecan and grapheme oxide nanosheets into ion-imprinted aerogel with superior selectivity for cadmium (II) capture. Chem. Eng. J. 2021, 417, 128106. [Google Scholar] [CrossRef]
- Kulal, P.; Badalamoole, V. Hybrid nanocomposite of kappa-carrageenan and magnetite as adsorbent material for water purification. Int. J. Biol. Macromol. 2020, 165, 542–553. [Google Scholar] [CrossRef]
- Kang, S.; Qin, L.; Zhao, Y.; Wang, W.; Zhang, T.; Yang, L.; Rao, F.; Song, S. Enhanced removal of methyl orange on exfoliated montmorillonite/chitosan gel in presence of methylene blue. Chemosphere 2020, 238, 124693. [Google Scholar] [CrossRef]
- Mustafa, I. Methylene blue removal from water using H2SO4 crosslinked magnetic chitosan nanocomposite beads. Microchem. J. 2019, 144, 397–402. [Google Scholar]
- Zhao, J.; Zou, Z.; Ren, R.; Sui, X.; Mao, Z.; Xu, H.; Zhong, Y.; Zhang, L.; Wang, B. Chitosan adsorbent reinforced with citric acid modified β-cyclodextrin for highly efficient removal of dyes from reactive dyeing effluents. Eur. Polym. J. 2018, 108, 212–218. [Google Scholar] [CrossRef]
- Mahmoodi-Babolan, N.; Nematollahzadeh, A.; Heydari, A.; Merikhy, A. Bioinspired catecholamine/starch composites as superadsorbent for the environmental remediation. Int. J. Biol. Macromol. 2019, 125, 690–699. [Google Scholar] [CrossRef]
- de Azevedo, A.C.; Vaz, M.G.; Gomes, R.F.; Pereira, A.G.; Fajardo, A.R.; Rodrigues, F.H. Starch/rice husk ash based superabsorbent composite: High methylene blue removal efficiency. Iran. Polym. J. 2017, 26, 93–105. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, Y.; Bai, H.; Zhang, T.; Ibarra-Galvan, V.; Song, S. Methylene blue removal from water using the hydrogel beads of poly (vinyl alcohol)-sodium alginate-chitosan-montmorillonite. Carbohydr. Polym. 2018, 198, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Mittal, H.; Al Alili, A.; Morajkar, P.P.; Alhassan, S.M. Graphene oxide crosslinked hydrogel nanocomposites of xanthan gum for the adsorption of crystal violet dye. J. Mol. Liq. 2021, 323, 115034. [Google Scholar] [CrossRef]
- Duman, O.; Polat, T.G.; Diker, C.Ö.; Tunç, S. Agar/κ-carrageenan composite hydrogel adsorbent for the removal of Methylene Blue from water. Int. J. Biol. Macromol. 2020, 160, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Farag, A.M.; Sokker, H.H.; Zayed, E.M.; Eldien, F.A.N.; Abd Alrahman, N.M. Removal of hazardous pollutants using bifunctional hydrogel obtained from modified starch by grafting copolymerization. Int. J. Biol. Macromol. 2018, 120, 2188–2199. [Google Scholar] [CrossRef]
- Haydari, I.; Aziz, K.; Kaya, S.; Daştan, T.; Ouazzani, N.; Mandi, L.; Aziz, F. Green synthesis of reduced graphene oxide and their use on column adsorption of phenol from olive mill wastewater. Process Saf. Environ. Prot. 2023, 170, 1079–1091. [Google Scholar] [CrossRef]
- Sun, J.; Cui, L.; Gao, Y.; He, Y.; Liu, H.; Huang, Z. Environmental application of magnetic cellulose derived from Pennisetum sinese Roxb for efficient tetracycline removal. Carbohydr. Polym. 2021, 251, 117004. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Zhang, W.; Li, L.; Guo, W.; Xing, J.; Wang, H.; Hu, X.; Lyu, W.; Chen, R.; Song, J. Novel talc encapsulated lanthanum alginate hydrogel for efficient phosphate adsorption and fixation. Chemosphere 2020, 256, 127124. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, X.; He, Y.; Chen, Y.; Zhou, J.; Luo, X. Adsorption of phosphorus from slaughterhouse wastewater by carboxymethyl konjac glucomannan loaded with lanthanum. Int. J. Biol. Macromol. 2018, 119, 105–115. [Google Scholar] [CrossRef]
- Afzal, M.Z.; Sun, X.-F.; Liu, J.; Song, C.; Wang, S.-G.; Javed, A. Enhancement of ciprofloxacin sorption on chitosan/biochar hydrogel beads. Sci. Total Environ. 2018, 639, 560–569. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, G.; Li, W.; Cui, Z.; Wu, J.; Akpinar, I.; Yu, L.; He, G.; Hu, J. Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants. Appl. Surf. Sci. 2021, 550, 149313. [Google Scholar] [CrossRef]
- Chen, X.; Li, P.; Kang, Y.; Zeng, X.; Xie, Y.; Zhang, Y.; Wang, Y.; Xie, T. Preparation of temperature-sensitive Xanthan/NIPA hydrogel using citric acid as crosslinking agent for bisphenol A adsorption. Carbohydr. Polym. 2019, 206, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Zhu, T.; Mao, J.; Cheng, Y.; Liu, H.; Lv, L.; Ge, M.; Li, S.; Huang, J.; Chen, Z.; Li, H.; et al. Recent progress of polysaccharide-based hydrogel interfaces for wound healing and tissue engineering. Adv. Mater. Interfaces 2019, 6, 1900761. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Zhang, J.; Peng, X.; Li, Z.; Bai, W.; Wang, T.; Gu, Z.; Li, Y. Smart Internal Bio-Glues. Adv. Sci. 2022, 9, 2203587. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Lu, Q. Design and fabrication strategies of cellulose nanocrystal-based hydrogel and its highlighted application using 3D printing: A review. Carbohydr. Polym. 2022, 301, 120351. [Google Scholar] [CrossRef]
- Zeng, B.; Wang, X.; Byrne, N. Cellulose beads derived from waste textiles for drug delivery. Polymers 2020, 12, 1621. [Google Scholar] [CrossRef]
- Aslzad, S.; Savadi, P.; Abdolahinia, E.D.; Omidi, Y.; Fathi, M.; Barar, J. Chitosan/dialdehyde starch hybrid in situ forming hydrogel for ocular delivery of betamethasone. Mater. Today Commun. 2022, 33, 104873. [Google Scholar] [CrossRef]
- Wu, M.; Lin, M.; Li, P.; Huang, X.; Tian, K.; Li, C. Local anesthetic effects of lidocaine-loaded carboxymethyl chitosan cross-linked with sodium alginate hydrogels for drug delivery system, cell adhesion, and pain management. J. Drug Deliv. Sci. Technol. 2023, 79, 104007. [Google Scholar] [CrossRef]
- Duceac, I.A.; Vereștiuc, L.; Coroaba, A.; Arotăriței, D.; Coseri, S. All-polysaccharide hydrogels for drug delivery applications: Tunable chitosan beads surfaces via physical or chemical interactions, using oxidized pullulan. Int. J. Biol. Macromol. 2021, 181, 1047–1062. [Google Scholar] [CrossRef]
- He, Y.; Li, Y.; Sun, Y.; Zhao, S.; Feng, M.; Xu, G.; Zhu, H.; Ji, P.; Mao, H.; He, Y. A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydr. Polym. 2021, 261, 117870. [Google Scholar] [CrossRef]
- Giammanco, G.E.; Carrion, B.; Coleman, R.M.; Ostrowski, A.D. Photoresponsive polysaccharide-based hydrogels with tunable mechanical properties for cartilage tissue engineering. ACS Appl. Mater. Interfaces 2016, 8, 14423–14429. [Google Scholar] [CrossRef] [PubMed]
- Doench, I.; Ahn Tran, T.; David, L.; Montembault, A.; Viguier, E.; Gorzelanny, C.; Sudre, G.; Cachon, T.; Louback-Mohamed, M.; Horbelt, N. Cellulose nanofiber-reinforced chitosan hydrogel composites for intervertebral disc tissue repair. Biomimetics 2019, 4, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamekhi, M.A.; Rabiee, A.; Mirzadeh, H.; Mahdavi, H.; Mohebbi-Kalhori, D.; Eslaminejad, M.B. Fabrication and characterization of hydrothermal cross-linked chitosan porous scaffolds for cartilage tissue engineering applications. Mater. Sci. Eng. C 2017, 80, 532–542. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.Y.; Choo, W.S.; Young, D.J.; Loh, X.J. Pectin as a rheology modifier: Origin, structure, commercial production and rheology. Carbohydr. Polym. 2017, 161, 118–139. [Google Scholar] [CrossRef] [PubMed]
- Vigués, N.; Pujol-Vila, F.; Marquez-Maqueda, A.; Muñoz-Berbel, X.; Mas, J. Electro-addressable conductive alginate hydrogel for bacterial trapping and general toxicity determination. Anal. Chim. Acta 2018, 1036, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Pandey, P.; Pandey, O.; Shukla, N.K. Fabrication of Potentiometric Cholesterol Biosensor by Crosslinking of Cholesterol Oxidase and Carbon Nanotubes Modified Cellulose Acetate Membrane. Sens. Lett. 2016, 14, 102–108. [Google Scholar] [CrossRef]
- Dai, L.; Xi, X.; Li, X.; Li, W.; Du, Y.; Lv, Y.; Wang, W.; Ni, Y. Self-assembled all-polysaccharide hydrogel film for versatile paper-based food packaging. Carbohydr. Polym. 2021, 271, 118425. [Google Scholar] [CrossRef]
- Mujtaba, M.; Lipponen, J.; Ojanen, M.; Puttonen, S.; Vaittinen, H. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review. Sci. Total Environ. 2022, 851, 158328. [Google Scholar] [CrossRef]
- Bashari, A.; Rouhani Shirvan, A.; Shakeri, M. Cellulose-based hydrogels for personal care products. Polym. Adv. Technol. 2018, 29, 2853–2867. [Google Scholar] [CrossRef]
- Mitura, S.; Sionkowska, A.; Jaiswal, A. Biopolymers for hydrogels in cosmetics. J. Mater. Sci. Mater. Med. 2020, 31, 50. [Google Scholar] [CrossRef]
Physical Cross-Linking | Chemical Cross-Linking | |
---|---|---|
Advantages | - Reversible - No need for a cross-linking agent - No need to remove the solvent’s residual amount - Excellent shear recovery (self-healing hydrogels) - Simple preparation process | - Permanent - Provides high mechanical strength - Easily approachable - Highly efficient and more controllable - Provides high molecular weight |
Disadvantages | Poor mechanical strength | Need for a purification step |
Techniques | ||
Characteristics | - Formation of non-covalent electrostatic interactions - Possibility of preparation without chemical modification of the polymers | - Formation of covalent bonds - Use of cross-linking agent - Presence of some chemical reactions |
Unbranched | Branched | Reference | |
---|---|---|---|
Homopolysaccharides | [43] | ||
Heteropolysaccharides | |||
Each of these forms below represents a different monosaccharide. Hexose: Glc Man Gal HexNac: GlcNAc ManNAc GalNAc |
Polysaccharide (Subunit, Bonds) | Structure | Source | Characteristics (In Addition to Low Cost, Biodegradability, Eco-Friendliness, High Biocompatibility, Multifunctionality) | Ref. |
---|---|---|---|---|
Animal Polysaccharides | ||||
Chitin (N-acetyl glucosamine, β1–4) | Exoskeletons of fungus, mollusks, insects, and crustaceans | - Unbranched homopolysaccharide. - The most abundant animal polysaccharide on Earth. - Present in three crystalline structures: alpha, beta, and gamma. - Renewable, with high hydroxyl, amino, and acetyl group content. - Poor solubility in solvents. | [46,47] | |
Chitosan (glucosamine and N-acetyl glucosamine, β1–4) | Chitin (via deacetylation) | - Unbranched homopolysaccharide. - Crystalline, cationic, and hydrophilic. - Possesses amino and hydroxyl groups. - Low solubility in many solvents, soluble in dilute acidic solutions. - Sophisticated extraction processes. - (-NH2) groups facilitate chemical cross-linking to make SAPs. - Its derivatives are procured via graft copolymerization, thiolation, and carboxymethylation, among other modifications. - Excellent adsorption capability. - Very viscous polymer solution. | [48,49,50] | |
Hyaluronic acid (D-glucuronic acid, N-acetyl glucosamine, β1–4 and β1–3) | Extracellular matrix of soft connective tissues and skin | - Unbranched heteropolysaccharide. - Its solution is viscoelastic at higher concentrations. - Need for chemical modification or covalent cross-linking. - Makes chemical hydrogels. - Excellent water-holding capacity and viscoelastic properties. | [51] | |
Plant Polysaccharides | ||||
Cellulose (D-glucopyranose, β-1–4) | Green plants (like bamboo and trees), natural fibers, bacteria | - Unbranched homopolysaccharide. - Earth’s most abundant organic substance. - Semi-crystalline, with a high density of (-OH) groups. - -OH in positions C2, C3, and C6 can serve as reactive groups for modifications, such as esterification or etherification of -OH, to produce some derivates (such as hydroxyethyl cellulose, hydroxypropyl cellulose, and carboxymethyl cellulose) for making various types of SAPs. - Difficult dissolution in water because of its crystalline regions linked by intra- and inter-molecular H-bonds. - Dissolves in organic solvents, alkali/urea aqueous medium, and ionic liquids. | [52,53,54,55,56,57] | |
Starch (amylose (α-1,4-linked D-glucose) and amylopectin (α-1,4- and α-1,6-linked D-glucose)) | Crop seeds, potato, corn, roots, and stalks | - Branched heteropolysaccharide. - Insoluble in alcohol, cold water, or other solvents. - Composed of linear amylose (20–30%, semi-crystalline, soluble in hot water) and branched amylopectin (70–80%, highly crystalline, insoluble in hot water), with numerous hydroxyl groups. - Has a source-dependent structure. - Swells in water at ambient temperature. - Inexpensive and easy to modify with other polymers. | [58,59] | |
Pectin (D-galacturonic acid connected by 1→4 glycosidic bonds) | Cell walls of higher plants (e.g., black currants and apples) (Extraction with water) | - Unbranched heteropolysaccharide. - Anionic polysaccharide with hydroxyl, ester, and carboxyl groups. - Soluble in water. - Categorized according to the methoxy content: high-methoxy pectins (>50% esterified), which form gels at low pH, and low-methoxy pectins (<50% esterified), which form partially sheared gels. | [60] | |
Alginate (guluronic acid and mannuronic acid, β-1→4 glycosidic bonds) | Brown seaweeds (Via treatment with aqueous alkali solutions, generally NaOH) | - Unbranched heteropolysaccharide. - Anionic polysaccharide, flexible, strong, and water soluble. - Possibility of adjusting its properties by changing the guluronic acid/and mannuronic acid ratio. - Commercially available as sodium alginate. - Makes generally physical SAPs by the addition of divalent cations. | [61,62,63,64] | |
Agarose (3,6-anhydro-α-L-galactopyranosyl and β-D-galactopyranosyl) | Red algae of seaweeds, e.g., Gelidium and Gracilaria | - Unbranched heteropolysaccharide. - Insoluble in cold water but soluble in hot water, forming a gel after cooling down. - Neutral and thermo-responsive polysaccharide. - Excellent water retention capability. | [65] | |
Carrageenan (β-(1→4)-3,6-anhydro-D-galactose and α-(1→3)-D-galactose) | κ-carrageenan | Rhodophyceae red seaweeds | - Unbranched heteropolysaccharide. - Possesses many carboxyl and hydroxyl groups, with one sulfate group for kappa (κ), two sulfate groups for iota (ι), and three sulfate groups for lambda (λ) per unit. - κ-carrageenan and ι-carrageenan form stable physical hydrogels. | [66,67] |
Guar gum (1,4-linked β-D-mannopyranose and 1,6-linked α-D-galactopyranose) | Seeds of Cyamopsis tetragonolobus | - Branched heteropolysaccharide. - Non-ionic polysaccharide. - Rapidly swells and produces viscous solution even in cold water. - Contains hydroxyl groups, which can be reactive for chemical modifications, such as introducing -COOH, -NH2, and -SO3H groups. | [68,69] | |
Cyclodextrin (D-glucose, α1–4-glycosidic bonds) | Enzymatic conversion of starch | - Unbranched heteropolysaccharide. - Cyclic structure of 6, 7, or 8 units: α-cyclodextrin (6 subunits), β-cyclodextrin (7 subunits), and γ-cyclodextrin (8 subunits). - High stability against amylase. - Cyclic structure with an interior hydrophobic cavity and a hydrophilic external surface. | [70] | |
Microbial Polysaccharides | ||||
Pullulan (maltotriose, α-(1–6) and α-(1–4) glycosidic bonds) | The fungus Aureobasidium pullulans | - Unbranched heteropolysaccharide. - Has nine -OH groups per unit, with great mechanical properties. - High chemical reactivity and water soluble. - Possibility of chemical modification (etherification, esterification, sulfonation, or oxidation) for making various hydrogels. | [71,72] | |
Dextran (D-glucose, α-(1–6) with branches of α-(1–3)) | Lactic acid bacteria, e.g., Streptococcus, Leuconostoc, Weisella, and Lactobacillus | - Branched homopolysaccharide. - Non-ionic flexible structure due to free rotation of glycosidic bonds. - Water insoluble (with the existence of >43% of α-(1–3) linking branches), and water soluble (with 95% linear linkage). - Capable of being modified to form dextran sulfate and cationic dextran, for making diverse SAPs. | [73] | |
Salecan (β-1,3-glucose) | Agrobacterium sp. ZX09 | - Unbranched homopolysaccharide. - Contains hydroxyl groups, soluble in water. - Has good rheological properties and forms high-viscosity solutions at low doses and shear stresses. | [74,75] | |
Gellan gum (D-glucose, D-glucuronic acid, and L-rhamnose) | Bacteria, like Sphingomonas paucimobilis and Pseudomonas elodea | - Unbranched heteropolysaccharide. - Anionic and possesses many active groups: -OH and -COOH, with the possibility to obtain deacylated gellan gum by modification. - Forms physical SAPs while cationic ions such as Na+ and Ca2+ are present at low temperatures. | [76] | |
Xanthan gum (D-glycopyranose linked with a side chain via α-1,3 linkage) | Bacteria Xanthomonas campestris | - Branched homopolysaccharide. - Helical structure, non-allergenic, with slow dissolution rate. - Thermo-induced behavior of its sol–gel phase transition. - Good stability at high temperatures and pH due to a dimeric or double-stranded structure. - Pseudo-plastic and non-Newtonian fluid properties. | [77] |
Methods | Explanation | Ref. |
---|---|---|
Ionic interactions | By interaction mechanism between the polymer with ionic groups and some multivalent ions (di- or trivalent) of opposite charge (counter-ions). | [81,82,83] |
Hydrophobic interactions | Via a free radical mechanism, a hydrophilic monomer copolymerized with a hydrophobic comonomer. Hydrophobic interactions seem strong compared to other physical interactions, such as van der Waals bonds or hydrogen bonds). | [84] |
Crystallization (Freeze–Thawing) | After repeated freeze–thawing cycles, the polymer acquires a phase separation, which leads to microcrystal formation in its structure, creating hydrogel. Moreover, the hydrogel’s mechanical properties may be controlled by varying cycle number, time, or temperature. | [85] |
Hydrogen bonding | H-bonding occurs between functional groups of polysaccharides such as -NH2, -COOH, -SO3H, and -OH. The resulting SAPs are affected by several factors, such as polymer concentration, molar proportion, solution temperature, solvent type, etc. | [86,87,88,89] |
Complex conservation | It is an association between oppositely charged polymers (polyanionic and polycationic). Opposite charge polymers attract each other, forming insoluble and soluble complexes under diverse concentrations and pH of the polymeric solutions. | [90] |
Protein interaction | Hydrogels form by electrostatic interactions between the polysaccharide and the protein when they carry opposite electric charges. | [91] |
Coordination bonds | Adding divalent metal ions in some polymeric solutions causes coordination bonds between the biopolymer and metal ions, forming a hydrogel. | [92,93] |
Colloidal assembly | Specific polysaccharides, such as nanocellulose, have unusual self-assembling behavior. Nanocellulose particles exhibit fluid behavior in a diluted state, although they are gelled when the shear is removed. | [94] |
Methods | Explanation | Ref. | |
---|---|---|---|
(1) | Polymerization in aqueous solution | It is a reaction between neutral and ionic monomers with a multifunctional cross-linking agent in a solvent, generally water or ethanol, a water–ethanol mixture, and benzyl alcohol. The product is washed with ethanol or distilled water to eliminate unreacted reagents and oligomers. The formed gel is dried, pulverized, and sieved to achieve a specific size. | [104,105] |
(1.a)-Radical polymerization | It is also called chain-growth polymerization or cationic or anionic polymerization. The process entails four steps: initiation, propagation, chain transfer, and termination. Water is most widely used as a solvent. This method includes graft polymerization. | ||
(1.b)-Chemical reaction of functional groups | Cross-linking is performed by a reaction between functional groups (-COOH, -OH, -NH2) of hydrophilic polymers and polyfunctional cross-linking agents. As examples: (1.b.α), (1.b.β,) (1.b.γ), (1.b.δ), (1.b.ω), and (1.b.σ). | ||
1.b.α-Aldehydes: Hydrophilic polymers with (–OH) form cross-links via aldehyde cross-linking agents, such as glutaraldehyde. | [106] | ||
(1.b). β-Condensation reaction: A reaction between -OH and COOH to form polyesters or between –NH2 and –COOH to form polyamides. | [107] | ||
(1.b).γ-Addition reaction: Where higher-functional cross-linkers react with functional groups of hydrophilic polymers (such as -OH, -NH2, and COOH). | [108] | ||
(1.b).δ-Schiff-base reaction: Occurs between aldehyde and amine groups. The gelation kinetics and the physical properties of SAP can be modified by changing the ratio of those groups. | [109,110,111,112] | ||
(1.b).ω-Epoxide-based cross-linking: Epoxide polymers and cross-linking agents (such as epichlorohydrin) are water-soluble compounds highly reactive to nucleophile groups of polysaccharides (-OH and -NH2). | [99,113] | ||
(1.b).σ-Click chemistry: Consists of three classical click reactions: Cu2+-catalyzed thiol-alkene addition, azide-alkyne (3 + 2) cycloaddition, and furan-maleimide (4 + 2) Diels–Alder cycloaddition. | [114] | ||
(1.c)-Enzyme-induced cross-linking | The SAP’s preparation is induced by enzymes (such as transglutaminase, tyrosinase, horseradish peroxidase, and lysyl oxidase) acting as a catalyst in cross-linking or forming covalent bonds with polysaccharide chains without interfering with other polymers’ functional groups. | [115] | |
(2) | Inverse-phase suspension polymerization | It involves two phases: - The organic phase consists of a non-polar solvent (such as toluene or n-hexane) and a stabilizer (to maintain the dispersion); - The aqueous phase consists of monomers, initiators, and cross-linker. The produced SAPs are obtained as powder or beads with desired sizes. | [116] |
(3) | Irradiation polymerization | Irradiation is applied as an initiator to generate radicals’ formation on the polysaccharide chains (via homolytic splitting of the C-H bonds) for the cross-linkage action. It depends on various parameters, including radiation dose, the medium’s polymer concentration, and the presence of oxygen. The advantage of irradiation compared to the chemical initiation techniques is that the resulting hydrogel is relatively pure since no initiator is implicated. Commonly used methods are glow discharge [117], gamma-ray irradiation [118], electron beam irradiation [119], microwave irradiation, and ultrasonication [120]. | [121,122,123] |
(4) | Photo-polymerization | The cross-linking process uses a light corresponding to the absorption wavelength (180–220 nm) of the polysaccharide’s group and the cross-linking agent. | [124] |
Materials | Synthesis | Results | Ref. |
---|---|---|---|
- Carboxymethyl cellulose (CMC). - Starch aldehydes (CS and PS, prepared by periodate oxidation (with NaIO4) of corn and potato starch). - Citric acid (CA). | Cross-linking reaction between CMC (1 g) and starch aldehyde (1 g) by CA (10% and 20% molar ratio). | - Application: water reservoir. - Porous structure with a large specific surface. - The highest equilibrium swelling ratios were 87.0 g/g and 80.6 g/g for CS20-CA0 and PS30-CA0, depending on the starch’s source and the cross-linking density. | [165] |
- Sodium alginate (SA) (oxidized with NaIO4). - Chitosan oligosaccharide (COS). - Zinc oxide nanoparticles (ZnO NPs). | - SA + COS with different molar ratios (3:1, 2:1, 1:1, 1:2, and 1:3) to synthesize SA-COS hydrogels. - SA-COS-ZnO: mixing ZnO NPs (dispersed in 2 mg/mL of SA) with COS solution. | - Application: Wound healing. - 3D porous structure (80%). - Hydrogels provided a humid and antibacterial environment for wound healing, with good mechanical properties and swelling degree (maximum 150%). - 18% of Zn2+ was released in 24 h and 60% was released in 150 h. - Antibacterial activity followed the order SA-COS < SA-COS-ZnO, due to ZnO. | [166] |
- Cellulose (pristine eucalyptus residues (PERs) or treated eucalyptus residues (TERs)). - Gelatin (G). - Glutaraldehyde (H) as a cross-linking agent. | - SAP GH: G cross-linked with H. - GH-PER, GH-TER (SAP composites) where TER and PER (1, 3, 5%) act as a filler (fibers). | - Application: Cr(VI) adsorption from contaminated water. - Fibers improved thermal stability, rigidity, and cross-linking density. - Maximum swelling capacity: 466.1%. - The swelling capacity followed the order: GH-PER1 (497.4%) > GH > GH-PER3 > GH-PER5 and GH > GH-TER1 (413.9%) > GH-TER3 > GH-TER5. - The adsorption capacity followed the order: GH-TER5 (13.3) > GH-PER3, GH-PER5, GH-TER3 (12.4) > GH (12.3) > GH-TER1 (12.2) > GH-PER1 (12). | [167] |
- Cellulose. - Chitosan. - LiBr (solvent). | Via a codissolution and regeneration procedure in LiBr, with different ratios of cellulose and chitosan | - Application: removal of heavy metals (Cu2+, Zn2+, and Co2+) from water. - Chitosan introduced functionality for metal adsorption, increased the specific surface area, and enhanced the mechanical strength (due to H-bonds) of the composite SAP. - Mesoporous structure (27–300 Å). - Metal adsorption followed the order: Cu2+ > Zn2+ > Co2+. | [168] |
- N-carboxymethyl chitosan (CMC). - Alginate (Alg). - Calcium chloride (CaCl2) as a cross-linking agent. | Dual-physical cross-linking via both electrostatic interaction and divalent chelation by Ca2+ cations with various compositions. | - Application: Cell proliferation and wound healing. - Enhanced mechanical properties. - 3D network structure with irregular pores (dimeter = 50–100 µm). - CMC-Alg-4, prepared with 1 g of CMC, 40 mg of Alg, and 32 mg of CaCl2, exhibited better results in terms of water retention ability, rheology, the release rate of EGF, cell proliferation efficiencies, and wound healing. | [169] |
- Chitosan (CS). - Carboxymethyl cellulose (CMC). - Graphene oxide (GO) as a cross-linking agent. - Potassium persulfate (KPS) as initiator. | CS (0.5 g) and CMC (0.5 g) are chemically cross-linked by GO, which was previously functionalized with vinyl groups via grafting with VTES. | - Application: Adsorption of dyes (cationic MB and anionic MO) from contaminated water. - Adsorption of 82% dye (from 50 mg/L of MO solution) with 0.4 g/L of the hydrogel at pH 3 and 99% dye (from 50 mg/L of MB solution) with 0.4 g/L of the hydrogel at pH 7. - Maximum adsorption capacities: 404.52 mg/g for MO and 655.98 mg/g for MB. | [170] |
- Cellulose nanofibers (CNFs). - Starch (ST). - Poly (acrylic acid) (PAA). - Potassium persulfate (KPS) as initiator. - MBA as a cross-linking agent. | CNFs incorporated in different compositions in ST-g-PAA, previously prepared by graft polymerization in the presence of KPS and MBA. | - Application: Removal of Cu2+ ions from water. - Cu2+ adsorption capacity of SAPs was improved after the incorporation of NFCs. - Maximum Cu2+ uptake was 0.957 g/g in 0.6 g/L Cu2+ solution at pH (5). | [171] |
- Magnetic nanocellulose (m-CNCs) (coprecipitated from cellulose nanocrystals. - Alginate (Alg). - CaCl2 for physical cross-linking. | m-CNCs were incorporated into alginate-based hydrogel beads, physically cross-linked with CaCl2. | - Application: Drug delivery (ibuprofen). - The highest swelling degrees were 2477% in PBS medium, 515% in SGF, and 665% in water. - m-CNCs improved the mechanical toughness, increased the swelling rates, and decreased the rate of drug release of the SAPs. | [172] |
- 2,3-dialdehyde cellulose (DAC) (by periodate oxidation of nanocellulose). - Chitosan (CS). | Cross-linking between DAC and CS (dissolved in HCl) with different compositions at three different reaction temperatures (22.5, 40, and 80 °C). | - Application: Adsorption of Congo red dye. - The SAPs had a porous structure and showed good thermal and morphological stability, with a fast and high adsorption rate at pH 2 (a maximum of 100%) and excellent desorption properties at pH 12. | [173] |
- Cellulose. - Chitosan. - Dialdehyde cellulose (DAC) as a cross-linking agent. - LiOH and urea as solvents. | Via dissolution–regeneration by LiOH/urea aqueous solution, before cross-linking reaction with DAC (Schiff base reaction with chitosan), with various compositions. | - Application: Adsorption of bovine serum albumin (BSA). - Good thermal stability, with higher stability in pH 2–9 over 21 days. - The higher BSA adsorption was about 470 mg/g at pH 5.5, due to the significant electrostatic interactions between protonated amino groups of chitosan and the dissociated carboxyl groups of BSA. | [174] |
SAP Based on | Hydrogels | Gel Content Variation | Ref. |
---|---|---|---|
- Chitosan (CS) - Na-alginate (Alg) - Polyacrylamide (PAAm) | Via γ-rays: - PAAm-Alg - PAAm-Alg-CS - PAAm-CS; with several copolymer compositions. | - For PAAm-Alg: Any increase in Alg content or decrease in irradiation dose causes a reduction of the gel content. - For PAAm-CS: The gel content decreases with an increase in irradiation dose or chitosan content. - For PAAm-Alg-CS: At lower irradiation doses, similar behavior of PAAm-Alg was obtained. The gel content decreases in this order: PAAm-Alg > PAAm-Alg-CS > PAAm-CS. | [191] |
- Sodium carboxymethyl cellulose (NaCMC) - FeCl3 | Using different percentages of the reagents. | When the concentration of NaCMC increases, the cross-linking density increases, so the gel content increases. NaCMC-12, prepared by NaCMC (7%) and FeCl3 (10%), presents the full gel content. | [192] |
Effect of: | Swelling Behavior | Ref. |
---|---|---|
Salt concentration | Increasing the ionic concentration reduces the mobile ion concentration between the hydrogel network and the external medium (i.e., osmotic swelling pressure), reducing the hydrogel volume and the gel shrinks. As a result, the swelling rate decreases. | [182,191,222,230,231] |
Charge | Hydrogels with carboxylic moieties have varying swelling capacities in mono-, di-, and trivalent cation solutions. The hydrogel swelling is compared in monovalent (NaCl), divalent (CaCl2), and trivalent (AlCl3) ions at 0.5 M in solution at 25 °C. Multivalent cations (Ca2+ and Al3+) create coordination complexes with -COO− groups of SAP. These interactions serve as further cross-linkages in the gel network, significantly reducing the water absorption rate. In fact, trivalent cations reduce the absorption capacity more than bivalent cations, which are more effective than monovalent cations. So, when the cation charge increases (Na+ < Ca2+ < Al3+), the absorption capacity decreases following the order Al3+ < Ca2+ < Na+. | |
Ion size | The SAP’s capacity to absorb water increases with decreasing radius of the cation of the same valence. The results of this factor are useful because as the size of the ions in the swelling media increases (e.g., Na+ < K+ and Mg2+ < Ca2+), the swelling capacity of the hydrogel decreases (following the order Na+ > K+ and Mg2+ > Ca2+), due to the difficult penetration of the ions into the SAP. |
Polysaccharides Used in Preparing Adsorbent Hydrogels | Heavy Metals or Dyes | Maximum Adsorption Capacity in mg/g | Ref. | |
---|---|---|---|---|
Heavy metals | Chitosan | Cu(II), Cr(VI) | 116.6 and 107.5, respectively | [250] |
Chitosan | Cu(II) | 185.5 | [251] | |
Chitosan/Alginate | Pb(II), Cd(II), and Cu(II) | 176.5, 81.25, and 70.83, respectively | [252] | |
Chitosan | Cr(VI) | 102.56 | [253] | |
Cellulose | Pb2+ | 558.7 | [254] | |
Cellulose | Cu(II), Ni(II), Zn(II), Pb(II), and Cr(III) | 253.8, 112.2, 148.4, 248.2, and 30.4, respectively | [255] | |
Cellulose | Ni(II) and Cu(II) | 112.74 and 109.77, respectively | [256] | |
Chitosan/Starch | Cu2+, Ni2+, Co2+ | 100.6, 83.25, and 74.01, respectively | [49] | |
Chitosan/Glucan | Pb(II), Cu(II), Cd(II), Co(II), and Ni(II) | 395, 342, 269, 232, and 184, respectively | [139] | |
Cellulose | Cr(VI) | 13.3 | [167] | |
Cellulose/Chitosan | Cu2+, Zn2+, Co2+ | Cu2+ > Zn2+ > Co2+, where Cu2+ (94) | [168] | |
Cellulose nanofibers/Starch | Cu2+ | 957 | [171] | |
Alginate | Cu2+, Cd2+ | 13.38 and 9.54, respectively | [257] | |
Alginate | Pb2+ | 234.8 | [258] | |
Guar gum | Cr6+ | 101 | [259] | |
Pectin | Pb2+ | 390.9 | [260] | |
Salecan | Cd2+ | 421.5 | [261] | |
κ-Carrageenan | Hg2+ | 229.9 | [262] | |
Dyes | Chitosan | Methyl orange | 1060 | [263] |
Chitosan | Methylene blue | 20.408 | [264] | |
Chitosan/β-Cyclodextrin | Reactive blue 49 | 498 | [265] | |
Starch | Methylene blue | 2276 | [266] | |
Starch | Methylene blue | 2225 | [267] | |
Alginate/Chitosan | Methylene blue | 137.2 | [268] | |
Xanthan gum | Crystal violet | 1567 | [269] | |
Agarose/κ-Carrageenan | Methylene blue | 242.3 | [270] | |
Heavy metals and dyes | Cellulose | Cu(II), methylene blue | 85 and 138, respectively | [128] |
Chitosan | Cd(II), methylene blue | 90.038 and 23.478, respectively | [141] | |
Starch | Cr(VI), naproxen drug | 420.13 and 309.82, respectively | [157] | |
Starch | Co2+, basic violet | 350 and 600, respectively | [271] | |
Pectin | Methyl violet, methylene blue, Pb(II), Cu(II), Co(II), and Zn(II) | 265.49, 137.43, 54.86, 53.86, 51.72, and 50.01, respectively | [187] | |
Other pollutants | Alginate | Phenol | 994 | [272] |
Cellulose | Tetracycline | 44.9 | [273] | |
Alginate | Phosphate | 16.4 | [274] | |
Konjac glucomannan | Phosphate | 16.1 | [275] | |
Chitosan | Ciprofloxacin | 82 | [276] | |
Agarose | Ofloxacin | 581.4 | [277] | |
Xanthan gum | Bisphenol A | 458 | [278] |
Polysaccharides Used in Hydrogel Preparation | Applications | Ref. | |
---|---|---|---|
Drug delivery | Cellulose | Drug delivery | [282] |
Carboxymethyl cellulose | Drug release in cancer therapy | [125] | |
Carboxymethyl cellulose | Drug delivery | [130] | |
Chitosan/Dialdehyde starch | Betamethasone ocular delivery | [283] | |
Carboxymethyl chitosan/Alginate | Lidocaine delivery | [284] | |
Chitosan/Pullulan | Ibuprofen, bacitracin, and neomycin delivery | [285] | |
Nanocellulose/Alginate | Ibuprofen delivery | [172] | |
Wound dressing | Carboxymethyl cellulose | Dressing and skin replacement | [204] |
Sodium alginate/Chitosan | Wound healing | [166] | |
Carboxymethyl cellulose/Alginate | Cell proliferation and wound healing | [169] | |
Carboxymethyl chitosan/Methacrylate sodium alginate | Skin wound healing | [286] | |
Tissue engineering | Alginate | Meniscal repair | [181] |
Alginate | Cartilage tissue engineering | [287] | |
Cellulose nanofibers/Chitosan | Intervertebral disc annulus fibrosus tissue repair | [288] | |
Chitosan | Cartilage tissue engineering | [289] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berradi, A.; Aziz, F.; Achaby, M.E.; Ouazzani, N.; Mandi, L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers 2023, 15, 2908. https://doi.org/10.3390/polym15132908
Berradi A, Aziz F, Achaby ME, Ouazzani N, Mandi L. A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers. 2023; 15(13):2908. https://doi.org/10.3390/polym15132908
Chicago/Turabian StyleBerradi, Achraf, Faissal Aziz, Mounir El Achaby, Naaila Ouazzani, and Laila Mandi. 2023. "A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials" Polymers 15, no. 13: 2908. https://doi.org/10.3390/polym15132908
APA StyleBerradi, A., Aziz, F., Achaby, M. E., Ouazzani, N., & Mandi, L. (2023). A Comprehensive Review of Polysaccharide-Based Hydrogels as Promising Biomaterials. Polymers, 15(13), 2908. https://doi.org/10.3390/polym15132908