The Use of Hot Melt Extrusion to Prepare a Solid Dispersion of Ibuprofen in a Polymer Matrix
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Hot Melt Extrusion
2.2.2. Milling of Extrudates
2.2.3. Tablets Preparation
2.2.4. Dissolution Tests
2.2.5. Fourier Transform Infrared Spectroscopy (FTIR-ATR)
2.2.6. Differential Scanning Calorimetry (DSC)
2.2.7. Thermogravimetric Analysis (TGA)
2.2.8. X-ray Powder Diffraction
3. Results and Discussion
3.1. Physical Characterization of Extrudates
3.1.1. Thermal Properties
3.1.2. XRPD Analysis
3.1.3. Intermolecular Interactions
3.2. Tablets Preparation
3.3. Dissolution Tests
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salunke, S.; O’Brien, F.; Tan, D.C.T.; Harris, D.; Math, M.-C.; Ariën, T.; Klein, S.; Timpe, C. Oral drug delivery strategies for development of poorly water soluble drugs in paediatric patient population. Adv. Drug. Deliv. Rev. 2022, 190, 114507. [Google Scholar] [CrossRef]
- Mathers, A.; Hassouna, F.; Malinova, L.; Merna, J.; Ruzicka, K.; Fulem, M. Impact of Hot-Melt Extrusion Processing Conditions on Physicochemical Properties of Amorphous Solid Dispersions Containing Thermally Labile Acrylic Copolymer. J. Pharm. Sci. 2020, 109, 1008–1019. [Google Scholar] [CrossRef] [PubMed]
- Mistry, P.; Mohapatra, S.; Gopinath, T.; Vogt, F.G.; Suryanarayanan, R. Role of the Strength of Drug-Polymer Interactions on the Molecular Mobility and Crystallization Inhibition in Ketoconazole Solid Dispersions. Mol. Pharm. 2015, 12, 3339–3350. [Google Scholar] [CrossRef] [PubMed]
- Anderson, B.D. Predicting Solubility/Miscibility in Amorphous Dispersions: It Is Time to Move Beyond Regular Solution Theories. J. Pharm. Sci. 2018, 107, 24–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quinteros, D.A.; Rigo, V.R.; Kairuz, A.F.J.; Olivera, M.E.; Manzo, R.H.; Allemandi, D.A. Interaction between a cationic polymethacrylate (Eudragit E100) and anionic drugs. Eur. J. Pharm. Sci. 2008, 33, 72–79. [Google Scholar] [CrossRef]
- Song, Y.; Yang, X.; Chen, X.; Nie, H.; Byrn, S.; Lubach, J.W. Investigation of Drug-Excipient Interactions in Lapatinib Amorphous Solid Dispersions Using Solid-State NMR Spectroscopy. Mol. Pharm. 2015, 12, 857–866. [Google Scholar] [CrossRef]
- Cilurzo, F.; Minghetti, P.; Casiraghi, A.; Tosi, L.; Pagani, S.; Montanari, L. Polymethacrylates as crystallization inhibitors in monolayer transdermal patches containing ibuprofen. Eur. J. Pharm. Biopharm. 2005, 60, 61–66. [Google Scholar] [CrossRef]
- Mann, A.K.P.; Schenck, L.; Koynov, A.; Rumondor, A.C.F.; Jin, X.; Marota, M.; Dalton, C. Producing Amorphous Solid Dispersions via Co-Precipitation and Spray Drying: Impact to Physicochemical and Biopharmaceutical Properties. J. Pharm. Sci. 2018, 107, 183–191. [Google Scholar] [CrossRef] [Green Version]
- Pandi, P.; Bulusu, R.; Kommineni, N.; Khan, W.; Singh, M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int. J. Pharm. 2020, 586, 119560. [Google Scholar] [CrossRef]
- Pas, T.; Bergonzi, A.; Michiels, E.; Rousseau, F.; Schymkowitz, J.; Koekoekx, R.; Clasen, C.; Vergauwen, B.; Van den Mooter, G. Preparation of Amorphous Solid Dispersions by Cryomilling: Chemical and Physical Concerns Related to Active Pharmaceutical Ingredients and Carriers. Mol. Pharm. 2020, 17, 1001–1013. [Google Scholar] [CrossRef]
- Claeys, B.; De Coen, R.; De Geest, B.G.; de la Rosa, V.R.; Hoogenboom, R.; Carleer, R.; Adriaensens, P.; Remon, J.P.; Vervaet, C. Structural modifications of polymethacrylates: Impact on thermal behavior and release characteristics of glassy solid solutions. Eur. J. Pharm. Biopharm. 2013, 85, 1206–1214. [Google Scholar] [CrossRef]
- dos Santos, J.; Silveira da Silva, G.; Callegaro Velho, M.; Carlos Ruver Beck, R. Eudragit®: A Versatile Family of Polymers for Hot Melt Extrusion and 3D Printing Processes in Pharmaceutics. Pharmaceutics 2021, 13, 1424. [Google Scholar] [CrossRef]
- Tian, Y.; Jacobs, E.; Jones, D.S.; McCoy, C.P.; Wu, H.; Andrews, G.P. The design and development of high drug loading amorphous solid dispersion for hot-melt extrusion platform. Int. J. Pharm. 2020, 586, 119545. [Google Scholar] [CrossRef] [PubMed]
- Yani, Y.; Kanaujia, P.; Shan Chow, P.; Tan, R.B.H. Effect of API-Polymer Miscibility and Interaction on the Stabilization of Amorphous Solid Dispersion: A Molecular Simulation Study. Ind. Eng. Chem. Res. 2017, 56, 12698–12707. [Google Scholar] [CrossRef]
- Lin, X.; Su, L.; Li, N.; Hu, Y.; Tang, G.; Liu, L.; Li, H.; Yang, Z. Understanding the mechanism of dissolution enhancement for poorly water-soluble drugs by solid dispersions containing Eudragit® E PO. J. Drug. Deliv. Sci. Technol. 2018, 48, 328–337. [Google Scholar] [CrossRef]
- Albarahmieha, E.; Qia, S.; Craig, D.Q.M. Hot melt extruded transdermal films based on amorphous solid dispersions in Eudragit RS PO: The inclusion of hydrophilic additives to develop moisture-activated release systems. Int. J. Pharm. 2016, 514, 270–281. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, M.; Shah, N.H.; Malick, A.W.; Infeld, M.H.; McGinity, J.W. Properties of Tablets Containing Granulations of Ibuprofen and an Acrylic Copolymer Prepared by Thermal Processes. Pharm. Dev. Technol. 2001, 6, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Garbera, K.; Woś-Latosi, K.; Sawicki, W. Development of tablets containing solid dispersion of ibuprofen manufactured by hot melt impregnation process. Acta Pol. Pharm.-Drug. Res. 2019, 76, 341–354. [Google Scholar] [CrossRef]
- Aho, J.; Edinger, M.; Botker, J.; Baldursdottir, S.; Rantanen, J. Oscillatory Shear Rheology in Examining the Drug-Polymer Interactions Relevant in Hot Melt Extrusion. J. Pharm. Sci. 2016, 105, 160–167. [Google Scholar] [CrossRef]
- El-Ashmawy, A.A.; Abdelfattah, F.M.; Emara, L.H. Novel Glyceryl Monostearate- and Polyethylene Glycol 6000-Based Ibuprofen Pellets Prepared by Hot-Melt Extrusion: Evaluation and Stability Assessment. J. Pharm. Innov. 2022. [Google Scholar] [CrossRef]
- Emara, L.H.; Abdelfattah, F.M.; Taha, N.F. Hot melt extrusion method for preparation of ibuprofen/sucroester WE15 solid dispersions: Evaluation and stability assessment. J. Appl. Pharm. Sci. 2017, 7, 156–167. [Google Scholar]
- Souto, E.B.; Menhert, W.; Muller, R.H. Polymorphic behaviour of Compritol®888 ATO as bulk lipid and as SLN and NLC. J. Microencapsul. 2006, 23, 417–433. [Google Scholar] [CrossRef] [PubMed]
- Parikh, T.; Gupta, S.S.; Meena, A.; Serajuddin, A.T.M. Investigation of thermal and viscoelastic properties of polymers relevant to hot melt extrusion-III: Polymethacrylates and polymethacrylic acid based polymers. J. Excip. Food Chem. 2014, 5, 56–64. [Google Scholar]
- Aburahma, M.H.; Badr-Eldin, S.M. Compritol 888 ATO: A multifunctional lipid excipient in drug delivery systems and nanopharmaceutical. Expert. Opin. Drug. Deliv. 2014, 11, 1865–1883. [Google Scholar] [CrossRef] [PubMed]
Die Zone | Zone 8 °C | Zone 7 °C | Zone 6 °C | Zone 5 °C | Zone 4 °C | Zone 3 °C | Zone 2 °C |
---|---|---|---|---|---|---|---|
90 | 90 | 80 | 70 | 70 | 70 | 70 | 40 |
100 | 100 | 90 | 90 | 90 | 90 | 70 | 40 |
120 | 120 | 110 | 110 | 110 | 110 | 70 | 40 |
140 | 140 | 130 | 120 | 120 | 120 | 70 | 40 |
Without Compritol 888ATO | With Compritol 888ATO | ||||
---|---|---|---|---|---|
Ingredient | Amount | Ingredient | Amount | ||
g/tab. | %/tab. | g/tab. | %/tab. | ||
Extrudate: polymer+API | 0.2 | 38.230 | Extrudate: polymer + API + plasticizer | 0.22 | 40.516 |
Lactose monohydrate | 0.1 | 19.120 | Lactose monohydrate | 0.1 | 18.416 |
Corn starch | 0.005 | 0.960 | Corn starch | 0.005 | 0.921 |
Calcium hydrogen phosphate dihydrate | 0.05 | 9.560 | Calcium hydrogen phosphate dihydrate | 0.05 | 9.208 |
Microcrystalline cellulose | 0.15025 | 28.730 | Microcrystalline cellulose | 0.15025 | 27.670 |
Sodium carboxymethyl starch | 0.0125 | 2.390 | Sodium carboxymethyl starch | 0.0125 | 2.302 |
Colloidal silica | 0.00025 | 0.050 | Colloidal silica | 0.00025 | 0.046 |
Magnesium stearate | 0.005 | 0.960 | Magnesium stearate | 0.005 | 0.921 |
Total amount | 0.523 | 100 | Total amount | 0.543 | 100 |
Weight Loss, % | 1 | 2 | 3 | 5 | 10 | |
---|---|---|---|---|---|---|
Sample | ||||||
Temperature, °C | ||||||
Ibuprofen | 126.5 | 141.7 | 149.5 | 159.1 | 171.7 | |
Eudragit EPO | 222.6 | 247.8 | 258.3 | 270.9 | 287.7 | |
Compritol 888ATO | 143.0 | 234.2 | 253.4 | 276.9 | 303.1 | |
Eudragit EPO + IBU | 159.7 | 194.4 | 208.8 | 224.7 | 241.0 | |
Eudragit EPO + IBU + COM | 149.2 | 183.5 | 196.8 | 211.6 | 231.8 |
TEST | Tablet EPO/IBU | Tablet EPO/IBU/COM | |||
---|---|---|---|---|---|
Initial | Extrudate, 90 °C | Extrudate, 140 °C | Extrudate, 90 °C | Extrudate, 140 °C | |
Appearance | Visual | Round, white to off-white tablets | Round, white to off-white tablets | ||
Average mass | Ph. Eur. 2.9.5. | Limit 0.497–0.549 mg (±5%) | Limit 0.516–0.570 mg (±5%) | ||
0.501–0.528 mg | 0.503–0.531 mg | 0.521–0.539 mg | 0.518–0.552 mg | ||
Hardness | Ph. Eur. 2.9.8. | 90–115 N | 87–120 N | 84–134 N | 95–129 N |
Disintegration time | Ph. Eur. | Limit until 15 min | |||
Mean 1′32″ | Mean 0′57″ | Mean 12′09″ | Mean 8′46″ | ||
Fragility | Ph. Eur. 2.9.7. | Limit <1.0% | |||
Weight loss: 0.5% | Weight loss: 0.2 % | Weight loss: 0.6 % | Weight loss: 0.4% | ||
Content uniformity | Pf. Eur. 2.9.6. | AV: L1 (n = 10): ≤15.0 AV: L2 (n = 30): ≤25.0 Limit 85–115% 42.50–57.50 mg | |||
Min 99.7% Max 98.4% | Min 102.1% Max 95.0% | Min 85.6% Max 96.8% | Min 95.0% Max 97.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biedrzycka, K.; Marcinkowska, A. The Use of Hot Melt Extrusion to Prepare a Solid Dispersion of Ibuprofen in a Polymer Matrix. Polymers 2023, 15, 2912. https://doi.org/10.3390/polym15132912
Biedrzycka K, Marcinkowska A. The Use of Hot Melt Extrusion to Prepare a Solid Dispersion of Ibuprofen in a Polymer Matrix. Polymers. 2023; 15(13):2912. https://doi.org/10.3390/polym15132912
Chicago/Turabian StyleBiedrzycka, Kinga, and Agnieszka Marcinkowska. 2023. "The Use of Hot Melt Extrusion to Prepare a Solid Dispersion of Ibuprofen in a Polymer Matrix" Polymers 15, no. 13: 2912. https://doi.org/10.3390/polym15132912
APA StyleBiedrzycka, K., & Marcinkowska, A. (2023). The Use of Hot Melt Extrusion to Prepare a Solid Dispersion of Ibuprofen in a Polymer Matrix. Polymers, 15(13), 2912. https://doi.org/10.3390/polym15132912