Carbazole-Fluorene Copolymers with Various Substituents at the Carbazole Nitrogen: Structure—Properties Relationship
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Syntheses of Polymers
2.3.1. Poly[9,9-dioctylfluorene-2,7-diyl-alt-9-(2-methoxycarbonylethyl)carbazole-2,7-diyl]s (CF8CzE-1, CF8CzE-2, CF8CzE-3)
CF8CzE-1
CF8CzE-2
CF8CzE-3
2.3.2. Poly[9,9-dioctylfluorene-2,7-diyl-alt-9-(2-carboxyethyl)carbazole-2,7-diyl] (CF8CzA)
2.3.3. Poly[9,9-dioctylfluorene-2,7-diyl-alt-9-(2-ethylhexyl)carbazole-2,7-diyl]s (CF8CzEH, CF8CzEH-1, CF8CzEH-2)
2.3.4. Poly{9-[nonan-2,4-dionatoiridium(III)bis(2-phenylpyridine-N,C2′)-9-yl]carbazole- 2,7-diyl-co-9,9-dioctylfluorene-2,7-diyl-co-9-(2-ethylhexyl)carbazole-2,7-diyl} (CF8CzEHCzIr)
3. Results and Discussion
3.1. Syntheses of Monomers
3.2. Syntheses of Polymers
3.3. Photophysical Properties
3.4. Electrochemical Properties
3.5. Electroluminescence
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lim, E. Synthesis and Characterization of Carbazole-Benzothiadiazole-Based Conjugated Polymers for Organic Photovoltaic Cells with Triazole in the Main Chain. Int. J. Photoenergy 2013, 2013, 607826. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Al-Faifi, S.; Iraqi, A.; Watters, D.C.; Kingsley, J.; Lidzey, D.G. Carbazole and thienyl benzo [1,2,5]thiadiazole based polymers with improved open circuit voltages and processability for application in solar cells. J. Mater. Chem. 2011, 21, 13649–13656. [Google Scholar] [CrossRef]
- Xu, X.; Han, B.; Chen, J.; Peng, J.; Wu, H.; Cao, Y. 2,7-Carbazole-1,4-phenylene Copolymers with Polar Side Chains for Cathode Modifications in Polymer Light-Emitting Diodes. Macromolecules 2011, 44, 4204–4212. [Google Scholar] [CrossRef]
- Li, J.; Grimsdale, A.C. Carbazole-based polymers for organic photovoltaic devices. Chem. Soc. Rev. 2010, 39, 2399–2410. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, L.; Ma, F.; Ding, T.; Obolda, A. Synthesis of carbazole-based dendritic conjugated polymer: A dual channel optical probe for the detection of I− and Hg2+. Des. Monomers Polym. 2022, 25, 184–196. [Google Scholar] [CrossRef]
- Zhang, B.; Li, B.; Wang, Z. Creation of Carbazole-Based Fluorescent Porous Polymers for Recognition and Detection of Various Pesticides in Water. ACS Sens. 2020, 5, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Bekkar, F.; Bettahar, F.; Moreno, I.; Meghabar, R.; Hamadouche, M.; Hernáez, E.; Vilas-Vilela, J.L.; Ruiz-Rubio, L. Polycarbazole and Its Derivatives: Synthesis and Applications. A Review of the Last 10 Years. Polymers 2020, 12, 2227. [Google Scholar] [CrossRef]
- Cimrová, V.; Ulbricht, C.; Dzhabarov, V.; Výprachtický, D.; Egbe, D.A.M. New electroluminescent carbazole-containing conjugated polymer: Synthesis, photophysics, and electroluminescence. Polymer 2014, 55, 6220–6226. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, Z.; Zhang, Y.; Liu, Q.; Li, Q.; Li, G. Facile Synthesis of Microporous Ferrocenyl Polymers Photocatalyst for Degradation of Cationic Dye. Polymers 2022, 14, 1900. [Google Scholar] [CrossRef]
- Kuo, C.-W.; Chang, J.-C.; Lee, L.-T.; Lin, Y.-D.; Lee, P.-Y.; Wu, T.-Y. 1,4-Bis((9H-Carbazol-9-yl)Methyl)Benzene-Containing Electrochromic Polymers as Potential Electrodes for High-Contrast Electrochromic Devices. Polymers 2022, 14, 1175. [Google Scholar] [CrossRef]
- Su, Y.-W.; Lin, Y.-C.; Wei, K.-H. Evolving molecular architectures of donor–acceptor conjugated polymers for photovoltaic applications: From one-dimensional to branched to two-dimensional structures. J. Mater. Chem. A 2017, 5, 24051–24075. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, S.; Zhang, Y.; Du, H.; Zhao, J. Design and Characterization of New D–A Type Electrochromic Conjugated Copolymers Based on Indolo[3,2-b]Carbazole, Isoindigo and Thiophene Units. Polymers 2019, 11, 1626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schloemer, T.H.; Gehan, T.S.; Christians, J.A.; Mitchell, D.G.; Dixon, A.; Li, Z.; Zhu, K.; Berry, J.J.; Luther, J.M.; Sellinger, A. Thermally Stable Perovskite Solar Cells by Systematic Molecular Design of the Hole-Transport Layer. ACS Energy Lett. 2019, 4, 473–482. [Google Scholar] [CrossRef]
- Rodríguez-Seco, C.; Cabau, L.; Vidal-Ferran, A.; Palomares, E. Advances in the Synthesis of Small Molecules as Hole Transport Materials for Lead Halide Perovskite Solar Cells. Acc. Chem. Res. 2018, 51, 869–880. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Guo, H.; Dequilettes, D.W.; Jariwala, S.; De Marco, N.; Dong, S.; DeBlock, R.; Ginger, D.S.; Dunn, B.; Wang, M.; et al. Polymer-modified halide perovskite films for efficient and stable planar heterojunction solar cells. Sci. Adv. 2017, 3, e1700106. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Xiao, Y.; Han, G.; Lin, J.-Y. The Applications of Polymers in Solar Cells: A Review. Polymers 2019, 11, 143. [Google Scholar] [CrossRef] [Green Version]
- Dong, Q.; Wang, Z.; Zhang, K.; Yu, H.; Huang, P.; Liu, X.; Zhou, Y.; Chen, N.; Song, B. Easily accessible polymer additives for tuning the crystal-growth of perovskite thin-films for highly efficient solar cells. Nanoscale 2016, 8, 5552–5558. [Google Scholar] [CrossRef]
- Chang, C.-Y.; Chu, C.-Y.; Huang, Y.-C.; Huang, C.-W.; Chang, S.-Y.; Chen, C.-A.; Chao, C.-Y.; Su, W.-F. Tuning perovskite morphology by polymer additive for high efficiency solar cell. ACS Appl. Mater. Interfaces 2015, 7, 4955–4961. [Google Scholar] [CrossRef]
- Caruso, A.; Ceramella, J.; Iacopetta, D.; Saturnino, C.; Mauro, M.V.; Bruno, R.; Aquaro, S.; Sinicropi, M.S. Carbazole Derivatives as Antiviral Agents: An Overview. Molecules 2019, 24, 1912. [Google Scholar] [CrossRef] [Green Version]
- Zhu, D.; Chen, M.; Li, M.; Luo, B.; Zhao, Y.; Huang, P.; Xue, F.; Rapposelli, S.; Pi, R.; Wen, S. Discovery of novel N-substituted carbazoles as neuroprotective agents with potent anti-oxidative activity. Eur. J. Med. Chem. 2013, 68, 81–88. [Google Scholar] [CrossRef]
- Li, B.L.; Wu, L.; He, Y.M.; Fan, Q.H. The synthesis and properties of iridium(III)-cored dendrimers with carbazole peripherally functionalized beta-diketonato dendrons. Dalton Trans. 2007, 2048–2057. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Feng, Z.; Dang, J.; Sun, Y.; Zhou, G.; Wong, W.-Y. High performance solution-processed organic yellow light-emitting devices and fluoride ion sensors based on a versatile phosphorescent Ir(iii) complex. Mater. Chem. Front. 2019, 3, 376–384. [Google Scholar] [CrossRef]
- Luo, X.F.; Qu, Z.Z.; Han, H.B.; Su, J.; Yan, Z.P.; Zhang, X.M.; Tong, J.J.; Zheng, Y.X.; Zuo, J.L. Carbazole-Based Iridium(III) Complexes for Electrophosphorescence with EQE of 32.2% and Low Efficiency Roll-Off. Adv. Opt. Mater. 2020, 9, 2001390. [Google Scholar] [CrossRef]
- Tang, H.; Dong, X.; Chen, M.; Chen, Q.; Ren, M.; Wang, K.; Zhou, Q.; Wang, Z. A Novel Polymethyl Methacrylate Derivative Grafted with Cationic Iridium(III) Complex Units: Synthesis and Application in White Light-Emitting Diodes. Polymers 2019, 11, 499. [Google Scholar] [CrossRef] [Green Version]
- Ma, D.; Tsuboi, T.; Qiu, Y.; Duan, L. Recent Progress in Ionic Iridium(III) Complexes for Organic Electronic Devices. Adv. Mater. 2017, 29, 1603253. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Sun, R.; Shi, M.; Pan, F.; Hu, Z.; Huang, F.; Li, Y.; Min, J. Solution-Processed Polymer Solar Cells with over 17% Efficiency Enabled by an Iridium Complexation Approach. Adv. Energy Mater. 2020, 10, 2000590. [Google Scholar] [CrossRef]
- Wu, Q.; Cheng, Y.; Xue, Z.; Gao, X.; Wang, M.; Yuan, W.; Huettner, S.; Wan, S.; Cao, X.; Tao, Y.; et al. A cyclometalating organic ligand with an Iridium center toward dramatically improved photovoltaic performance in organic solar cells. Chem. Commun. 2019, 55, 2640–2643. [Google Scholar] [CrossRef] [PubMed]
- Xue, Z.; Wang, S.; Yang, J.; Zhong, Y.; Qian, M.; Li, C.; Zhang, Z.; Xing, G.; Huettner, S.; Tao, Y.; et al. Enhanced power conversion efficiency in iridium complex-based terpolymers for polymer solar cells. npj Flex. Electron. 2018, 2, 1. [Google Scholar] [CrossRef] [Green Version]
- Tsakaraki, D.; Andreopoulou, A.K.; Bokias, G. pH-Responsive Emission of Novel Water-Soluble Polymeric Iridium(III) Complexes. Nanomaterials 2022, 12, 927. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Zhu, S.; Ding, Y.; Song, Q. Electrochemiluminescence of iridium complexes with ammonia in dimethylformamide and its analytical application for ammonia detection. J. Electroanal. Chem. 2012, 682, 136–140. [Google Scholar] [CrossRef]
- Ma, Q.; Dong, W.; Ma, Z.; Lv, X.; Li, Y.; Duan, Q. Synthesis of phosphorescent iridium(III) complex containing carbazole and its sensing property towards nitro-aromatic compounds. Mater. Lett. 2019, 249, 120–123. [Google Scholar] [CrossRef]
- Yang, Z.; Zhao, Y.; Wang, C.; Song, Q.; Pang, Q. A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability. Talanta 2017, 166, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Hao, S.; Yang, J.; Liu, P.; Xu, J.; Yang, C.; Li, F. Linear-Organic-Polymer-Supported Iridium Complex as a Recyclable Auto-Tandem Catalyst for the Synthesis of Quinazolinones via Selective Hydration/Acceptorless Dehydrogenative Coupling from o-Aminobenzonitriles. Org. Lett. 2021, 23, 2553–2558. [Google Scholar] [CrossRef]
- Xu, Z.-Y.; Luo, Y.; Zhang, D.-W.; Wang, H.; Sun, X.-W.; Li, Z.-T. Iridium complex-linked porous organic polymers for recyclable, broad-scope photocatalysis of organic transformations. Green Chem. 2020, 22, 136–143. [Google Scholar] [CrossRef]
- Yang, Y.; Guo, L.; Ge, X.; Chen, W.; Zhou, H.; Zhu, T.; Li, X.; Tuo, S.; Liu, Z. Fluorescent zwitterionic Iridium(III) complexes containing sulfonate groups: Synthesis, biological activity and tracking in live cells. Dye. Pigment. 2020, 176, 108220. [Google Scholar] [CrossRef]
- Gong, X.; Ostrowski, J.; Moses, D.; Bazan, G.; Heeger, A. Electrophosphorescence from a Polymer Guest–Host System with an Iridium Complex as Guest: Förster Energy Transfer and Charge Trapping. Adv. Funct. Mater. 2003, 13, 439–444. [Google Scholar] [CrossRef]
- Jiang, J.; Jiang, C.; Yang, W.; Zhen, H.; Huang, F.; Cao, Y. High-efficiency electrophosphorescent fluorene-alt-carbazole copolymers N-Grafted with cyclometalated Ir complexes. Macromolecules 2005, 38, 4072–4080. [Google Scholar] [CrossRef]
- Liang, A.; Huang, G.; Wang, Z.; Wu, W.; Zhong, Y.; Zhao, S.; Cao, R.; Chen, S.; Hou, H. Supramolecular green phosphorescent polymer iridium complexes for solution-processed nondoped organic light-emitting diodes. J. Organomet. Chem. 2016, 804, 1–5. [Google Scholar] [CrossRef]
- Výprachtický, D.; Kmínek, I.; Pokorná, V.; Cimrová, V. Efficient synthesis of N-alkyl-2,7-dihalocarbazoles by simultaneous carbazole ring closure and N-alkylation. Tetrahedron 2012, 68, 5075–5080. [Google Scholar] [CrossRef]
- Výprachtický, D.; Pokorná, V.; Kmínek, I.; Dzhabarov, V.; Cimrová, V. Synthesis of Conjugated Materials for Organic Photovoltaics and Luminescence. ECS Trans. 2014, 58, 1–13. [Google Scholar] [CrossRef]
- Cimrova, V.; Kminek, I.; Vyprachticky, D.; Pokorna, V. Short-time synthesis of poly[4,6-bis(3‘-(2-ethylhexyl)thien-2‘-yl)thieno[3,4-c][1,2,5]thiadiazole-alt-9,9-dioctylfluorene], its photophysical, electrochemical and photovoltaic properties. Polymer 2015, 59, 298–304. [Google Scholar] [CrossRef]
- Pinkham, C.A.; Wait, S.C. The electronic spectra of fluorene, dibenzofuan and carbazole. J. Mol. Spectrosc. 1968, 27, 326–342. [Google Scholar] [CrossRef]
- Johnson, G.E. Spectroscopic study of carbazole by photoselection. J. Phys. Chem. 1974, 78, 1512–1521. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, S.M.; Erra-Balsells, R. Electronic spectroscopy of carbazole and N- and C-substituted carbazoles in homogeneous media and in solid matrix. J. Lumin. 2001, 93, 51–74. [Google Scholar] [CrossRef]
- Bonesi, S.M.; Erra-Balsells, R. Electronic spectroscopy of N- and C-substituted chlorocarbazoles in homogeneous media and in solid matrix. J. Lumin. 2002, 97, 83–101. [Google Scholar] [CrossRef]
- Ponce, M.B.; Cabrerizo, F.M.; Bonesi, S.M.; Erra-Balsells, R. Synthesis and Electronic Spectroscopy of Bromocarbazoles. Direct Bromination of N- and C-Substituted Carbazoles by N-Bromosuccinimide or a N-Bromosuccinimide/Silica Gel System. Helv. Chim. Acta 2006, 89, 1123–1139. [Google Scholar] [CrossRef]
- Spano, F.C.; Silva, C. H- and J-aggregate behavior in polymeric semiconductors. Annu. Rev. Phys. Chem. 2014, 65, 477–500. [Google Scholar] [CrossRef]
- Cimrová, V.; Neher, D. Anomalous electrical characteristics, memory phenomena and microcavity effects in polymeric light-emitting diodes. Synth. Met. 1996, 76, 125–128. [Google Scholar] [CrossRef]
- Cimrova, V.; Scherf, U.; Neher, D. Microcavity devices based on a ladder-type poly(p-phenylene) emitting blue, green, and red light. Appl. Phys. Lett. 1996, 69, 608–610. [Google Scholar] [CrossRef]
- Cimrová, V.; Neher, D. Microcavity effects in single-layer light-emitting devices based on poly(p-phenylene vinylene). J. Appl. Phys. 1996, 79, 3299–3306. [Google Scholar] [CrossRef]
- Cimrová, V.; Remmers, M.; Neher, D.; Wegner, G. Polarized light emission from LEDs prepared by the Langmuir-Blodgett technique. Adv. Mater. 1996, 8, 146–149. [Google Scholar] [CrossRef]
- Cimrova, V.; Vyprachticky, D.; Pecka, J.; Kotva, R. Organic light-emitting devices based on novel blends. Proc. SPIE 2000, 3939, 164–171. [Google Scholar] [CrossRef]
- Cimrová, V.; Výprachtický, D.; Hörhold, H. Poly[methyl(phenyl)silanediyl] modified with dansyl fluorophore: Synthesis and photophysics. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 2233–2244. [Google Scholar] [CrossRef]
- Cimrová, V.; Výprachtický, D. Enhanced electroluminescence from light-emitting devices based on poly(9,9-dihexadecylfluorene-2,7-diyl) and polysilane blends. Appl. Phys. Lett. 2003, 82, 642–644. [Google Scholar] [CrossRef]
- Cimrová, V.; Neher, D.; Remmers, M.; Kmínek, I. Blue light-emitting devices based on novel polymer blends. Adv. Mater. 1998, 10, 676–680. [Google Scholar] [CrossRef]
- Van der Zee, B.; Li, Y.; Wetzelaer, G.A.H.; Blom, P.W.M. Efficiency of Polymer Light-Emitting Diodes: A Perspective. Adv. Mater. 2022, 34, 2108887. [Google Scholar] [CrossRef]
- Huang, Q.; Zhao, S.; Guo, L.J.; Xu, Z.; Wang, P.; Qin, Z. Effect of the charge balance on high-efficiency inverted polymer light-emitting diodes. Org. Electron. 2017, 49, 123–128. [Google Scholar] [CrossRef]
- Ying, L.; Ho, C.-L.; Wu, H.; Cao, Y.; Wong, W.-Y. White polymer light-emitting devices for solid-state lighting: Materials, devices, and recent progress. Adv. Mater. 2014, 26, 2459–2473. [Google Scholar] [CrossRef]
- Lee, B.R.; Jung, E.D.; Park, J.S.; Nam, Y.S.; Min, S.H.; Kim, B.-S.; Lee, K.-M.; Jeong, J.-R.; Friend, R.H.; Kim, J.-S.; et al. Highly efficient inverted polymer light-emitting diodes using surface modifications of ZnO layer. Nat. Commun. 2014, 5, 4840. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Lee, Y.; Kim, N.; Seo, D.; Go, G.; Lee, T. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Adv. Mater. 2020, 32, e1903558. [Google Scholar] [CrossRef]
- Pan, X.; Jin, T.; Gao, J.; Han, C.; Shi, Y.; Chen, W. Stimuli-Enabled Artificial Synapses for Neuromorphic Perception: Progress and Perspectives. Small 2020, 16, 2001504. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.R.; Lee, D.; Oh, J.H. A Hippocampus-Inspired Dual-Gated Organic Artificial Synapse for Simultaneous Sensing of a Neurotransmitter and Light. Adv. Mater. 2021, 33, e2100119. [Google Scholar] [CrossRef] [PubMed]
Copolymer | R | T [°C] | t [h] | Base | Yield [%] |
---|---|---|---|---|---|
CF8CzE-1 | CH2CH2COOCH3 | 90 | 64 | NaHCO3 | 82 |
CF8CzE-2 | CH2CH2COOCH3 | 145 | 1.00 | NaOH | 86 |
CF8CzE-3 | CH2CH2COOCH3 | 145 | 1.33 | NaHCO3 | 84 |
CF8CzA a | CH2CH2COOH | 85 | 5 | NaOH | 78 |
CF8CzEH-1 | 2-ethylhexyl | 150 | 1.50 | NaHCO3 | 19 b |
CF8CzEH-2 | 2-ethylhexyl | 150 | 1.50 | NaHCO3 | 58 b |
Copolymer | Solvent | Mw | Mn | Ð |
---|---|---|---|---|
CF8CzE-1 | THF | 18,500 | 8400 | 2.20 |
CF8CzE-2 | DCB | 12,310 | 6040 | 2.04 |
CF8CzE-3 | DCB | 6270 | 3240 | 1.94 |
CF8CzA b | - | 17,900 | 8100 | 2.20 |
CF8CzEH-1 | DCB | 36,080 | 20,680 | 1.74 |
CF8CzEH-2 | DCB | 49,360 | 34,120 | 1.45 |
CF8CzEHCzIr | DCB | 16,730 | 9240 | 1.81 |
Carbazole Units and Monomers | λabsmax (nm) | λPLmax a (nm) |
---|---|---|
CzE | 236, 260, 294, 328, 343 | 347, 362 |
CzEH | 237, 264, 295, 331, 346 | 349, 366 |
CzIr | 237, 262, 295, 331, 346 | 349, 364, 525 |
CzE-Br | 243, 267, 306, 331, 344 | 349, 367 |
CzEH-Br | 244, 269, 306, 334, 347 | 352, 368 |
CzIr-Br | 244, 267, 306, 334, 347 | 387, 413, 525 |
Copolymer | λabsmax (nm) | λPLmax a (nm) | λPLexcmax b (nm) | ηPL c |
---|---|---|---|---|
CF8CzE-1 | 263, 389 | 417, 441 | 381, 390 | 0.78 |
CF8CzA | 268, 390 | 423, 445sh | 268, 389 | 0.77 |
CF8CzE-2 | 267, 388 | 417, 441 | 266, 388 | 0.73 |
CF8CzE-3 | 266, 383 | 416, 441 | 265, 383 | 0.75 |
CF8CzEH-1 | 272, 390 | 419, 442 | 273, 385 | 0.87 |
CF8CzEH-2 | 273, 392 | 419, 441 | 275, 386 | 0.81 |
CF8CzEHCzIr | 271, 388 | 418, 441 | 380, 388 | 0.23 |
Copolymer | λabsmax (nm) | λPLmax a (nm) | λPLexcmax b (nm) | ϕPLrel |
---|---|---|---|---|
CF8CzE-1 | 201, 245, 265, 383 | 427, 441 | 267, 297, 398 | 0.8 |
CF8CzA | 204, 243, 265, 379 | 426, 449 | 265, 297, 397 | 0.3 |
CF8CzE-2 | 201, 245, 267, 383 | 431, 449 | 267, 297, 399 | 0.6 |
CF8CzE-3 | 199, 244, 264, 378 | 427, 450 | 261, 298, 398 | 0.2 |
CF8CzEH-1 | 203, 244, 270, 389 | 433, 455 | 265, 298, 386 | 1.0 |
CF8CzEH-2 | 204, 243, 271, 384 | 433, 454 | 267, 298, 387 | 1.0 |
CF8CzEHCzIr | 201, 243, 270, 383 | 433, 452 | 379, 389, 399 | 0.05 |
Copolymer | EIP (eV) (−EHOMO) | EA (eV) (−ELUMO) | Egelc (eV) | Egopt (eV) |
---|---|---|---|---|
CF8CzE-1 | a 5.24/b 5.58 | 2.31 | a 2.93/b 3.27 | 2.94 |
CF8CzE-2 | a 5.26/b 5.55 | 2.32 | a 2.94/b 3.23 | 2.94 |
CF8CzE-3 | a 5.25/b 5.51 | 2.31 | a 2.94/b 3.20 | 2.96 |
CF8CzEH-1 | a 5.23/b 5.63 | 2.25 | a 2.98/b 3.38 | 2.94 |
CF8CzEH-2 | a 5.21/b 5.62 | 2.25 | a 2.96/b 3.37 | 2.95 |
CF8CzEHCzIr | a 5.29/b 5.53 | 2.25 | a 3.04/b 3.28 | 2.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cimrová, V.; Výprachtický, D.; Růžička, A.; Pokorná, V. Carbazole-Fluorene Copolymers with Various Substituents at the Carbazole Nitrogen: Structure—Properties Relationship. Polymers 2023, 15, 2932. https://doi.org/10.3390/polym15132932
Cimrová V, Výprachtický D, Růžička A, Pokorná V. Carbazole-Fluorene Copolymers with Various Substituents at the Carbazole Nitrogen: Structure—Properties Relationship. Polymers. 2023; 15(13):2932. https://doi.org/10.3390/polym15132932
Chicago/Turabian StyleCimrová, Věra, Drahomír Výprachtický, Aleš Růžička, and Veronika Pokorná. 2023. "Carbazole-Fluorene Copolymers with Various Substituents at the Carbazole Nitrogen: Structure—Properties Relationship" Polymers 15, no. 13: 2932. https://doi.org/10.3390/polym15132932
APA StyleCimrová, V., Výprachtický, D., Růžička, A., & Pokorná, V. (2023). Carbazole-Fluorene Copolymers with Various Substituents at the Carbazole Nitrogen: Structure—Properties Relationship. Polymers, 15(13), 2932. https://doi.org/10.3390/polym15132932