Preparation and Characterization of a Novel Tragacanth Gum/Chitosan/Sr-Nano-Hydroxyapatite Composite Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Membrane Preparations
2.2. Structural Characterization
2.3. Tensile Strength of the Composite Membranes
2.4. In Vitro Soaking of the Composite Membranes
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Composite Membranes
3.1.1. FT-IR Analysis
3.1.2. XRD Analysis
3.1.3. SEM Observation
3.1.4. Tensile Strength Test
3.1.5. Contact Angle Measurement
3.2. In Vitro Soaking of the Composite Membranes
3.2.1. Weight Loss Ratios of Samples after Degradation
3.2.2. Water Absorption Ratios of Samples after Degradation
3.2.3. SEM Photographs of Samples after Soaking
3.2.4. pH Value Change of Samples during Soaking
3.2.5. Mechanical Strength Reduction
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Song, J.C.; Suwanprateeb, J.; Sae-Lee, D.; Sosakul, T.; Kositbowornchai, S.; Klanrit, P.; Pitiphat, W.; Prajaneh, S. Clinical and histological evaluations of alveolar ridge augmentation using a novel bi-layered porous polyethylene barrier membrane. J. Oral Sci. 2020, 62, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Wang, L.N.; Zhou, Z.Y.; Lai, H.J.; Xu, P.; Liao, L.; Wei, J.C. Biodegradable Polymer Membranes Applied in Guided Bone/Tissue Regeneration: A Review. Polymers 2016, 8, 115. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Cai, Y.; Wang, H.; Pan, L.B.; Li, J.Y.; Chen, S.; Liu, Z.; Han, F.X.; Li, B. Biomimetic bone regeneration using angle-ply collagen membrane-supported cell sheets subjected to mechanical conditioning. Acta Biomater. 2020, 112, 75–86. [Google Scholar] [CrossRef] [PubMed]
- Hoornaert, A.; d’Arros, C.; Heymann, M.F.; Layrolle, P. Biocompatibility, resorption and biofunctionality of a new synthetic biodegradable membrane for guided bone regeneration. Biomed. Mater. 2016, 11, 045012. [Google Scholar] [CrossRef]
- Ke, C.L.; Deng, F.S.; Chuang, C.Y.; Lin, C.H. Antimicrobial Actions and Applications of Chitosan. Polymers 2021, 13, 904. [Google Scholar] [CrossRef]
- Liu, Z.W.; Guo, K.L.; Zhao, N.N.; Xu, F.J. Polysaccharides-based nanohybrids: Promising candidates for biomedical materials. Sci. China Mater. 2019, 62, 1831–1836. [Google Scholar] [CrossRef] [Green Version]
- Tian, M.P.; Zhang, A.D.; Yao, Y.X.; Chen, X.G.; Liu, Y. Mussel-inspired adhesive and polypeptide-based antibacterial thermo-sensitive hydroxybutyl chitosan hydrogel as BMSCs 3D culture matrix for wound healing. Carbohyd. Polym. 2021, 261, 117878. [Google Scholar] [CrossRef]
- Guo, N.S.; Zhao, M.G.; Li, S.J.; Hao, J.H.; Wu, Z.Y.; Zhang, C. Stereocomplexation Reinforced High Strength Poly(L-lactide)/Nanohydroxyapatite Composites for Potential Bone Repair Applications. Polymers 2022, 14, 645. [Google Scholar] [CrossRef] [PubMed]
- Joanna, I.; Jakub, J.; Emilia, C.; Zaneta, G.; Anna, H.; Anna, O.I.; Barbara, W.K.; Wojciech, S.; Stanislaw, M. Toward osteomimetic formation of calcium phosphate coatings with carbonated hydroxyapatite. Biomater. Adv. 2023, 149, 213403. [Google Scholar]
- Salahuddin, N.; Ibrahim, E.M.; El-Kemary, M. Different Methods for Preparation of Hydroxyapatite Nanostructures. Biointer. Res. Appl. Chem. 2023, 13, 236. [Google Scholar]
- Zhang, H.T.; Zhou, Y.C.; Xu, C.H.; Qin, X.P.; Guo, Z.F.; Wei, H.; Yu, C.Y. Mediation of synergistic chemotherapy and gene therapy via nanoparticles based on chitosan and ionic polysaccharides. Int. J. Biol. Macromol. 2022, 223, 290–306. [Google Scholar] [CrossRef]
- Wu, J.M.; Dong, Z.H.; Li, X.P.; Li, P.; Wei, J.D.; Hu, M.; Geng, L.H.; Peng, X.F. Constructing acid-resistant chitosan/cellulose nanofibrils composite membrane for the adsorption of methylene blue. J. Environ. Chem. Eng. 2022, 10, 107754. [Google Scholar] [CrossRef]
- Wang, X.L.; Dong, S.Q.; Qin, W.; Xue, Y.X.; Wang, Q.; Zhang, J.; Liu, H.Y.; Zhang, H.; Wang, W.; Wei, J.F. Fabrication of highly permeable CS/NaAlg loose nanofiltration membrane by ionic crosslinking assisted layer-by-layer self-assembly for dye desalination. Sep. Purif. Technol. 2022, 284, 120202. [Google Scholar] [CrossRef]
- Tang, S.; Jiang, L.Y.; Ma, B.L.; Tang, C.Y.; Wen, Y.; Zhang, N.; Zhang, Y.; Su, S.P. Preparation and characterization of bamboo fiber/chitosan/nano-hydroxyapatite composite membrane by ionic crosslinking. Cellulose 2020, 27, 5089–5100. [Google Scholar] [CrossRef]
- Jiang, L.Y.; Li, Y.B.; Xiong, C.D. A novel composite membrane of chitosan-carboxymethyl cellulose polyelectrolyte complex membrane filled with nano-hydroxyapatite I.Preparation and properties. J. Mater. Sci. Mater. Med. 2009, 16, 65. [Google Scholar]
- Polez, R.T.; Morits, M.; Jonkergouw, C.; Phiri, J.; Valle-Delgado, J.J.; Linder, M.B.; Maloney, T.; Rojas, O.J.; Osterberg, M. Biological activity of multicomponent bio-hydrogels loaded with tragacanth gum. Int. J. Biol. Macromol. 2022, 215, 691–704. [Google Scholar] [CrossRef] [PubMed]
- Mohammadinejad, R.; Kumar, A.; Ranjbar-Mohammadi, M.; Ashrafizadeh, M.; Han, S.S.; Khang, G.; Roveimiab, Z. Recent Advances in Natural Gum-Based Biomaterials for Tissue Engineering and Regenerative Medicine: A Review. Polymers 2020, 12, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salehi, F. Edible Coating of Fruits and Vegetables Using Natural Gums: A Review. Inter. J. Fruit. Sci. 2020, 20, S570–S589. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Tay, F.R. Recent progress in the industrial and biomedical applications of tragacanth gum. Carbohyd. Polym. 2019, 212, 450–467. [Google Scholar] [CrossRef]
- Ranjbar-Mohammadi, M.; Bahrami, S.H. Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds. J. Mater. Sci.-Mater. Med. 2015, 48, 71–79. [Google Scholar] [CrossRef]
- Zahra, N.; Maryam, S.; Mahsa, J.; Sadegh, N.M.; Houman, S. A review on tragacanth gum: A promising natural polysaccharide in drug delivery and cell therapy. Int. J. Biol. Macromol. 2023, 241, 124343. [Google Scholar]
- Ghorbani, M.; Ramezani, S.; Rashidi, M.R. Fabrication of honey-loaded ethylcellulose/gum tragacanth nanofibers as an effective antibacterial wound dressing. Colloid. Surf. A 2021, 621, 126615. [Google Scholar] [CrossRef]
- Uskoković, V.U.K. Ion-doped hydroxyapatite: An impasse or the road to follow? Ceram. Int. 2020, 46, 11443–11465. [Google Scholar] [CrossRef]
- Manzoor, F.; Golbang, A.; Dixon, D.; Mancuso, E.; Azhar, U.; Manolakis, I.; Crawford, D.; McIlhagger, A.; Harkin-Jones, E. 3D Printed Strontium and Zinc Doped Hydroxyapatite Loaded PEEK for Craniomaxillofacial Implants. Polymers 2022, 14, 1376. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, V.A.; Deepika, P.C.; Basavarajaiah, S. Zinc Incorporated Nano Hydroxyapatite: A Novel Bone Graft Used for Regeneration of Intrabony Defects. Contemp. Clin. Dent. 2018, 9, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Tsai, S.W.; Yu, W.X.; Hwang, P.A.; Hsu, Y.W.; Hsu, F.Y. Fabrication and Characteristics of PCL Membranes Containing Strontium-Substituted Hydroxyapatite Nanofibers for Guided Bone Regeneration. Polymers 2019, 11, 1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jia, X.; Wang, P.J.; Mu, S.; Yan, J.Q.; Dai, J.Y.; Bi, L.J. Strontium-Doped Hydroxyapatite Nanowires with a Hierarchical Interface: Enhancing Osteoinduction and Cellular Attachment. Nano 2022, 17, 2250108. [Google Scholar] [CrossRef]
- Ma, P.; Chen, T.W.; Xu, X.P.; Hu, Y.D.; Huang, K.; Wang, Y.F.; Dai, H.L. Effects of bioactive strontium-substituted hydroxyapatite on osseointegration of polyethylene terephthalate artificial ligaments. J. Mater. Chem. B 2021, 9, 6600–6613. [Google Scholar] [CrossRef]
- Xu, L.J.; Jiang, L.Y.; Xiong, C.D.; Jiang, L.X. Effect of different synthesis conditions on the microstructure, crystallinity and solubility of Mg-substituted hydroxyapatite nanopowder. Adv. Powder Technol. 2014, 25, 1142–1146. [Google Scholar]
- Cao, L.H.; Weng, W.Z.; Chen, X.; Ding, Y.T.; Yan, Y.G.; Li, H.H.; Zhao, H.; Shin, J.W.; Wei, J.; Ji, F.; et al. Development of degradable and bioactive composite as bone implants by incorporation of mesoporous bioglass into poly(l-lactide). Compos. Part B Eng. 2015, 77, 454–461. [Google Scholar] [CrossRef]
- Soares, P.; Laurindo, C.A.H.; Torres, R.D.; Kuromoto, N.K.; Peitl, O.; Zanotto, E.D. Effect of a bioactive glass-ceramic on the apatite nucleation on titanium surface modified by micro-arc oxidation. Cellulose 2012, 206, 4601–4605. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.L.; Song, L.N.; Jiang, Q.H.; Wang, X.X.; Zhao, S.F.; He, F.M. Effect of Strontium-Substituted Nanohydroxyapatite Coating of Porous Implant Surfaces on Implant Osseointegration in a Rabbit Model. Int. J. Oral. Max. Implant. 2012, 27, 1332–1339. [Google Scholar]
- Norowski, P.A.; Fujiwara, T.; Clem, W.C.; Adatrow, P.C.; Eckstein, E.C.; Haggard, W.O.; Bumgardner, J.D. Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: Material characterization and cytocompatibility. J. Tissue Eng. Regen. Med. 2015, 9, 577–583. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Guo, D.G.; Sun, L.J.; Li, H.Y.; Hanaor, D.A.H.; Schmidt, F.; Xu, K.W. Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite. J. Eur. Ceram. Soc. 2018, 38, 5554–5562. [Google Scholar] [CrossRef] [Green Version]
- Verma, C.; Pathania, D.; Anjum, S.; Gupta, B. Smart Designing of Tragacanth Gum by Graft Functionalization for Advanced Materials. Macromol. Mater. Eng. 2020, 305, 1900762. [Google Scholar] [CrossRef]
- Wang, Z.L.; Xu, Y.; Wang, Y.; Ito, Y.; Zhang, P.B.; Chen, X.S. Enhanced in vitro mineralization and in vivo osteogenesis of composite scaffolds through controlled surface grafting of L-lactic acid oligomer on nano-hydroxyapatite. Biomacromolecules 2016, 17, 818–829. [Google Scholar] [CrossRef]
- Lim, D.J. Bone Mineralization in Electrospun-Based Bone Tissue Engineering. Polymers 2022, 14, 2123. [Google Scholar] [CrossRef]
- Zhang, N.; Gao, T.L.; Wang, Y.; Wang, Z.L.; Zhang, P.B.; Liu, J.G. Environmental pH-controlled loading and release of protein on mesoporous hydroxyapatite nanoparticles for bone tislsue engineering. Mat. Sci. Eng. C Mater. 2015, 46, 158–165. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, S.; Jiang, L.; Jiang, Z.; Ma, Y.; Zhang, Y.; Su, S. Preparation and Characterization of a Novel Tragacanth Gum/Chitosan/Sr-Nano-Hydroxyapatite Composite Membrane. Polymers 2023, 15, 2942. https://doi.org/10.3390/polym15132942
Tang S, Jiang L, Jiang Z, Ma Y, Zhang Y, Su S. Preparation and Characterization of a Novel Tragacanth Gum/Chitosan/Sr-Nano-Hydroxyapatite Composite Membrane. Polymers. 2023; 15(13):2942. https://doi.org/10.3390/polym15132942
Chicago/Turabian StyleTang, Shuo, Liuyun Jiang, Zhihong Jiang, Yingjun Ma, Yan Zhang, and Shengpei Su. 2023. "Preparation and Characterization of a Novel Tragacanth Gum/Chitosan/Sr-Nano-Hydroxyapatite Composite Membrane" Polymers 15, no. 13: 2942. https://doi.org/10.3390/polym15132942
APA StyleTang, S., Jiang, L., Jiang, Z., Ma, Y., Zhang, Y., & Su, S. (2023). Preparation and Characterization of a Novel Tragacanth Gum/Chitosan/Sr-Nano-Hydroxyapatite Composite Membrane. Polymers, 15(13), 2942. https://doi.org/10.3390/polym15132942