Preparation of Porous Scaffold Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and FucoPol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biopolymer Production
2.2. Biopolymer Characterization
2.2.1. Composition
2.2.2. Molecular Mass Distribution
2.2.3. X-ray Diffraction
2.2.4. Thermal Properties
2.3. Preparation of PHBHVHHx Cast Films
2.4. Preparation of PHBHVHHx Porous Scaffolds
2.4.1. PHBHVHHx Scaffolds
2.4.2. PHBHVHHx:FucoPol Scaffolds
2.5. Characterization of the Biopolymeric Structures
2.5.1. Morphology
2.5.2. Mechanical Properties
2.5.3. Statistical Analysis
3. Results and Discussion
3.1. Biopolymer Characterization
3.1.1. Composition
3.1.2. Molecular Mass Distribution
Microbial Source | Composition (wt%) | Mw (×105 Da) | PDI | Tg (°C) | Tm1 (°C) | Tm2 (°C) | Tdeg (°C) | Xc (%) | References | ||
---|---|---|---|---|---|---|---|---|---|---|---|
3HB | 3HV | 3HHx | |||||||||
MMC | 55 | 21 | 24 | 0.9 | 2.2 | −3.8 | 144 | 159 | 275 | 26.2 | This study |
MMC | 55 | 9 | 36 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | [9] |
MMC | 68 | 17 | 15 | n.a. | n.a. | 0.2 | 111 | 173 | 266 | 22.6 | [8] |
Rhodospirillum rubrum ATCC 25903 | 89 | 6 | 5 | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | n.a. | [30] |
Recombinant Aeromonas hydrophila 4AK4 | 83 | 4 | 13 | 30.3 | 1.8 | −1.3 | 113 | n.a. | 255.5 | 19.5 | [12] |
83–91 | 1–7 | 5–15 | 3.0–8.0 | 1.5–2.2 | −2.6 to −1.2 | 104–148 | n.a. | 249–273 | 14.2–22.7 | [11] | |
48–75 | 13–24 | 12–28 | 8.1–12.7 | 2.1–2.9 | −1.9 to −12.5 | 54.2–101 | n.a. | 247–258 | n.a. | [32] | |
Recombinant Cupriavidus necator P(3HB)-4 | 71–82 | 7–18 | 11 | 16.0–18.4 | 2.0–2.2 | n.a. | 141–143 | n.a. | n.a. | 14.5–27.5 | [10] |
66–94 | 3–32 | 2–7 | 3.3–4.6 | 2.0–2.6 | −4.7 to −0.8 | 91–129 | 139–148 | n.a. | 19.2–45.2 | [28] | |
Recombinant Cupriavidus necator Re2133/pCB81 | 66 61 54 | 12 21 36 | 22 18 10 | n.a. n.a. n.a. | n.a. n.a. n.a. | n.d. n.d. −2.8 | 70 133 152 | n.a. n.a. n.a. | n.a. n.a. n.a. | 13.4 5.4 7.2 | [41] |
Recombinant E. coli LS5218 | 61–91 69–79 58–79 | 0–33 0–22 0–31 | 4–13 8–21 9–21 | n.a. n.a. n.a. | n.a. n.a. n.a. | n.a. n.a. n.a. | n.a. n.a. n.a. | n.a. n.a. n.a. | n.a. n.a. n.a. | n.a. n.a. n.a. | [29] |
3.1.3. X-ray Diffraction
3.1.4. Thermal Properties
3.2. Characterization of PHBHVHHx Cast Films
3.2.1. Morphology
3.2.2. Mechanical Properties
3.3. Preparation of the PHBHVHHx Emulsion-Templated Scaffolds
3.4. Mechanical Properties of the PHBHVHHx Emulsion-Templated Scaffolds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dikici, B.A.; Claeyssens, F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front. Bioeng. Biotechnol. 2020, 8, 875. [Google Scholar] [CrossRef]
- Kinikoglu, B. A Comparison of Scaffold-free and Scaffold-based Reconstructed Human Skin Models as Alternatives to Animal Use. Altern. Lab. Anim. 2017, 45, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Nikolova, M.P.; Chavali, M.S. Recent advances in biomaterials for 3D scaffolds: A review. Bioact. Mater. 2019, 4, 271–292. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Sanguramath, R.A. Emulsion Templating: Porous Polymers and beyond. Macromolecules 2019, 52, 5445–5479. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, I.; Hermida, É.B. Fabrication and characterization of porous PHBV scaffolds for tissue engineering. J. Phys. Conf. Ser. 2011, 332, 012028. [Google Scholar] [CrossRef]
- Esmail, A.; Pereira, J.R. Preparation and Characterization of Porous Scaffolds Based on Poly(3-hydroxybutyrate) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate). Life 2021, 11, 935. [Google Scholar] [CrossRef] [PubMed]
- Bergstrand, A.; Andersson, H. Preparation of Porous Poly(3-Hydroxybutyrate) Films by Water-Droplet Templating. J. Biomater. Nanobiotechnol. 2012, 3, 431–439. [Google Scholar] [CrossRef] [Green Version]
- Meléndez-Rodríguez, B.; Torres-Giner, S. Blends of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with fruit pulp biowaste derived poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) for organic recycling food packaging. Polymers 2021, 13, 1155. [Google Scholar] [CrossRef]
- Silva, F.; Matos, M. An integrated process for mixed culture production of 3-hydroxyhexanoate-rich polyhydroxyalkanoates from fruit waste. Chem. Eng. J. 2022, 427, 131908. [Google Scholar] [CrossRef]
- Ye, H.-M.; Wang, Z. Different thermal behaviors of microbial polyesters poly(3-hydroxybutyrateco-3-hydroxyvalerate-co-3-hydroxyhexanoate) and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Polymer 2010, 51, 6037–6046. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, G.-Q. Production and characterization of terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by recombinant Aeromonas hydrophila 4AK4 harboring genes phaAB. Process Biochem. 2007, 42, 1342–1347. [Google Scholar] [CrossRef]
- Hu, Y.J.; Wei, X. Biocompatibility of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) with bone marrow mesenchymal stem cells. Acta Biomater. 2009, 5, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Koller, M. Biodegradable and Biocompatible Polyhydroxy-alkanoates (PHA): Auspicious Microbial Macromolecules for Pharmaceutical and Therapeutic Applications. Molecules 2018, 23, 362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbari, S.; Nour, A.H. Emulsion types, stability mechanisms and rheology: A review. Int. J. Innov. Res. Sci. Stud. 2018, 1, 14–21. [Google Scholar] [CrossRef]
- Kimmins, S.D.; Cameron, N.R. Functional porous polymers by emulsion templating: Recent advances. Adv. Funct. Mater. 2011, 21, 211–225. [Google Scholar] [CrossRef]
- Bouyer, E.; Mekhloufi, G. Proteins, polysaccharides, and their complexes used as stabilizers for emulsions: Alternatives to synthetic surfactants in the pharmaceutical field? Int. J. Pharm. 2012, 436, 359–378. [Google Scholar] [CrossRef]
- Carrier, O.; Covis, R. Inverse emulsions stabilized by a hydrophobically modified polysaccharide. Carbohydr. Polym. 2011, 84, 599–604. [Google Scholar] [CrossRef]
- Anarjan, N.; Ping Tan, C. Physico-chemical stability of astaxanthin nanodispersions prepared with polysaccharides as stabilizing agents. Int. J. Food Sci. Nutr. 2013, 64, 744–748. [Google Scholar] [CrossRef]
- López-Ortega, M.A.; Rodríguez-Hernández, A.I. Physicochemical characterization and emulsifying properties of a novel exopolysaccharide produced by haloarchaeon Haloferax mucosum. Int. J. Biol. Macromol. 2019, 142, 152–162. [Google Scholar] [CrossRef]
- Guerreiro, B.M.; Freitas, F. Demonstration of the cryoprotective properties of the fucose-containing polysaccharide FucoPol. Carbohydr. Polym. 2020, 245, 116500. [Google Scholar] [CrossRef]
- Ferreira, A.R.V.; Bandarra, N.M. FucoPol and chitosan bilayer films for walnut kernels and oil preservation. LWT 2018, 91, 34–39. [Google Scholar] [CrossRef]
- Baptista, S.; Pereira, J.R. Development of Olive Oil and α-Tocopherol Containing Emulsions Stabilized by FucoPol: Rheological and Textural Analyses. Polymers 2022, 14, 2349. [Google Scholar] [CrossRef] [PubMed]
- Concórdio-Reis, P.; Pereira, C.V. Silver nanocomposites based on the bacterial fucose-rich polysaccharide secreted by Enterobacter A47 for wound dressing applications: Synthesis, characterization and in vitro bioactivity. Int. J. Biol. Macromol. 2020, 163, 959–969. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.R.; Araújo, D. Demonstration of the adhesive properties of the medium-chain-length polyhydroxyalkanoate produced by Pseudomonas chlororaphis subsp. aurantiaca from glycerol. Int. J. Biol. Macromol. 2019, 122, 1144–1151. [Google Scholar] [CrossRef]
- Concórdio-Reis, P.; Reis, M.A.M. Biosorption of Heavy Metals by the Bacterial Exopolysaccharide FucoPol. Appl. Sci. 2020, 10, 6708. [Google Scholar] [CrossRef]
- Kalyani, P.; Khandelwal, M. Modulation of morphology, water uptake/retention, and rheological properties by in-situ modification of bacterial cellulose with the addition of biopolymers. Cellulose 2021, 28, 11025–11036. [Google Scholar] [CrossRef]
- Park, S.; Baker, J.O. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Bhubalan, K.; Rathi, D.-N. Improved synthesis of PHBHVHHx terpolymers by mutant Cupriavidus necator using the PHA synthase gene of Chromobacterium sp. USM2 with high affinity towards 3HV. Polym. Degrad. Stab. 2010, 95, 1436–1442. [Google Scholar] [CrossRef]
- Park, S.J.; Ahn, W.S. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) by metabolically engineered Escherichia coli strains. Biotechnol. Bioeng. 2001, 74, 82–87. [Google Scholar] [CrossRef]
- Brandl, H.; Knee, E.J., Jr. Ability of the phototrophic bacterium Rhodospirillum rubrum to produce various poly (β-hydroxyalkanoates): Potential sources for biodegradable polyesters. Int. J. Biol. Macromol. 1989, 11, 49–55. [Google Scholar] [CrossRef]
- Liang, Y.S.; Zhao, W. Study on the biocompatibility of novel terpolyester poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate). J. Biomed. Mater. Res.—Part A 2008, 87, 441–449. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ma, L. Biosynthesis and Characterization of 3-Hydroxyalkanoate Terpolyesters with Adjustable Properties by Aeromonas hydrophila. Biotechnol. Bioeng. 2009, 104, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Concórdio-Reis, P.; Pereira, J.R. Effect of mono and dipotassium phosphate concentration on extracellular polysaccharide production by the bacterium Enterobacter A47. Process Biochem. 2018, 75, 16–21. [Google Scholar] [CrossRef]
- Rai, R.; Keshavarz, T. Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Mat. Sci. Eng. R Rep. 2011, 72, 29–47. [Google Scholar] [CrossRef]
- Gahlawat, G.; Soni, S.K. Valorization of waste glycerol for the production of poly (3-hydroxybutyrate) and poly (3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer by Cupriavidus necator and extraction in a sustainable manner. Bioresour. Technol. 2017, 243, 492–501. [Google Scholar] [CrossRef]
- Li, D.; Lv, L. Controlling microbial PHB synthesis via CRISPRi. Appl. Microbiol. Biotechnol. 2017, 101, 5861–5867. [Google Scholar] [CrossRef]
- Rebocho, A.T.; Pereira, J.R. Preparation and Characterization of Films Based on a Natural PHB/mcl-PHA Blend Obtained through the Co-culture of Cupriavidus Necator and Pseudomonas Citronellolis in Apple Pulp Waste. Bioengineering 2020, 7, 34. [Google Scholar] [CrossRef] [Green Version]
- Sudesh, K.; Abe, H. Synthesis, structure and properties of polyhydroxyalkanoates: Biological polyesters. Progr. Pol. Sci. 2000, 25, 1503–1555. [Google Scholar] [CrossRef]
- Zhila, N.; Shishatskaya, E. Properties of PHA bi-, ter-, and quarter-polymers containing 4-hydroxybutyrate monomer units. Int. J. Biol. Macromol. 2018, 111, 1019–1026. [Google Scholar] [CrossRef] [Green Version]
- Baptista, S.; Araújo, D. Deacetylation and Desuccinylation of the Fucose-Rich Polysaccharide Fucopol: Impact on Biopolymer Physical and Chemical Properties. Molecules 2022, 27, 7165. [Google Scholar] [CrossRef]
- Jung, H.-R.; Jeon, J.-M. Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolymer production from volatile fatty acids using engineered Ralstonia eutropha. Int. J. Biol. Macromol. 2019, 138, 370–378. [Google Scholar] [CrossRef] [PubMed]
- Meléndez-Rodríguez, B.; Castro-Mayorga, J.L. Preparation and Characterization of Electrospun Food Biopackaging Films of Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Derived from Fruit Pulp Biowaste. Front. Sustain. Food Syst. 2018, 2, 38. [Google Scholar] [CrossRef]
- Martínez-Herrera, R.E.; Alemán-Huerta, M.E. Efficient recovery of thermostable polyhydroxybutyrate (PHB) by a rapid and solvent-free extraction protocol assisted by ultrasound. Int. J. Bio. Macromol. 2020, 164, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Bhubalan, K.; Lee, W.H. Controlled biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) from mixtures of palm kernel oil and 3HV-precursors. Pol. Degrad. Stab. 2008, 93, 17–23. [Google Scholar] [CrossRef]
- Muiruri, J.K.; Yeo, J.C.C. Recent advances of sustainable Short-chain length polyhydroxyalkanoates (Scl-PHAs)—Plant biomass composites. Eur. Polym. J. 2023, 187, 111882. [Google Scholar] [CrossRef]
- Khanna, S.; Srivastava, A.K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 2005, 40, 607–619. [Google Scholar] [CrossRef]
- Anjum, A.; Zuber, M. Microbial production of polyhydroxyalkanoates (PHAs) and its copolymers: A review of recent advancements. Int. J. Biol. Macromol. 2016, 89, 161–174. [Google Scholar] [CrossRef]
- Fosse, C.; Esposito, A. Effect of Chemical Composition on Molecular Mobility and Phase Coupling in Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) with Different Comonomer Contents. J. Polym. Environ. 2023. [Google Scholar] [CrossRef]
- D’Anna, A.; Arrigo, R. Rheology, Morphology and Thermal Properties of a PLA/PHB/Clay Blend Nanocomposite: The Influence of Process Parameters. J. Polym. Environ. 2022, 30, 102–113. [Google Scholar] [CrossRef]
- Righetti, M.C.; Cinelli, P. Immiscible PHB/PB S and PHB/PBSA blends: Morphology, phase composition and modelling of elastic modulus. Polym. Int. 2022, 71, 47–56. [Google Scholar] [CrossRef]
- Surisaeng, J.; Kanabenja, W. Polyhydroxybutyrate/polylactic acid blends: An alternative feedstock for 3D printed bone scaffold model. J. Phys. Conf. Ser. 2022, 2175, 012021. [Google Scholar] [CrossRef]
- Ji, Y.; Li, X.T. Interactions between a poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) terpolyester and human keratinocytes. Biomaterials 2008, 29, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, Z.H. Differentiation of human bone marrow mesenchymal stem cells grown in terpolyesters of 3-hydroxyalkanoates scaffolds into nerve cells. Biomaterials 2010, 31, 1691–1698. [Google Scholar] [CrossRef] [PubMed]
- Conti, D.; Pezzin, H. Mechanical and Morphological Properties of Poly(3-hydroxybutyrate)/Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Blends. Macromol. Symp. 2006, 1, 491–500. [Google Scholar] [CrossRef]
- Lemechko, P.; Le Fellic, M. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) using agro-industrial effluents with tunable proportion of 3-hydroxyvalerate monomer units. Int. J. Biol. Macromol. 2019, 128, 429–434. [Google Scholar] [CrossRef]
- Boyandin, A.N.; Dvoinina, L.M. Production of Porous Films Based on Biodegradable Polyesters by the Casting Solution Technique Using a Co-Soluble Porogen (Camphor). Polymers 2020, 12, 1950. [Google Scholar] [CrossRef]
- Holzapfel, G.A. Biomechanics of soft tissue. In Handbook of Material Behaviour Nonlinear Models and Properties; Lemaitre, J., Ed.; LMT: Cachan, France, 2000. [Google Scholar]
- Foudazi, R.; Zowada, R. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir 2023, 39, 2092–2111. [Google Scholar] [CrossRef]
- Zhao, K.; Deng, Y. Polyhydroxyalkanoate (PHA) scaffolds with good mechanical properties and biocompatibility. Biomaterials 2003, 24, 1041–1045. [Google Scholar] [CrossRef]
- Carvalho, E.D.; Chebil, M. A solvent-free process to design low density polyhydroxyalkanoate. Polym. Renew. 2023, 14, 61–75. [Google Scholar] [CrossRef]
- Zhu, X.; Zhong, T. Preparation of hydrophilic poly(lactic acid) tissue engineering scaffold via (PLA)-(PLA-b-PEG)-(PEG) solution casting and thermal-induced surface structural transformation. J. Biomater. Sci. Polym. Ed. 2015, 26, 1286–1296. [Google Scholar] [CrossRef]
- Modaress, M.P.; Mirzadeh, H. Fabrication of a porous wall and higher interconnectivity scaffold comprising gelatin/chitosan via combination of salt-leaching and lyophilization methods. Iran. Polym. J. Engl. Ed. 2012, 21, 191–200. [Google Scholar] [CrossRef]
- Reignier, J.; Huneault, M.A. Preparation of interconnected poly(ε{lunate}-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. Polymer 2006, 47, 4703–4717. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Li, Q. Fabrication and characterization of poly(l-lactide-co-glycolide) knitted mesh-reinforced collagen-chitosan hybrid scaffolds for dermal tissue engineering. J. Mech. Behav. Biomed. Mater. 2012, 8, 204–215. [Google Scholar] [CrossRef]
- Gennisson, J.L.; Baldeweck, T. Assessment of elastic parameters of human skin using dynamic elastography. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2004, 51, 980–989. [Google Scholar] [CrossRef] [PubMed]
- Lim, X.; Potter, M. Manufacture and characterisation of EmDerm—Novel hierarchically structured bio-active scaffolds for tissue regeneration. J. Mater. Sci. Mater. Med. 2018, 29, 79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Polymer (Monomers, wt%) | E (MPa) | σ (MPa) | ε (%) | References |
---|---|---|---|---|
PHBHVHHx (55:21:24) | 78.3 ± 6.9 | 5.1 ± 0.2 | 269.2 ± 52.1 | This study |
PHBHVHHx (64:18:18) | 750 | 12.5 | 4.25 | [8] |
PHBHVHHx (89:3:8) | 285 | 5.0 | 264 | [12] |
PHBHVHHx (83:5:12) | 290 | 15.7 | 340 | [11] |
PHBHVHHx (55:26:19) | 2.0 | 0.3 | 133 | [32] |
PHBHHx (88:12) | 130–498 | 4.1–9.4 | 104–113 | [11,12,32] |
PHBHV (97:3) | 2700 | 21.8 | 12.1 | [54] |
PHBHV (85:15) | 531 | 10.9 | 8.8 | [55] |
PHBHV (65:35) | 45 | 1.22 | 12.9 | [55] |
PHBHV (87:13) | 4000 | 35 | 2 | [8] |
PHB | 1510–4600 | 18.4–40.1 | 1.6–8.2 | [11,12,32,54,56] |
Polymer (Monomers, wt%) | Method | Thickness (mm) | E (MPa) | σ (MPa) | ε (%) | References |
---|---|---|---|---|---|---|
PHBHVHHx (55:21:24) | Water emulsion | 241 | 60 | 3.6 | 56 | This study |
FucoPol (0.1 wt%) emulsion | 159 | 85 | 4.4 | 52 | This study | |
PHBHV (75:25) | Water emulsion | 260 | 0.11 | 3.4 | 14.8 | [6] |
PHBHV (80:20) | Electrospinning | 60 | 434–1166 | 7.1–18.9 | 2.6–2.9 | [42] |
PHB | Water emulsion | 610 | 0.07 | 3.18 | 13.6 | [6] |
Particle Leaching | 45 | 1815 | 13.5 | 0.9 | [57] | |
Collagen | oil-in-water emulsion | n.a. | 1–2 | 7.8–9.7 | n.a. | [66] |
Collagen/Fibrin | oil-in-water emulsion | n.a. | 1–3 | 12.0–16.0 | n.a. | [66] |
Fibrin | oil-in-water emulsion | n.a. | 1–2 | 4.0–5.1 | n.a. | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, J.R.; Rafael, A.M.; Esmail, A.; Morais, M.; Matos, M.; Marques, A.C.; Reis, M.A.M.; Freitas, F. Preparation of Porous Scaffold Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and FucoPol. Polymers 2023, 15, 2945. https://doi.org/10.3390/polym15132945
Pereira JR, Rafael AM, Esmail A, Morais M, Matos M, Marques AC, Reis MAM, Freitas F. Preparation of Porous Scaffold Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and FucoPol. Polymers. 2023; 15(13):2945. https://doi.org/10.3390/polym15132945
Chicago/Turabian StylePereira, João Ricardo, Ana Margarida Rafael, Asiyah Esmail, Maria Morais, Mariana Matos, Ana Carolina Marques, Maria A. M. Reis, and Filomena Freitas. 2023. "Preparation of Porous Scaffold Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and FucoPol" Polymers 15, no. 13: 2945. https://doi.org/10.3390/polym15132945
APA StylePereira, J. R., Rafael, A. M., Esmail, A., Morais, M., Matos, M., Marques, A. C., Reis, M. A. M., & Freitas, F. (2023). Preparation of Porous Scaffold Based on Poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-3-hydroxyhexanoate) and FucoPol. Polymers, 15(13), 2945. https://doi.org/10.3390/polym15132945