Effect of Degradation in Small Intestinal Fluids on Mechanical Properties of Polycaprolactone and Poly-l-lactide-co-caprolactone
Abstract
:1. Introduction
2. Materials and Methods
2.1. General Procedure
2.2. Dogbone Sample Preparation
2.3. Degradation Environment
2.4. Tensile Testing
2.5. Post-Processing
3. Results
3.1. Visual Observations
3.2. Yield Stress
3.3. Elongation at Break
3.4. Young’s Modulus
3.5. Viscoelastic Relaxation Modulus
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PCL | Polycaprolactone |
PLCL | Poly-l-Lactide-co-Caprolactone (70%:30%) |
GI | Gastrointestinal |
PBS | Phosphate Buffer Solution |
FEA | Finite Element Analysis |
References
- Woodruff, M.A.; Hutmacher, D.W. The return of a forgotten polymer–Polycaprolactone in the 21st century. Prog. Polym. Sci. Oxf. 2010, 35, 1217–1256. [Google Scholar] [CrossRef] [Green Version]
- McMahon, S.; Bertollo, N.; Cearbhaill, E.D.; Salber, J.; Pierucci, L.; Duffy, P.; Dürig, T.; Bi, V.; Wang, W. Bio-resorbable polymer stents: A review of material progress and prospects. Prog. Polym. Sci. 2018, 83, 79–96. [Google Scholar] [CrossRef]
- Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019, 96, 1–20. [Google Scholar] [CrossRef]
- Hendow, E.K.; Guhmann, P.; Wright, B.; Sofokleous, P.; Parmar, N.; Day, R.M. Biomaterials for hollow organ tissue engineering. BMC Res. Notes 2016, 9, 3. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boys, A.J.; Barron, S.L.; Tilev, D.; Owens, R.M. Building Scaffolds for Tubular Tissue Engineering. Front. Bioeng. Biotechnol. 2020, 8, 589960. [Google Scholar] [CrossRef] [PubMed]
- Rejchrt, S.; Kopacova, M.; Brozik, J.; Bures, J. Biodegradable stents for the treatment of benign stenoses of the small and large intestines. Endoscopy 2011, 43, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, N.; Li, R.; Li, Y.; Ruan, L. Biodegradable intestinal stents: A review. Prog. Nat. Sci. Mater. Int. 2014, 24, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Malin, M.; Hiljanen-Vainio, M.; Karjalainen, T.; Seppälä, J. Biodegradable lactone copolymers. II. Hydrolytic study of ɛ-caprolactone and lactide copolymers. J. Appl. Polym. Sci. 1996, 59, 1289–1298. [Google Scholar] [CrossRef]
- Fernández, J.; Etxeberria, A.; Sarasua, J.R. Synthesis, structure and properties of poly(L-lactide-co-ɛ-caprolactone) statistical copolymers. J. Mech. Behav. Biomed. Mater. 2012, 9, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Egorov, V.I.; Schastlivtsev, I.V.; Prut, E.V.; Baranov, A.O.; Turusov, R.A. Mechanical properties of the human gastrointestinal tract. J. Biomech. 2002, 35, 1417–1425. [Google Scholar] [CrossRef] [PubMed]
- Granado, A.; Eguiazábal, J.I.; Nazábal, J. Structure and mechanical properties of blends of poly(E-caprolactone) with a poly(amino ether). J. Appl. Polym. Sci. 2008, 109, 3892–3899. [Google Scholar] [CrossRef]
- Rosa, D.S.; Neto, I.C.; Calil, M.R.; Pedroso, A.G.; Fonseca, C.P.; Neves, S. Evaluation of the thermal and mechanical properties of poly(ɛ-caprolactone), low-density polyethylene, and their blends. J. Appl. Polym. Sci. 2004, 91, 3909–3914. [Google Scholar] [CrossRef]
- Ragaert, K.; Baere, I.D.; Cardon, L.; Degrieck, J. Bulk Mechanical Porperties of Thermoplastic PCL. In Proceedings of the 6th Polymers & Mould Innovations International Conference, Guimaraes, Portugal, 10–12 September 2014. [Google Scholar]
- Hiljanen-Vainio, M.; Karjalainen, T.; Seppala, J. Biodegradable Lactone Copolymers. 1. Characterization and Mechanical Behavior of ɛ-Caprolactone and Lactide Copolymers. J. Appl. Polym. Sci. 1996, 59, 1281–1288. [Google Scholar] [CrossRef]
- Engelberg, I.; Kohn, J. Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials 1991, 12, 292–304. [Google Scholar] [CrossRef] [PubMed]
- Vidaurre, A.; Dueñas, J.M.; Estellés, J.M.; Cortázar, I.C. Influence of enzymatic degradation on physical properties of poly(ɛ-caprolactone) films and sponges. In Macromolecular Symposia; WILEY-VCH: Hoboken, NJ, USA, 2008; Volume 269, pp. 38–46. [Google Scholar] [CrossRef]
- Dias, J.R.; Sousa, A.; Augusto, A.; Bártolo, P.J.; Granja, P.L. Electrospun Polycaprolactone (PCL) Degradation: An In Vitro and In Vivo Study. Polymers 2022, 14, 3397. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.M.; Prasannan, A.; Tsai, H.C.; Jhu, J.J. Ex vivo evaluation of biodegradable poly(ɛ-caprolactone) films in digestive fluids. Appl. Surf. Sci. 2014, 313, 828–833. [Google Scholar] [CrossRef]
- Chang, H.M.; Huang, C.C.; Parasuraman, V.R.; Jhu, J.J.; Tsai, C.Y.; Chao, H.Y.; Lee, Y.L.; Tsai, H.C. In vivo degradation of poly (ɛ-caprolactone) films in Gastro Intestinal (GI) tract. Mater. Today Commun. 2017, 11, 18–25. [Google Scholar] [CrossRef]
- Karjalainen, T.; Hiljanen-Vainio, M.; Malin, M.; Seppälä, J. Biodegradable lactone copolymers. III. Mechanical properties of ɛ-caprolactone and lactide copolymers after hydrolysis in vitro. J. Appl. Polym. Sci. 1996, 59, 1299–1304. [Google Scholar] [CrossRef]
- Jeong, S.I.; Kim, S.H.; Kim, Y.H.; Jung, Y.; Kwon, J.H.; Kim, B.S.; Lee, Y.M. Manufacture of elastic biodegradable PLCL scaffolds for mechano-active vascular tissue engineering. J. Biomater. Sci. Polym. Ed. 2004, 15, 645–660. [Google Scholar] [CrossRef] [PubMed]
- Roylance, D. Engineering Viscoelasticity; Massachusetts Institute of Technology: Cambridge, MA, USA, 2001. [Google Scholar]
- Korhonen, R.K.; Saarakkala, S. Biomechanics and Modeling of Skeletal Soft Tissues. In Theoretical Biomechanics; Klika, V., Ed.; IntechOpen: Rijeka, Croatia, 2011; Chapter 6. [Google Scholar] [CrossRef]
- Simulia. ABAQUS Analysis User’s Manual 6.14, 22.7.1 Time Domain Viscoelasticity. 2014. Available online: http://130.149.89.49:2080/v6.14/books/usb/default.htm (accessed on 15 March 2023).
- Saeheng, C.; Fuongfuchat, A.; Sriyai, M.; Daranarong, D.; Namhongsa, M.; Molloy, R.; Meepowpan, P.; Punyodom, W. Microstructure, thermal and rheological properties of poly(L-lactide-co-ɛ-caprolactone) tapered block copolymer for potential use in biomedical applications. J. Appl. Polym. Sci. 2022, 139, e53091. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peerlinck, S.; Miserez, M.; Reynaerts, D.; Gorissen, B. Effect of Degradation in Small Intestinal Fluids on Mechanical Properties of Polycaprolactone and Poly-l-lactide-co-caprolactone. Polymers 2023, 15, 2964. https://doi.org/10.3390/polym15132964
Peerlinck S, Miserez M, Reynaerts D, Gorissen B. Effect of Degradation in Small Intestinal Fluids on Mechanical Properties of Polycaprolactone and Poly-l-lactide-co-caprolactone. Polymers. 2023; 15(13):2964. https://doi.org/10.3390/polym15132964
Chicago/Turabian StylePeerlinck, Sam, Marc Miserez, Dominiek Reynaerts, and Benjamin Gorissen. 2023. "Effect of Degradation in Small Intestinal Fluids on Mechanical Properties of Polycaprolactone and Poly-l-lactide-co-caprolactone" Polymers 15, no. 13: 2964. https://doi.org/10.3390/polym15132964
APA StylePeerlinck, S., Miserez, M., Reynaerts, D., & Gorissen, B. (2023). Effect of Degradation in Small Intestinal Fluids on Mechanical Properties of Polycaprolactone and Poly-l-lactide-co-caprolactone. Polymers, 15(13), 2964. https://doi.org/10.3390/polym15132964