Effects of Processing Conditions on the Properties of Monoammonium Phosphate Microcapsules with Melamine-Formaldehyde Resin Shell
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the MF Prepolymer
2.3. Preparation of MCMAPs
2.4. Characterization
2.4.1. Yields and MAP Content of MCMAPs
2.4.2. Optical Micrographs of MAP and MCMAP
2.4.3. Field Emission Scanning Electron Microscopy (FE-SEM)
2.4.4. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.5. Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Microencapsulation Mechanism
3.2. Morphology
3.3. Chemical Structure Analysis
3.4. Thermal Properties of MAP and MCMAP
3.5. Effects of Operating Conditions on Properties of MCMAP
3.5.1. Morphologies of MAP and MCMAP Samples
3.5.2. Thermal Properties of MCMAPs
- (1)
- MCMAPs containing MAP as the core materials and MF as the shell materials were successfully fabricated by in situ polymerization.
- (2)
- Optical micrographs, FE-SEM, and SEM confirmed the successful microencapsulation of MAP.
- (3)
- The optimal reaction conditions for MCMAPs are reaction pH value 5.5, reaction temperature 75 °C, and polymerization time 3 h.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Sui, Y.; Dai, X.; Li, P.; Zhang, C. Superior radical scavenging and catalytic carbonization capacities of bioderived assembly modified ammonium polyphosphate as a mono-component intumescent flame retardant for epoxy resin. Eur. Polym. J. 2021, 156, 110601. [Google Scholar] [CrossRef]
- Shi, X.; Ju, Y.; Zhang, M.; Wang, X. The intumescent flame-retardant biocomposites of poly (lactic acid) containing surface-coated ammonium polyphosphate and distiller's dried grains with solubles (DDGS). Fire Mater. 2018, 42, 190–197. [Google Scholar] [CrossRef]
- Li, W.-X.; Zhang, H.-J.; Hu, X.-P.; Yang, W.-X.; Cheng, Z.; Xie, C.-Q. Highly efficient replacement of traditional intumescent flame retardants in polypropylene by manganese ions doped melamine phytate nanosheets. J. Hazard. Mater. 2020, 398, 123001. [Google Scholar] [CrossRef]
- Khan, A.; Ubaid, F.; Fayyad, E.M.; Ahmad, Z.; Shakoor, R.; Montemor, M.; Kahraman, R.; Mansour, S.; Hassan, M.K.; Hasan, A. Synthesis and properties of polyelectrolyte multilayered microcapsules reinforced smart coatings. J. Mater. Sci. 2019, 54, 12079–12094. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Dai, M.; Hu, Q.; Liu, S.; Gao, X.; Ren, F.; Zhang, Q. Effect of microencapsulated ammonium polyphosphate on the durability and fire resistance of waterborne intumescent fire-retardant coatings. J. Coat. Technol. Res. 2019, 16, 135–145. [Google Scholar] [CrossRef]
- Wu, K.; Song, L.; Wang, Z.; Hu, Y. Microencapsulation of ammonium polyphosphate with PVA–melamine–formaldehyde resin and its flame retardance in polypropylene. Polym. Advan. Technol. 2008, 19, 1914–1921. [Google Scholar] [CrossRef]
- Huang, Z.; Ruan, B.; Wu, J.; Ma, N.; Jiang, T.; Tsai, F.C. High-efficiency ammonium polyphosphate intumescent encapsulated polypropylene flame retardant. J. Appl. Polym. Sci. 2021, 138, 50413. [Google Scholar] [CrossRef]
- Zhu, P.; Gu, Z.; Hong, S.; Lian, H. Preparation and characterization of microencapsulated LDHs with melamine-formaldehyde resin and its flame retardant application in epoxy resin. Polym. Advan. Technol. 2018, 29, 2147–2160. [Google Scholar] [CrossRef]
- Wang, B.; Sheng, H.; Shi, Y.; Hu, W.; Hong, N.; Zeng, W.; Ge, H.; Yu, X.; Song, L.; Hu, Y. Recent advances for microencapsulation of flame retardant. Polym. Degrad. Stabil. 2015, 113, 96–109. [Google Scholar] [CrossRef]
- Han, S.; Chen, Y.; Lyu, S.; Chen, Z.; Wang, S.; Fu, F. Effects of processing conditions on the properties of paraffin/melamine-urea-formaldehyde microcapsules prepared by in situ polymerization. Colloids Surf. A 2020, 585, 124046. [Google Scholar] [CrossRef]
- Yu, S.; Xiao, S.; Zhao, Z.; Huo, X.; Wei, J. Microencapsulated ammonium polyphosphate by polyurethane with segment of dipentaerythritol and its application in flame retardant polypropylene. Chin. J. Chem. Eng. 2019, 27, 1735–1743. [Google Scholar] [CrossRef]
- Zhang, S.; Ji, W.; Han, Y.; Gu, X.; Li, H.; Sun, J. Flame-retardant expandable polystyrene foams coated with ethanediol-modified melamine–formaldehyde resin and microencapsulated ammonium polyphosphate. J. Appl. Polym. Sci. 2018, 135, 46471. [Google Scholar] [CrossRef]
- Wu, C.; Wang, X.; Zhang, J.; Cheng, J.; Shi, L. Microencapsulation and surface functionalization of ammonium polyphosphate via in-situ polymerization and thiol–ene photograted reaction for application in flame-retardant natural rubber. Ind. Eng. Chem. Res. 2019, 58, 17346–17358. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, L.; Wang, X.; Fu, Q.; Sun, Q.; Zhang, Z. Microencapsulation of APP-I and influence of microencapsulated APP-I on microstructure and flame retardancy of PP/APP-I/PER composites. J. Appl. Polym. Sci. 2013, 129, 36–46. [Google Scholar] [CrossRef]
- Gao, M.; Chen, S.; Wang, H.; Chai, Z. Design, preparation, and application of a novel, microencapsulated, intumescent, flame-retardant-based mimicking mussel. ACS Omega 2018, 3, 6888–6894. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Kundu, C.K.; Li, Z.; Li, X.; Zhang, Z. Flame retardant treatments for polypropylene: Strategies and recent advances. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106382. [Google Scholar] [CrossRef]
- Wan, L.; Deng, C.; Zhao, Z.-Y.; Chen, H.; Wang, Y.-Z. Flame retardation of natural rubber: Strategy and recent progress. Polymers 2020, 12, 429. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Shi, H.; Zhu, P.; Wei, Y.; Hao, J. Ammonium polyphosphate with high specific surface area by assembling zeolite imidazole framework in EVA resin: Significant mechanical properties, migration resistance, and flame retardancy. Polymers 2020, 12, 534. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Jiang, H.; Yang, Y.; Chen, D.; Liu, C.; Zhang, P.; Zhou, L.; Huang, X.; Zhang, H.; Liu, X. Preparation of melamine–formaldehyde resin-microencapsulated ammonium polyphosphate and its application in flame retardant rigid polyurethane foam composites. J. Polym. Res. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Saihi, D.; Vroman, I.; Giraud, S.; Bourbigot, S. Microencapsulation of ammonium phosphate with a polyurethane shell part I: Coacervation technique. React. Funct. Polym. 2005, 64, 127–138. [Google Scholar] [CrossRef]
- Saihi, D.; Vroman, I.; Giraud, S.; Bourbigot, S. Microencapsulation of ammonium phosphate with a polyurethane shell. Part II. Interfacial polymerization technique. React. Funct. Polym. 2006, 66, 1118–1125. [Google Scholar] [CrossRef]
- Salaün, F.; Lewandowski, M.; Vroman, I.; Bedek, G.; Bourbigot, S. Development and characterisation of flame-retardant fibres from isotactic polypropylene melt-compounded with melamine-formaldehyde microcapsules. Polym. Degrad. Stabil. 2011, 96, 131–143. [Google Scholar] [CrossRef]
- Vroman, I.; Giraud, S.; Salaün, F.; Bourbigot, S. Polypropylene fabrics padded with microencapsulated ammonium phosphate: Effect of the shell structure on the thermal stability and fire performance. Polym. Degrad. Stabil. 2010, 95, 1716–1720. [Google Scholar] [CrossRef]
- Salaün, F.; Vroman, I. Influence of core materials on thermal properties of melamine–formaldehyde microcapsules. Eur. Polym. J. 2008, 44, 849–860. [Google Scholar] [CrossRef]
- Jaramillo, A.F.; Díaz-Gómez, A.; Ramirez, J.; Berrio, M.E.; Cornejo, V.; Rojas, D.; Montoya, L.F.; Mera, A.; Melendrez, M.F. Eco-Friendly Fire-Resistant Coatings Containing Dihydrogen Ammonium Phosphate Microcapsules and Tannins. Coatings 2021, 11, 280. [Google Scholar] [CrossRef]
- Kage, H.; Kawahara, H.; Hamada, N.; Kotake, T.; Oe, N.; Ogura, H. Effects of core material, operating temperature and time on microencapsulation by in situ polymerization method. Adv. Powder Technol. 2002, 13, 377–394. [Google Scholar] [CrossRef]
- Fan, C.; Zhou, X. Influence of operating conditions on the surface morphology of microcapsules prepared by in situ polymerization. Colloids Surf. A 2010, 363, 49–55. [Google Scholar] [CrossRef]
- Geng, X.; Huang, R.; Zhang, X.; Li, W. Research on long-chain alkanol etherified melamine-formaldehyde resin MicroPCMs for energy storage. Energy 2021, 214, 119029. [Google Scholar] [CrossRef]
- Wu, K.; Wang, Z.; Liang, H. Microencapsulation of ammonium polyphosphate: Preparation, characterization, and its flame retardance in polypropylene. Polym. Compos. 2008, 29, 854–860. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Wang, X.; Wu, S.; Zhang, X. Effects of ammonium chloride and heat treatment on residual formaldehyde contents of melamine-formaldehyde microcapsules. Colloids Polym. Sci. 2007, 285, 1691–1697. [Google Scholar] [CrossRef]
- Neelagantaprasad, B.; Jegatheesan, A.; Sadeeshkumar, C.; Jayanalina, T.; Ravi, B.; Sadeeshkumar, C. Optical, Thermal and Mechanical Properties of Mono Ammonium Phosphate (MAP) Single Crystal. J. Agr. Sci. Tech-Iran. 2013, 2, 20–24. [Google Scholar]
- Merline, D.J.; Vukusic, S.; Abdala, A.A. Melamine formaldehyde: Curing studies and reaction mechanism. Polym. J. 2013, 45, 413–419. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Lyu, S.; Chen, Z.; Fu, F.; Wang, S. Combined stabilizers prepared from cellulose nanocrystals and styrene-maleic anhydride to microencapsulate phase change materials. Carbohyd. Polym. 2020, 234, 115923. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Shen, M.-M.; Hu, Y. Synthesis of a novel intumescent flame retardant and its flame retardancy in polypropylene. J. Polym. Res. 2011, 18, 425–433. [Google Scholar] [CrossRef]
- Wu, K.; Song, L.; Wang, Z.; Hu, Y.; Kandare, E.; Kandola, B.K. Preparation and Characterization of Core/Shell-like Intumescent Flame Retardant and its Application in Polypropylene. J. Macromol. Sci. A 2009, 46, 837–846. [Google Scholar] [CrossRef]
- Lee, H.; Lee, S.; Cheong, I.; Kim, J. Microencapsulation of fragrant oil via in situ polymerization: Effects of pH and melamine-formaldehyde molar ratio. J. Microencapsul. 2002, 19, 559–569. [Google Scholar] [CrossRef]
- Konuklu, Y.; Unal, M.; Paksoy, H.O. Microencapsulation of caprylic acid with different wall materials as phase change material for thermal energy storage. Sol. Energy Mat. Sol. C 2014, 120, 536–542. [Google Scholar] [CrossRef]
Sample | Reaction Temperature (°C) | Polymerization Time (h) | Reaction pH Value | Yield (%) | MAP Content in MCMAPs (%) |
---|---|---|---|---|---|
1 | 55 | 2 | 5.0 | 0 | None |
2 | 65 | 2 | 5.0 | 21.7 ± 0.2 | 14.7 ± 0.1 |
3 | 75 | 2 | 5.0 | 22.5 ± 0.3 | 11.6 ± 0.2 |
4 | 85 | 2 | 5.0 | 23.8 ± 0.1 | 10.0 ± 0.2 |
5 | 75 | 0.5 | 5.0 | 0 | None |
6 | 75 | 1 | 5.0 | 0 | None |
7 | 75 | 3 | 5.0 | 26.1 ± 0.1 | 14.1 ± 0.2 |
8 | 75 | 3 | 6.5 | 15.3 ± 0.2 | 15.8 ± 0.4 |
9 | 75 | 3 | 5.5 | 19.0 ± 0.4 | 14.7 ± 0.1 |
10 | 75 | 3 | 4.5 | 25.7 ± 0.3 | 12.6 ± 0.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Li, J.; Ding, Q.; Zang, J.; Lu, Y.; Zhang, L.; Hu, L. Effects of Processing Conditions on the Properties of Monoammonium Phosphate Microcapsules with Melamine-Formaldehyde Resin Shell. Polymers 2023, 15, 2991. https://doi.org/10.3390/polym15142991
Han S, Li J, Ding Q, Zang J, Lu Y, Zhang L, Hu L. Effects of Processing Conditions on the Properties of Monoammonium Phosphate Microcapsules with Melamine-Formaldehyde Resin Shell. Polymers. 2023; 15(14):2991. https://doi.org/10.3390/polym15142991
Chicago/Turabian StyleHan, Shenjie, Jingpeng Li, Qingyun Ding, Jian Zang, Yulian Lu, Longfei Zhang, and La Hu. 2023. "Effects of Processing Conditions on the Properties of Monoammonium Phosphate Microcapsules with Melamine-Formaldehyde Resin Shell" Polymers 15, no. 14: 2991. https://doi.org/10.3390/polym15142991
APA StyleHan, S., Li, J., Ding, Q., Zang, J., Lu, Y., Zhang, L., & Hu, L. (2023). Effects of Processing Conditions on the Properties of Monoammonium Phosphate Microcapsules with Melamine-Formaldehyde Resin Shell. Polymers, 15(14), 2991. https://doi.org/10.3390/polym15142991