Phase Change Microcapsule Composite Material with Intelligent Thermoregulation Function for Infrared Camouflage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of Phase Change Microcapsules
2.2.2. Preparation of Phase Change Microcapsule Temperature Regulating Textile by Dip Rolling
2.2.3. Preparation of Phase Change Microcapsule Temperature Regulating Textile by Coating Method
2.2.4. Preparation of Infrared Camouflage Textile
2.3. Characterizations and Measurements
3. Results
3.1. Characterization and Analysis of Phase Change Microcapsules
3.2. Preparation and Performance Analysis of Phase Change Microcapsule Temperature Regulating Fabric
3.3. Preparation and Performance Analysis of Phase Change Microcapsule Infrared Camouflage Fabric
3.4. Analysis of Mechanical Properties of Phase Change Microcapsule Infrared Camouflage Fabric
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Teggar, M.; Arici, M.; Mert, M.S.; Ajarostaghi, S.S.M.; Niyas, H.; Tuncbilek, E.; Ismail, K.A.R.; Younsi, Z.; Benhouia, A.T.; Mezaache, E. A comprehensive review of micro/nano enhanced phase change materials. J. Therm. Anal. Calorim. 2022, 147, 3989–4016. [Google Scholar] [CrossRef]
- Chen, H.; Yue, Z.; Ren, D.; Zeng, H.; Wei, T.; Zhao, K.; Yang, R.; Qiu, P.; Chen, L.; Shi, X. Thermal Conductivity during Phase Transitions. Adv. Mater. 2019, 31, e1806518. [Google Scholar] [CrossRef]
- Zhao, Y.X.; Zhang, X.L.; Hua, W.S. Review of preparation technologies of organic composite phase change materials in energy storage. J. Mol. Liq. 2021, 336, 115923. [Google Scholar] [CrossRef]
- Fan, X.M.; Guan, Y.; Li, Y.Z.; Yu, H.Y.; Marek, J.; Wang, D.C.; Militky, J.; Zou, Z.Y.; Yao, J.M. Shape-Stabilized Cellulose Nanocrystal-Based Phase-Change Materials for Energy Storage. Acs Appl. Nano Mater. 2020, 3, 1741–1748. [Google Scholar] [CrossRef]
- Yan, Y.; Li, W.; Zhu, R.; Lin, C.; Hufenus, R. Flexible Phase Change Material Fiber: A Simple Route to Thermal Energy Control Textiles. Materials 2021, 14, 401–418. [Google Scholar] [CrossRef] [PubMed]
- Shaid, A.; Wang, L.J.; Islam, S.; Cai, J.Y.; Padhye, R. Preparation of aerogel-eicosane microparticles for thermoregulatory coating on textile. Appl. Therm. Eng. 2016, 107, 602–611. [Google Scholar] [CrossRef]
- Tyagi, V.V.; Kaushik, S.C.; Tyagi, S.K.; Akiyama, T. Development of phase change materials based microencapsulated technology for buildings: A review. Renew. Sustain. Energy Rev. 2011, 15, 1373–1391. [Google Scholar] [CrossRef]
- Sheng, N.; Zhu, C.Y.; Sakai, H.; Akiyama, T.; Nomura, T. Synthesis of Al-25 wt% Si@Al2O3@Cu microcapsules as phase change materials for high temperature thermal energy storage. Sol. Energy Mater. Sol. Cells 2019, 191, 141–147. [Google Scholar] [CrossRef]
- Jamekhorshid, A.; Sadrameli, S.M.; Farid, M. A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 2014, 31, 531–542. [Google Scholar] [CrossRef]
- Su, W.G.; Darkwa, J.; Kokogiannakis, G. Review of solid-liquid phase change materials and their encapsulation technologies. Renew. Sustain. Energy Rev. 2015, 48, 373–391. [Google Scholar] [CrossRef]
- Alva, G.; Lin, Y.X.; Liu, L.K.; Fang, G.Y. Synthesis, characterization and applications of microencapsulated phase change materials in thermal energy storage: A review. Energy Build. 2017, 144, 276–294. [Google Scholar] [CrossRef]
- Huang, X.; Zhu, C.Q.; Lin, Y.X.; Fang, G.Y. Thermal properties and applications of microencapsulated PCM for thermal energy storage: A review. Appl. Therm. Eng. 2019, 147, 841–855. [Google Scholar] [CrossRef]
- Peng, H.; Wang, J.H.; Zhang, X.W.; Ma, J.; Shen, T.T.; Li, S.L.; Dong, B.B. A review on synthesis, characterization and application of nanoencapsulated phase change materials for thermal energy storage systems. Appl. Therm. Eng. 2021, 185, 677–683. [Google Scholar] [CrossRef]
- Konuklu, Y.; Ostry, M.; Paksoy, H.O.; Charvat, P. Review on using microencapsulated phase change materials (PCM) in building applications. Energy Build. 2015, 106, 134–155. [Google Scholar] [CrossRef]
- Jurkowska, M.; Szczygiel, I. Review on properties of microencapsulated phase change materials slurries (mPCMS). Appl. Therm. Eng. 2016, 98, 365–373. [Google Scholar] [CrossRef]
- Aklujkar, P.S.; Kandasubramanian, B. A review of microencapsulated thermochromic coatings for sustainable building applications. J. Coat. Technol. Res. 2021, 18, 19–37. [Google Scholar] [CrossRef]
- Cheng, C.; Gong, F.Y.; Fu, Y.R.; Liu, J.; Qiao, J.G. Effect of polyethylene glycol/polyacrylamide graft copolymerizaton phase change materials on the performance of asphalt mixture for road engineering. J. Mater. Res. Technol. 2021, 15, 1970–1983. [Google Scholar] [CrossRef]
- Marani, A.; Madhkhan, M. Thermal performance of concrete sandwich panels incorporating phase change materials: An experi-mental study. J. Mater. Res. Technol. 2021, 12, 760–775. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.L.; Ji, J.; Wu, Y.F.; Liu, L. A Review on Thermal Properties Improvement of Phase Change Materials and Its Combi-nation with Solar Thermal Energy Storage. Energy Technol. 2021, 9, 2100169. [Google Scholar] [CrossRef]
- Alehosseini, E.; Jafari, S.M. Micro/nano-encapsulated phase change materials (PCMs) as emerging materials for the food industry. Trends Food Sci. Technol. 2019, 91, 116–128. [Google Scholar] [CrossRef]
- Petrulis, D.; Petrulyte, S. Potential use of microcapsules in manufacture of fibrous products: A review. J. Appl. Polym. Sci. 2019, 136, 47066. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, K.; Khan, A.; Sun, D.M.; Ashraf, M.; Rehman, A.; Safdar, F. Phase change materials, their synthesis and application in tex-tiles—A review. J. Text. Inst. 2019, 110, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Fang, S.J.; Zhang, L.P.; Mao, Z.P. Infrared stealth property study of mesoporous carbon-aluminum doped zinc oxide coated cotton fabrics. Text. Res. J. 2015, 85, 1065–1075. [Google Scholar] [CrossRef]
- Kim, T.; Bae, J.Y.; Lee, N.; Cho, H.H. Metamaterials: Hierarchical Metamaterials for Multispectral Camouflage of Infrared and Micro-waves. Adv. Funct. Mater. 2019, 29, 1807319. [Google Scholar] [CrossRef]
- Zhou, X.; Xin, B.; Liu, Y. Research progress on infrared stealth fabric. J. Phys. Conf. Serie 2021, 1790, 012058. [Google Scholar] [CrossRef]
- Hao, L.C.; Xiao, H.; Liu, W.; Xu, J.; Li, S.X. Research development of thermal infrared camouflage textiles. J. Text. Res. 2014, 35, 158–164. [Google Scholar]
- Fang, S.J.; Wang, W.; Yu, X.L.; Xu, H.; Zhong, Y.; Sui, X.F. Preparation of ZnO:(Al, La)/polyacrylonitrile (PAN) nonwovens with low infrared emissivity via electrospinning. Mater. Lett. 2015, 143, 120–123. [Google Scholar] [CrossRef]
- Jeong, S.M.; Ahn, J.; Choi, Y.K.; Lim, T.; Seo, K.; Hong, T. Development of a wearable infrared shield based on a polyure-thane-antimony tin oxide composite fiber. NPG Asia Mater. 2020, 12, 32. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.; Chen, Y.J.; Cui, Y.; Zhu, B.; Yu, Y.; Wei, H.Y. Preparation of Bionic Porous Zirconia Fiber by Microemulsion Electrospinning and Its Infrared Stealth Property. Russ. J. Inorg. Chem. 2021, 66, 510–515. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Y.Y.; Qiu, J.; Wang, J.; Zhang, H.; Li, Y.X. Multifunctional PAN/Al-ZnO/Ag Nanofibers for Infrared Stealth, Self-Cleaning, and Antibacterial Applications. ACS Appl. Nano Mater. 2022, 5, 782–790. [Google Scholar] [CrossRef]
- Lim, T.; Jeong, S.M.; Seo, K.; Pak, J.H.; Choi, Y.K.; Ju, S. Development of fiber-based active thermal infrared camouflage textile. Appl. Mater. Today 2020, 20, 100624. [Google Scholar] [CrossRef]
- Chu, H.T.; Zhang, Z.C.; Liu, Y.J.; Leng, J.S. Silver particles modified carbon nanotube paper/glassfiber reinforced polymer composite material for high temperature infrared stealth camouflage. Carbon 2016, 98, 557–566. [Google Scholar] [CrossRef]
- Liu, Z.D.; Heng, Z.G.; Zhang, H.R.; Zhou, J.; Chen, Y.; Liang, M. Synergistic Action of Polyethylene Glycol/Expanded Graph-ite/Cellulose Nanofibers with Superior Infrared Stealth Performance. J. Macromol. Sci. Part B—Phys. 2021, 60, 485–499. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, L.P.; Fang, S.J.; Xu, H.; Zhong, Y.; Mao, Z.P. Low-Emitting Property of Lanthanum Aluminate and Its Application in Infrared Stealth. Sci. Adv. Mater. 2015, 7, 1649–1656. [Google Scholar] [CrossRef]
- Mao, Z.P.; Yu, X.L.; Zhang, L.P.; Zhong, Y.; Xu, H. Novel infrared stealth property of cotton fabrics coated with nano ZnO: (Al, La) particles. Vacuum 2014, 104, 111–115. [Google Scholar] [CrossRef]
- Mao, Z.P.; Wang, W.; Liu, Y.; Zhang, L.P.; Xu, H.; Zhong, Y. Infrared stealth property based on semiconductor (M)-to-metallic (R) phase transition characteristics of W-doped VO2 thin films coated on cotton fabrics. Thin Solid Films 2014, 558, 208–214. [Google Scholar] [CrossRef]
- Xu, R.; Wang, W.; Yu, D. Preparation of silver-plated Hollow Glass Microspheres and its application in infrared stealth coating fabrics. Prog. Org. Coat. 2019, 131, 1–10. [Google Scholar] [CrossRef]
- Xu, R.; Wang, W.; Yu, D. A novel multilayer sandwich fabric-based composite material for infrared stealth and super thermal insulation protection. Compos. Struct. 2019, 212, 58–65. [Google Scholar] [CrossRef]
- Li, L.F.; Xu, W.L.; Wu, X.; Liu, X.; Li, W.B. Fabrication and characterization of infrared-insulating cotton fabrics by ALD. Cellulose 2017, 24, 3981–3990. [Google Scholar] [CrossRef]
- Gu, J.; Wang, W.; Yu, D. Temperature control and low infrared emissivity double-shell phase change microcapsules and their ap-plication in infrared stealth fabric. Prog. Org. Coat. 2021, 159, 106439. [Google Scholar] [CrossRef]
- Geng, X.Y.; Gao, Y.; Wang, N.; Han, N.; Zhang, X.X.; Li, W. Intelligent adjustment of light-to-thermal energy conversion efficiency of thermo-regulated fabric containing reversible thermochromic MicroPCMs. Chem. Eng. J. 2021, 408, 127276. [Google Scholar] [CrossRef]
- Li, J.; Zhu, X.Y.; Wang, H.C.; Lin, P.C.; Jia, L.S.; Li, L.J. Synthesis and properties of multifunctional microencapsulated phase change material for intelligent textiles. J. Mater. Sci. 2021, 56, 2176–2191. [Google Scholar] [CrossRef]
- Hassabo, A.G. New approaches to improving thermal regulating property of cellulosic fabric. Carbohydr. Polym. 2014, 101, 912–919. [Google Scholar] [CrossRef]
- Zuravliova, S.V.; Stygiene, L.; Krauledas, S.; Minkuviene, G.; Sankauskaite, A.; Abraitiene, A. The Dependance of Effectiveness of In-corporated Microencapsulated Phase Change Materials on Different Structures of Knitted Fabrics. Fiber Polym. 2015, 16, 1125–1133. [Google Scholar] [CrossRef]
- Xu, R.; Xia, X.M.; Wang, W.; Yu, D. Infrared camouflage fabric prepared by paraffin phase change microcapsule with Good thermal insulting properties. Colloid. Surf. A Physicochem. Eng. Asp. 2020, 591, 124519. [Google Scholar] [CrossRef]
- Huang, F.L.; Xiao, Y.; Liu, W.T.; Ning, J.X.; Lu, Z.N. Infrared Stealth Fabric with Multilayer Composite Structure and Preparation Method Thereof. Chinese Patent CN106758163A, 31 May 2017. [Google Scholar]
- Chen, X.B.; Jiang, C.S.; Jiang, L.H.; Lin, J.M.; Huang, Z.D.; Zheng, R.S. Research Process of Phase Change Microcapsule Materials for Textile. Contemp. Chem. Ind. 2021, 50, 162–165. [Google Scholar]
- Liu, G.J.; Shi, F.; Zhang, G.Q.; Zhou, L. Preparation of phase change wax@polyvinyl alcohol thermo-regulated finishing agents and its applications on cotton fabrics. J. Mater. Eng. 2020, 48, 97–102. [Google Scholar]
- Ma, H.J.; Tian, B.H.; He, Y. Research progress of preparation and application of MCPCM. New Chem. Mater. 2020, 48, 20–23. [Google Scholar]
- Mondal, S. Phase change materials for smart textiles—An overview. Appl. Therm. Eng. 2008, 28, 1536–1550. [Google Scholar] [CrossRef]
- Yang, A.D. Preparation of Paraffin Phase Change Micro-Encapsulates and Its Application in Thermal Stealth Coatings; Beijing University of Technology: Beijing, China, 2009. [Google Scholar]
- Zhu, P. Functional Fiber and Functional Textile; China Textile & Apparel Press: Beijing, China, 2006. [Google Scholar]
- Wang, L.; Liu, C.Y.; Xu, G.Y.; Xiang, S.S.; Shi, M.Y.; Zhang, Y.J. Influences of morphology and floating rate of CeO2 fillers on controlling infrared emissivity of the epoxy-silicone resin based coatings. Mater. Chem. Phys. 2019, 229, 380–386. [Google Scholar] [CrossRef]
- Chen, X. Research on Preparation and Application of Infrared Low Emissivity Coatings; Xiamen University: Xiamen, China, 2019. [Google Scholar]
- ISO 34-1; Rubber, Vulcanized or Thermoplastic-Determination of Tear Strength-Part 1: Trouser, Angle and Crescent Test Pieces. International Organization for Standardization: Geneva, Switzerland, 2022.
- ISO 4604; Reinforcement Fabrics—Determination of Conventional Flexural Stiffness—Fixed-Angle Flexometer Method. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 12947-3; Textiles—Determination of the Abrasion Resistance of Fabrics by the Martindale Method—Part 3: Determination of Mass Loss. International Organization for Standardization: Geneva, Switzerland, 1998.
Material | Particle Size/Model | Manufacturer |
---|---|---|
Hollow glass beads | 30–100 μm | Henan Bairun casting materials, China |
Silicon dioxide | 20 nm | Jiangsu Tian xing’s new materials, China |
Copper powder | 38 μm | Nangong Xindun alloy welding mate-rial spraying, China |
Aluminum powder | 25 μm | Shanghai Aladdin Bio-chemical Technology, China |
Polyurethane | PU2540 | Guangzhou Yuheng environmental protection materials, China |
Defoamer | AFE-1410 | Shandong Yousuo Chemical Technology, China |
Thickener | 7011 | Guangzhou Dianmu Composite Materials Business Department, China |
Dispersant | 5040 | Shandong Yousuo Chemical Technology, China |
Urea, Formaldehyde aqueous solutions | Meryer (Shanghai) Chemical Technology, China | |
Paraffin, OP emulsifier, Triethanolamine, Citric acid, Petroleum ether | Beijing enokai Technology, China |
Load (N) | Displacement (mm) | Tear Strength (N) | |
---|---|---|---|
Cotton fabric | 5.4 | 50.05 | 6.63 |
Single layer infrared camouflage fabric | 7.5 | 50.05 | 21.31 |
Double layer infrared camouflage fabric | 14.5 | 50.05 | 14.67 |
Friction Times | 100 | 250 | 500 | 750 | 1000 |
---|---|---|---|---|---|
Single layer infrared camouflage fabric | 4.35 | 6.02 | 7.58 | 8.82 | 9.66 |
Double layer infrared camouflage fabric | 3.85 | 4.90 | 6.71 | 7.77 | 8.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, Y.; Zhao, X.; Han, Y. Phase Change Microcapsule Composite Material with Intelligent Thermoregulation Function for Infrared Camouflage. Polymers 2023, 15, 3055. https://doi.org/10.3390/polym15143055
Su Y, Zhao X, Han Y. Phase Change Microcapsule Composite Material with Intelligent Thermoregulation Function for Infrared Camouflage. Polymers. 2023; 15(14):3055. https://doi.org/10.3390/polym15143055
Chicago/Turabian StyleSu, Ying, Xiaoming Zhao, and Yue Han. 2023. "Phase Change Microcapsule Composite Material with Intelligent Thermoregulation Function for Infrared Camouflage" Polymers 15, no. 14: 3055. https://doi.org/10.3390/polym15143055
APA StyleSu, Y., Zhao, X., & Han, Y. (2023). Phase Change Microcapsule Composite Material with Intelligent Thermoregulation Function for Infrared Camouflage. Polymers, 15(14), 3055. https://doi.org/10.3390/polym15143055