Preparation of Organic-Inorganic Phosphorus-Nitrogen-Based Flame Retardants and Their Application to Plywood
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of UCPR and MCPR
2.3. Preparation of UCPR-LDH and MCPR-LDH
2.4. Preparation of Three-Layer Plywood
2.5. Characterization
3. Results and Discussion
3.1. FTIR
3.2. NMR Spectrum Analysis
3.3. GPC
3.4. Weigh Gain Rate
3.5. Cone Calorimetry
3.6. FTIR of Residual Carbon
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cochrane, M.A.; Bowman, D.M.J.S. Manage fire regimes, not fires. Nat. Geosci. 2021, 14, 455–457. [Google Scholar] [CrossRef]
- Cammelli, F.; Garrett, R.D.; Barlow, J.; Parry, L. Fire risk perpetuates poverty and fire use among Amazonian smallholders. Glob. Environ. Chang. 2020, 63, 102096. [Google Scholar] [CrossRef]
- Lee, S.H.; Lee, S.G.; Lee, J.S.; Ma, B.C. Understanding the flame retardant mechanism of intumescent flame retardant on improving the fire safety of rigid polyurethane foam. Polymers 2022, 14, 4904. [Google Scholar] [CrossRef] [PubMed]
- Maiuolo, L.; Olivito, F.; Ponte, F.; Algieri, V.; Tallarida, M.A.; Tursi, A.; Chidichimo, G.; Sicilia, E.; Nino, A.D. A novel catalytic two-step process for the preparation of rigid polyurethane foams: Synthesis, mechanism and computational studies. React. Chem. Eng. 2021, 6, 1238–1245. [Google Scholar] [CrossRef]
- He, S.; Deng, C.; Zhao, Z.Y.; Chen, Z.X.; Wang, Y.Z. Hyperbranched polyamide-amine based phosphorous-containing flame retardant for simultaneous flame retardancy and high performance of polypropylene. Compos. Part B Eng. 2023, 250, 110431. [Google Scholar] [CrossRef]
- Zhao, W.; Kundu, C.K.; Li, Z.; Li, X.; Zhang, Z. Flame retardant treatments for polypropylene: Strategies and recent advances. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106382. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, D.; Li, T.; Jiang, J.; Bai, H.; Wang, S.; Wang, Y.; Dong, W. Multifunctional Flame-Retardant, Thermal Insulation, and Antimicrobial Wood-Based Composites. Biomacromolecules 2023, 24, 957–966. [Google Scholar] [CrossRef]
- Mensah, R.A.; Jiang, L.; Renner, J.S.; Xu, Q. Characterisation of the fire behaviour of wood: From pyrolysis to fire retardant mechanisms. J. Therm. Anal. Calorim. 2023, 148, 1407–1422. [Google Scholar] [CrossRef]
- Chen, B.; Leiste, U.H.; Fourney, W.L.; Liu, Y.; Chen, Q.; Li, T. Hardened wood as a renewable alternative to steel and plastic. Matter 2021, 4, 3941–3952. [Google Scholar] [CrossRef]
- Ding, Y.; Dreimol, C.H.; Zboray, R.; Tu, K.; Stucki, S.; Keplinger, T.; Panzarasa, G.; Burgert, I. Passive climate regulation with transpiring wood for buildings with increased energy efficiency. Mater. Horiz. 2023, 10, 257–267. [Google Scholar] [CrossRef]
- Wang, J.; Yue, H.; Du, Z.; Cheng, X.; Wang, H.; Du, X. Flame-Retardant and Form-Stable Delignified Wood-Based Phase Change Composites with Superior Energy Storage Density and Reversible Thermochromic Properties for Visual Thermoregulation. ACS Sustain. Chem. Eng. 2023, 11, 3932–3943. [Google Scholar] [CrossRef]
- Pelliccia, G.; Baldinelli, G.; Bianconi, F.; Filippucci, M.; Goli, G.; Rotili, A.; Togni, M. Characterisation of wood hygromorphic panels for relative humidity passive control. J. Build. Eng. 2020, 32, 101829. [Google Scholar] [CrossRef]
- Cornwall, W. Tall timber. Science 2016, 353, 1354–1356. [Google Scholar] [CrossRef] [Green Version]
- Zelinka, S.L.; Altgen, M.; Emmerich, L.; Guigo, N.; Keplinger, T.; Kymalainen, M.; Thybring, E.E.; Thygesen, L.G. Review of wood modification and wood functionalization technologies. Forests 2022, 13, 1004. [Google Scholar] [CrossRef]
- Wang, J.; Minami, E.; Kawamoto, H. Thermal reactivity of hemicellulose and cellulose in cedar and beech wood cell walls. J. Wood Sci. 2020, 66, 41. [Google Scholar] [CrossRef]
- Sun, C.; Tan, H.; Zhang, Y. Simulating the pyrolysis interactions among hemicellulose, cellulose and lignin in wood waste under real conditions to find the proper way to prepare bio-oil. Renew. Energy 2023, 205, 851–863. [Google Scholar] [CrossRef]
- Wang, Z.; Gao, Y.; Zhou, Y.; Fan, C.; Zhou, P.; Gong, J. Pyrolysis and combustion behaviors of densified wood. Proc. Combust. Inst. 2023, 39, 4175–4184. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, J.; Shen, H.; Xu, J.; Cao, J. Montmorillonite-catalyzed furfurylated wood for flame retardancy. Fire Saf. J. 2021, 121, 103297. [Google Scholar] [CrossRef]
- Jian, H.; Liang, Y.; Deng, C.; Xu, J.; Liu, Y.; Shi, J.; Wen, M.; Park, H.J. Research Progress on the Improvement of Flame Retardancy, Hydrophobicity, and Antibacterial Properties of Wood Surfaces. Polymers 2023, 15, 951. [Google Scholar] [CrossRef]
- Yan, M.; Fu, Y.; Pan, Y.; Cheng, X.; Gong, L.; Zhou, Y.; Ahmed, H.; Zhang, H. Highly elastic and fatigue resistant wood/silica composite aerogel operated at extremely low temperature. Compos. Part B Eng. 2022, 230, 109496. [Google Scholar] [CrossRef]
- Sauerbier, P.; Mayer, A.K.; Emmerich, L.; Militz, H. Fire retardant treatment of wood–state of the art and future perspectives. In Proceedings of the Wood & Fire Safety: Proceedings of the 9th International Conference on Wood & Fire Safety, Štrbské Pleso, Slovakia, 3–6 May 2020; Springer International Publishing: Cham, Switzerland, 2020; pp. 97–102. [Google Scholar] [CrossRef]
- Popescu, C.-M.; Pfriem, A. Treatments and modification to improve the reaction to fire of wood and wood based products—An overview. Fire Mater. 2020, 44, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Lainioti, G.C.; Koukoumtzis, V.; Andrikopoulos, K.S.; Tsantaridis, L.; Ostman, B.; Voyiatzis, G.A.; Kallitsis, J.K. Environmentally Friendly Hybrid Organic–Inorganic Halogen-Free Coatings for Wood Fire-Retardant Applications. Polymers 2022, 14, 4959. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Gao, Y.; Li, Y.; Yan, L.; Zhu, D.; Guo, S.; Ou, C.; Wang, Z. A flame-retardant densified wood as robust and fire-safe structural material. Wood Sci. Technol. 2023, 57, 111–134. [Google Scholar] [CrossRef]
- Zhong, J.; Huang, Y.; Chen, Y.; Li, L.; Guo, C. Synthesis of eugenol-modified epoxy resin and application on wood flame retardant coating. Ind. Crops Prod. 2022, 183, 114979. [Google Scholar] [CrossRef]
- Li, H.; Wang, C.; Wang, Z.; Zhang, M.; Liu, D.; Yuan, G. Study on properties of gelatin–silica mineralized wood composite. Polym. Compos. 2022, 43, 4371–4381. [Google Scholar] [CrossRef]
- Kim, H.H.; Sim, M.J.; Lee, J.C.; Cha, S.H. The effects of chemical structure for phosphorus-nitrogen flame retardants on flame retardant mechanisms. J. Mater. Sci. 2023, 58, 6850–6864. [Google Scholar] [CrossRef]
- Chen, S.; Li, H.; Lai, X.; Zhang, S.; Zeng, X. Superhydrophobic and phosphorus-nitrogen flame-retardant cotton fabric. Prog. Org. Coat. 2021, 159, 106446. [Google Scholar] [CrossRef]
- Weng, S.; Li, Z.; Bo, C.; Song, F.; Xu, Y.; Hu, L.; Zhou, Y.; Jia, P. Design lignin doped with nitrogen and phosphorus for flame retardant phenolic foam materials. React. Funct. Polym. 2023, 185, 105535. [Google Scholar] [CrossRef]
- Yan, D.; Chen, D.; Tan, J.; Yuan, L.; Huang, Z.; Zou, D.; Sun, P.; Tao, Q.; Deng, J.; Hu, Y. Synergistic flame retardant effect of a new NP flame retardant on poplar wood density board. Polym. Degrad. Stab. 2023, 211, 110331. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, W.; Yang, T.; Li, L.; Wang, M. Thermal degradation, flame retardancy, and char analysis of ammonium phytate-based flame retardant treated loblolly pine wood. Eur. J. Wood Wood Prod. 2023, 81, 957–971. [Google Scholar] [CrossRef]
- Kolibaba, T.J.; Vest, N.A.; Grunlan, J.C. Polyelectrolyte photopolymer complexes for flame retardant wood. Mater. Chem. Front. 2022, 6, 1630–1636. [Google Scholar] [CrossRef]
- Liu, J.; Dong, C.; Zhang, Z.; Sun, H.; Kong, D.; Lu, Z. Durable flame retardant cotton fabrics modified with a novel silicon–phosphorus–nitrogen synergistic flame retardant. Cellulose 2020, 27, 9027–9043. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, L.; Fischer, A.; Wu, W.; Drummer, D. Effect of graphite on the flame retardancy and thermal conductivity of P-N flame retarding PA6. J. Appl. Polym. Sci. 2018, 135, 46559. [Google Scholar] [CrossRef]
- Deng, C.; Liu, Y.; Jian, H.; Liang, Y.; Wen, M.; Shi, J.; Park, H. Study on the preparation of flame retardant plywood by intercalation of phosphorus and nitrogen flame retardants modified with Mg/Al-LDH. Constr. Build. Mater. 2023, 374, 130939. [Google Scholar] [CrossRef]
- Zhang, K.; Li, J.; He, L.; Guan, Q.; Xu, X.; Miao, R.; Wang, M.; Zhou, H. Investigation on guanidine phosphate modified LDH and its flame-retardant mechanism in cellulosic composites. Appl. Clay Sci. 2022, 228, 106646. [Google Scholar] [CrossRef]
- Jeevananthan, V.; Shanmugan, S. Halogen-free layered double hydroxide-cyclotriphosphazene carboxylate flame retardants: Effects of cyclotriphosphazene di, tetra and hexacarboxylate intercalation on layered double hydroxides against the combustible epoxy resin coated on wood substrates. RSC Adv. 2022, 12, 23322–23336. [Google Scholar] [CrossRef]
- Wen, M.; Zhu, J.; Zhu, M.; Sun, Y.; Park, H.J.; Shi, J. Research on flame retardant formaldehyde-free plywood glued by aqueous polymer isocyanate adhesive. J. Korean Wood Sci. Technol. 2020, 48, 755–764. [Google Scholar] [CrossRef]
- Li, J.; Jiang, W. Synthesis of a novel PN flame retardant for preparing flame retardant and durable cotton fabric. Ind. Crops Prod. 2021, 174, 114205. [Google Scholar] [CrossRef]
- Zhu, Z.M.; Wang, L.X.; Lin, X.B.; Dong, L.P. Synthesis of a novel phosphorus-nitrogen flame retardant and its application in epoxy resin. Polym. Degrad. Stab. 2019, 169, 108981. [Google Scholar] [CrossRef]
- Nakrani, D.; Tiwari, M.K.; Wani, T.; Srivastava, G. Characterization of combustion of hardwood and softwood through experimental and computer simulations. J. Therm. Anal. Calorim. 2023, 148, 7727–7745. [Google Scholar] [CrossRef]
- Song, K.; Ganguly, I.; Eastin, I.; Dichiara, A. High temperature and fire behavior of hydrothermally modified wood impregnated with carbon nanomaterials. J. Hazard. Mater. 2020, 384, 121283. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Zhang, H.; Wu, J. Synergistic catalytic flame retardant effect of zirconium phosphate on the poplar plywood. Constr. Build. Mater. 2021, 290, 123208. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, J.; Shen, Z.; Bi, H.; Shentu, B. Flame Resistance and Bonding Performance of Plywood Fabricated by Guanidine Phosphate-Impregnated Veneers. Forests 2023, 14, 741. [Google Scholar] [CrossRef]
- Wen, M.; Xu, J.; Zhu, J.; Liu, Y.; Deng, C.; Shi, J.; Park, H. Preparation of bisDOPO-NH2-POSS flame retardant and its application to plywood using modified urea-formaldehyde resin. Wood Mater. Sci. Eng. 2022, 1–12. [Google Scholar] [CrossRef]
- Lu, J.; Huang, Y.; Jiang, P.; Chen, Z.; Bourbigot, S.; Fontaine, G.; Chang, L.; Zhang, L.; Pan, F. Universal circulating impregnation method for the fabrication of durable flame-retardant plywood with low hygroscopicity and leaching resistance. Polym. Degrad. Stab. 2022, 195, 109799. [Google Scholar] [CrossRef]
- Pan, D.; Zhang, N.; Li, J.; Ye, H.; Yu, Z.; Zhang, Y. CaCl2-induced interfacial deposition for the preparation of high-strength and flame-retardant plywood using geopolymer-based adhesive. Ceram. Int. 2021, 47, 33678–33686. [Google Scholar] [CrossRef]
- Li, P.B.; Wang, Y.X.; Shao, Z.X.; Wu, B.T.; Li, H.; Gao, M.M.; Liu, K.G.; Shi, K.R. Enhanced corrosion protection of magnesium alloy via in situ Mg–Al LDH coating modified by core–shell structured Zn–Al LDH@ ZIF-8. Rare Met. 2022, 41, 2745–2758. [Google Scholar] [CrossRef]
Sample Code | CP Concentration | CP/Urea Molar Ratio | Temperature/°C | Time/min | Status |
---|---|---|---|---|---|
1 | 80% | 0.91:1 | 135 | 120 | White viscous gel |
2 | 80% | 1.82:1 | 135 | 120 | White viscous gel |
3 | 80% | 4.55:1 | 70 | 30 | Pale white translucent liquid |
4 | 80% | 4.55:1 | 75 | 30 | Pale white translucent liquid, high viscosity |
5 | 80% | 4.55:1 | 80 | 30 | Pale white translucent liquid, high viscosity |
6 | 80% | 4.55:1 | 75 | 120 | White viscous gel |
7 | 80% | 1.82:1 | 75 | 120 | White viscous gel |
8 | 80% | 4.55:1 | 75 | 75 | White viscous liquid |
9 | 65% | 4.55:1 | 75 | 75 | White liquid |
Sample Code | CP Concentration | CP/MEL Molar Ratio | Temperature/°C | Time/min | Status |
---|---|---|---|---|---|
1 | 50% | 9:1 | 70 | 60 | Light white, not fully reacted |
2 | 50% | 12:1 | 70 | 60 | Translucent, layered overnight |
3 | 50% | 6:1 | 70 | 75 | Pale white, not completely reacted |
4 | 50% | 9:1 | 70 | 75 | Translucent, viscosity too low |
5 | 65% | 6:1 | 70 | 75 | Transparent liquid, with suspended particles |
6 | 65% | 9:1 | 70 | 75 | Clear liquid, completely reacted |
7 | 65% | 12:1 | 70 | 75 | Clear liquid, viscosity too low |
8 | 65% | 9:1 | 75 | 75 | Translucent, layered overnight |
Sample | TTI (s) | THR (MJ/m2) | pHRR (kW/m2) | pCOPR (g/s) | pCO2 PR(g/s) | TSP (m2) | pSPR (m2/s) | MR (%) |
---|---|---|---|---|---|---|---|---|
PLYWOOD | 63 | 26.69 | 264.35 | 0.00317 | 0.20274 | 2.42 | 0.02725 | 18.28 |
UCPR-LDH-PLYWOOD | 97 | 23.51 | 183.90 | 0.00314 | 0.14420 | 1.85 | 0.02622 | 26.20 |
MCPR-LDH-PLYWOOD | 105 | 23.48 | 225.45 | 0.00293 | 0.17477 | 1.61 | 0.02426 | 28.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deng, C.; Ji, Y.; Zhu, M.; Liang, Y.; Jian, H.; Yan, Z.; Wen, M.; Park, H. Preparation of Organic-Inorganic Phosphorus-Nitrogen-Based Flame Retardants and Their Application to Plywood. Polymers 2023, 15, 3112. https://doi.org/10.3390/polym15143112
Deng C, Ji Y, Zhu M, Liang Y, Jian H, Yan Z, Wen M, Park H. Preparation of Organic-Inorganic Phosphorus-Nitrogen-Based Flame Retardants and Their Application to Plywood. Polymers. 2023; 15(14):3112. https://doi.org/10.3390/polym15143112
Chicago/Turabian StyleDeng, Chao, Yu Ji, Meng Zhu, Yuqing Liang, Hao Jian, Zhichun Yan, Mingyu Wen, and Heejun Park. 2023. "Preparation of Organic-Inorganic Phosphorus-Nitrogen-Based Flame Retardants and Their Application to Plywood" Polymers 15, no. 14: 3112. https://doi.org/10.3390/polym15143112
APA StyleDeng, C., Ji, Y., Zhu, M., Liang, Y., Jian, H., Yan, Z., Wen, M., & Park, H. (2023). Preparation of Organic-Inorganic Phosphorus-Nitrogen-Based Flame Retardants and Their Application to Plywood. Polymers, 15(14), 3112. https://doi.org/10.3390/polym15143112