Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Chemicals
2.1.2. Elastomers
2.1.3. Fillers
2.2. Preparation of SP and CB/SP Adducts
2.2.1. Synthesis of 2-2,5-Dimethyl-1H-pyrrol-1-yl-1,3-propanediol (SP)
2.2.2. Preparation of Adducts of CB N326 with SP
2.3. Preparation of Elastomer Composites
2.3.1. Elastomer Composite with CB/SP-6
2.3.2. Elastomer Composite with CB/SP-4 and CB/SP-5
2.4. Characterization Techniques
2.4.1. Thermogravimetry Analysis (TGA) of CB/SP Adducts
2.4.2. Wide-Angle X-ray Diffraction
2.4.3. Crosslinking
2.4.4. Dynamic-Mechanical Analysis in the Shear Mode Strain Sweep Test
2.4.5. Dynamic-Mechanical Analysis in the Axial Mode
2.4.6. Tensile Test
2.4.7. Electrical Resistance
2.4.8. Headspace Analyses
3. Results and Discussion
3.1. Preparation and Characterization of CB/SP Adducts
3.2. Preparation and Characterization of Rubber Composites
3.3. Silanization of CB/SP
3.4. On the Reactivity of CB/SP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://ourworldindata.org/greenhouse-gas-emissions#annual-greenhouse-gas-emissions-how-much-do-we-emit-each-year (accessed on 15 May 2023).
- Available online: https://www.un.org/en/conferences/environment/rio1992/ (accessed on 2 June 2023).
- Available online: https://www.un.org/sustainabledevelopment/development-agenda/ (accessed on 2 June 2023).
- Available online: https://ourworldindata.org/emissions-by-sector (accessed on 16 May 2023).
- Global Mobility Report 2017, Tracking Sector Performance; Sustainable Mobility for All: Washington, DC, USA, 2017.
- Available online: https://www.reportlinker.com/p05379599/?utm_source=GNW (accessed on 2 June 2023).
- Hall, D.E.; Moreland, J.C. Fundamentals of Rolling Resistance. Rubber Chem. Technol. 2001, 74, 525–539. [Google Scholar] [CrossRef]
- Warasitthinon, N.; Robertson, C.G. Interpretation of the tanδ peak height for particle-filled rubber and polymer nanocomposites with relevance to tire tread performance balance. Rubber Chem. Technol. 2018, 91, 577–594. [Google Scholar] [CrossRef]
- Tao, Y.C.; Dong, B.; Zhang, L.Q.; Wu, Y.P. Reactions of silica–silane rubber and properties of silane–silica/solution-polymerized styrene–butadiene rubber composite. Rubber Chem. Technol. 2016, 89, 526–539. [Google Scholar] [CrossRef]
- Tunnicliffe, L.B.; Busfield, J.J. Reinforcement of rubber and filler network dynamics at small strains. In Designing of Elastomer Nanocomposites: From Theory to Applications; Advances in Polymer Science; Stöckelhuber, K., Das, A., Klüppel, M., Eds.; Springer: Cham, Switzerland, 2017; Volume 275, pp. 71–102. [Google Scholar]
- Leblanc, J.L. Rubber-filler interactions and rheological properties in filled compounds. Progr. Polym. Sci. 2002, 27, 627–687. [Google Scholar] [CrossRef]
- Donnet, J.B.; Custodero, E. Reinforcement of Elastomers by Particulate Fillers. In The Science and Technology of Rubber, 3rd ed.; Mark, J.E., Erman, B., Eirich, F.R., Eds.; Academic Press: Cambridge, MA, USA, 2005; pp. 367–400. [Google Scholar]
- Fröhlich, J.; Niedermeier, W.; Luginsland, H.D. The effect of filler-filler and filler-elastomer interaction on rubber reinforcement. Compos. Part A 2005, 36, 449–460. [Google Scholar] [CrossRef]
- Kraus, G. Reinforcement of Elastomers by Carbon Black. In Fortschritte der Hochpolym; Springer: Berlin, Heidelberg, 1971; pp. 155–237. [Google Scholar]
- Medalia, A.I. Effect of carbon black on dynamic properties of rubber vulcanizates. Rubber Chem. Technol. 1978, 51, 437–523. [Google Scholar] [CrossRef]
- Voll, M.; Kleinschmit, P. Carbon, 6. Carbon Black. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley: Hoboken, NJ, USA, 2010. [Google Scholar]
- Donnet, J.B.; Bansal, R.C.; Wang, M.J. Carbon Black: Science and Technology, 2nd ed.; Dekker: New York, NY, USA, 1993. [Google Scholar]
- Fan, Y.; Fowler, D.G.; Zhao, M. The Past, present and future of carbon black as a rubber reinforcing filler—A review. J. Clean. Prod. 2020, 247, 119115. [Google Scholar] [CrossRef]
- Robertson, C.G.; Hardman, N.J. Nature of carbon black reinforcement of rubber: Perspective on the original polymer nanocomposite. Polymers 2021, 13, 538. [Google Scholar] [CrossRef]
- Chevalier, Y.; Morawski, J.C. Precipitated Silica with Morphological Properties, Process for Producing It and Its Application, Especially as a Filler. European Patent EP 0157703 B1, 31 May 1989. [Google Scholar]
- Legrand, A.P. On the silica edge. In The Surface Properties of Silicas; Legrand, A.P., Ed.; Wiley and Sons: New York, NY, USA, 1998; pp. 1–20. [Google Scholar]
- Ten Brinke, J.W.; Debnath, S.C.; Reuvekamp, L.A.; Noordermeer, J.W. Mechanistic aspects of the role of coupling agents in silica–rubber composites. Compos. Sci. Technol. 2003, 63, 1165–1174. [Google Scholar] [CrossRef]
- Lee, S.Y.; Kim, J.S.; Lim, S.H.; Jang, S.H.; Kim, D.H.; Park, N.H.; Jung, J.W.; Choi, J. The investigation of the silica-reinforced rubber polymers with the methoxy type silane coupling agents. Polymers 2020, 12, 3058. [Google Scholar] [CrossRef]
- Galimberti, M.; Barbera, V.; Sebastiano, R.; Citterio, A.; Leonardi, G.; Valerio, A.M. Adducts between Carbon Allotropes and Serinol Derivatives. U.S. Patent 10,160,652 B2, 25 December 2018. [Google Scholar]
- Galimberti, M.; Barbera, V. Adducts of Pyrrole Derivatives to Carbon Allotropes. U.S. Patent 11,098,012 B2, 24 August 2018. [Google Scholar]
- Galimberti, M.; Barbera, V.; Guerra, S.; Conzatti, L.; Castiglioni, C.; Brambilla, L.; Serafini, A. Biobased Janus Molecule for the Facile Preparation of Water Solutions of Few Layer Graphene Sheets. RSC Adv. 2015, 5, 81142–81152. [Google Scholar] [CrossRef]
- Barbera, V.; Bernardi, A.; Palazzolo, A.; Rosengart, A.; Brambilla, L.; Galimberti, M. Facile and Sustainable Functionalization of Graphene Layers with Pyrrole Compounds. Pure Appl. Chem. 2018, 90, 253–270. [Google Scholar] [CrossRef]
- Locatelli, D.; Barbera, V.; Brambilla, L.; Castiglioni, C.; Sironi, A.; Galimberti, M. Tuning the Solubility Parameters of Carbon Nanotubes by Means of Their Adducts with Janus Pyrrole Compounds. Nanomaterials 2020, 10, 1176. [Google Scholar] [CrossRef] [PubMed]
- Barbera, V.; Brambilla, L.; Milani, A.; Palazzolo, A.; Castiglioni, C.; Vitale, A.; Bongiovanni, R.; Galimberti, M. Domino reaction for the sustainable functionalization of few-layer graphene. Nanomaterials 2018, 9, 44. [Google Scholar] [CrossRef]
- Sheldon, R.A. The E factor 25 years on: The rise of green chemistry and sustainability. Green Chem. 2017, 19, 18–43. [Google Scholar] [CrossRef]
- Sheldon, R.A. Metrics of green chemistry and sustainability: Past, present, and future. ACS Sustain. Chem. Eng. 2018, 6, 32–48. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, W.L.; Zong, S.; Du, H.X.; Shi, X.X. Clean synthesis process of 2,5-hexanedione. Adv. Mat. Res. 2012, 518, 3947–3950. [Google Scholar] [CrossRef]
- Waidmann, C.R.; Pierpont, A.W.; Batista, E.R.; Gordon, J.C.; Martin, R.L.; West, R.M.; Wu, R. Functional group dependence of the acid catalyzed ring opening of biomass derived furan rings: An experimental and theoretical study. Catal. Sci. Technol. 2013, 3, 106–115. [Google Scholar] [CrossRef]
- Gilkey, M.J.; Vlachos, D.G.; Xu, B. Poisoning of Ru/C by homogeneous Brønsted acids in hydrodeoxygenation of 2,5-dimethylfuran via catalytic transfer hydrogenation. Appl. Catal. A Gen. 2017, 542, 327–335. [Google Scholar] [CrossRef]
- Galimberti, M.; Barbera, V.; Giannini, L.; Naddeo, S. Processo per la Preparazione di Dichetoni e Derivati Pirrolici. Italian Patent Application n. 102021000032138, 1 January 2021. [Google Scholar]
- de Gennes, P.G. Soft matter (nobel lecture). Angew. Chem. Int. Ed. Engl. 1992, 31, 842–845. [Google Scholar] [CrossRef]
- Available online: https://corporate.pirelli.com/var/files2020/EN/PDF/PIRELLI_ANNUAL_REPORT_2020_ENG.pdf (accessed on 2 June 2023).
- Standard ISO37/UNI 6065; Rubber—Tests on Vulcanized or Thermoplastic Rubber—Tensile Test. Ente Nazionale Italiano di Unificazione (UNI): Milano, Italy, 2001.
- Vogel, A.I.; Tatchell, A.R.; Furnis, B.S.; Hannaford, A.J.; Smith, P.W.G. (Eds.) Vogel’s Textbook of Practical Organic Chemistry; Prentice Hall: Hoboken, NJ, USA, 1996; ISBN 978-0-582-46236-6. [Google Scholar]
- McCabe, W.L.; Julian, C.S.; Harriot, P. Unit Operations of Chemical Engineering; McGraw-Hill: New York, NY, USA, 1993; Volume 5. [Google Scholar]
- Alfe, M.; Gargiulo, V.; Di Capua, R.; Chiarella, F.; Rouzaud, J.N.; Vergara, A.; Ciajolo, A. Wet chemical method for making graphene-like films from carbon black. ACS Appl. Mater. Interfaces 2012, 4, 4491–4498. [Google Scholar] [CrossRef] [PubMed]
- Dillon, J.H.; Prettyman, I.B.; Hall, G.L. Hysteretic and elastic properties of rubberlike materials under dynamic shear stresses. J. Appl. Phys. 1944, 15, 309–323. [Google Scholar] [CrossRef]
- Fletcher, W.P.; Gent, A.N. Nonlinearity in the dynamic properties of vulcanized rubber compounds. Trans. Inst. Rubber Ind. 1953, 29, 266–280. [Google Scholar] [CrossRef]
- Payne, A.R. The dynamic properties of carbon black-loaded natural rubber vulcanizates. Part I. J. Appl. Polym. Sci. 1962, 6, 57–63. [Google Scholar] [CrossRef]
- Warasitthinon, N.; Genix, A.C.; Sztucki, M.; Oberdisse, J.; Robertson, C.G. The Payne effect: Primarily polymer-related or filler-related phenomenon? Rubber Chem. Technol. 2019, 92, 599–611. [Google Scholar] [CrossRef]
- Locatelli, D.; Bernardi, A.; Rubino, L.R.; Gallo, S.; Vitale, A.; Bongiovanni, R.; Barbera, V.; Galimberti, M. Biosourced Janus Molecules as Silica Coupling Agents in Elastomer Composites for Tires with Lower Environmental Impact. ACS Sustain. Chem. Eng. 2023, 11, 2713–2726. [Google Scholar] [CrossRef]
Ingredient | Silica | CB/SP-6 |
---|---|---|
NR (SIR-20) | 70 | 70 |
BR | 30 | 30 |
Silane/CB | 5.6 | 5.6 |
N326 | 30 | 30.0 |
Silica | 35 | 12 |
CB/SP-6 | 0 | 19.72 |
Ingredients | Silica | CB/SP b |
---|---|---|
IR | 100.00 | 100.00 |
Silica | 35.00 | 12.00 |
CB/TESPT | 5.60 | 5.60 |
CB N326 | 30.00 | 30.00 |
CB—SP | 0.00 | 19.72 |
Sample | SP a (phc) | Reaction T (°C) | Mass Loss (%) | SP in CB/SP (phc) | F.Y. b (%) | ||
---|---|---|---|---|---|---|---|
T < 150 °C | 150 °C < T < 900 °C | T > 900 °C | |||||
CB/SP-6 | 10 | 150 | 0.2 | 5.6 | 94.2 | 5.9 | 59 |
CB/SP-4 | 5 | 120 | 0.7 | 3.8 | 95.0 c | 4.0 | 80 |
CB/SP-5 | 10 | 120 | 0.4 | 4.8 | 94.1 d | 5.1 | 51 |
Silica | CB/SP-6 | |
---|---|---|
G′0.2% [MPa] | 2.52 | 2.30 |
G′25% [MPa] | 0.94 | 0.94 |
ΔG′ [MPa] | 1.58 | 1.36 |
ΔG′/G′0.2% | 0.67 | 0.59 |
G″max [MPa] | 0.15 | 0.15 |
Tan(δ)max | 0.11 | 0.11 |
T (°C) | Silica | CB/SP-6 | |
---|---|---|---|
E’ (Mpa) | 10 | 5.33 | 7.20 |
23 | 5.03 | 6.72 | |
70 | 4.27 | 5.72 | |
E’’ (MPa) | 10 | 1.13 | 1.41 |
23 | 0.86 | 1.04 | |
70 | 0.52 | 0.56 | |
Tan δ | 10 | 0.21 | 0.20 |
23 | 0.17 | 0.16 | |
70 | 0.12 | 0.10 |
Silica | CB/SP-6 | |
---|---|---|
σ100 (Mpa) | 2.21 ± 0.03 | 3.39 ± 0.03 |
σ200 (MPa) | 6.28 ± 0.12 | 9.05 ± 0.11 |
σ300 (Mpa) | 13.61 ± 0.25 | 17.58 ± 0.22 |
σ300/σ100 | 6.15 ± 0.22 | 5.18 ± 0.13 |
σB (Mpa) | 30.34 ± 1.15 | 25.91 ± 1.19 |
εB (%) | 504.22 ± 10.14 | 392.94 ± 7.15 |
Energy (J/cm3) | 60.18 ± 2.54 | 41.16 ± 4.52 |
T (°C) | Silica | CB/SP-4 | CB/SP-5 | |
---|---|---|---|---|
E′ [Mpa] | 10 | 7.09 | 7.67 | 8.00 |
23 | 6.51 | 6.91 | 7.22 | |
70 | 5.69 | 5.83 | 6.30 | |
E″ [Mpa] | 10 | 1.89 | 2.09 | 2.05 |
23 | 1.49 | 1.64 | 1.60 | |
70 | 0.84 | 0.83 | 0.85 | |
Tan (δ) | 10 | 0.27 | 0.27 | 0.26 |
23 | 0.23 | 0.24 | 0.22 | |
70 | 0.15 | 0.14 | 0.13 |
Sample | Resistance [MΩ] |
---|---|
Silica | 1.9 ± 0.3 |
CB—SP 4 | (5.4 ± 1.0) × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Magaletti, F.; Margani, F.; Monti, A.; Dezyani, R.; Prioglio, G.; Giese, U.; Barbera, V.; Galimberti, M.S. Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy. Polymers 2023, 15, 3120. https://doi.org/10.3390/polym15143120
Magaletti F, Margani F, Monti A, Dezyani R, Prioglio G, Giese U, Barbera V, Galimberti MS. Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy. Polymers. 2023; 15(14):3120. https://doi.org/10.3390/polym15143120
Chicago/Turabian StyleMagaletti, Federica, Fatima Margani, Alessandro Monti, Roshanak Dezyani, Gea Prioglio, Ulrich Giese, Vincenzina Barbera, and Maurizio Stefano Galimberti. 2023. "Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy" Polymers 15, no. 14: 3120. https://doi.org/10.3390/polym15143120
APA StyleMagaletti, F., Margani, F., Monti, A., Dezyani, R., Prioglio, G., Giese, U., Barbera, V., & Galimberti, M. S. (2023). Adducts of Carbon Black with a Biosourced Janus Molecule for Elastomeric Composites with Lower Dissipation of Energy. Polymers, 15(14), 3120. https://doi.org/10.3390/polym15143120