Synthesis of Polyether Carboxylate and the Effect of Different Electrical Properties on Its Viscosity Reduction and Emulsification of Heavy Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.2.1. Synthesis of APAS
2.2.2. Synthesis of APASD
2.2.3. Synthesis of APAD
2.2.4. Synthesis of APA
2.2.5. Synthesis of AP5AD
2.3. Characterization
2.4. Determination of Heavy Oil Properties
2.5. Surface Performance Testing
2.5.1. Surface Tension Test
2.5.2. Contact Angle Test
2.5.3. Water Distribution Performance Test
2.5.4. Foaming Performance Test
2.6. Viscosity Reduction and Emulsification Performance Test
2.6.1. Viscosity Reduction Test
2.6.2. Emulsification Speed Test
2.6.3. Emulsion Stability Testing
3. Results and Discussion
3.1. Characterization
3.1.1. FT-IR Spectroscopy
3.1.2. 1HNMR
3.2. Heavy Oil Property Determination
3.3. Surface Performance
3.3.1. Surface Tension
3.3.2. Contact Angle
3.3.3. Water Distribution Performance
3.3.4. Foaming Performance
3.4. Viscosity Reduction and Emulsification Performance
3.4.1. Viscosity Reduction Performance
3.4.2. Emulsification Speed
3.4.3. Emulsion Stability
3.5. Viscosity Reduction Mechanism
3.5.1. Surface Tension
3.5.2. Contact Angle
3.5.3. Water Separation Performance
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Gu, F.; Han, W.; Fu, L.; Dong, S.; Zhang, Z.; Ren, Z.; Liao, K. Green Surfactant Made from Cashew Phenol for Enhanced Oil Recovery. ACS Omega 2023, 8, 2057–2064. [Google Scholar] [CrossRef]
- Chowdhury, S.; Shrivastava, S.; Kakati, A.; Sangwai, J.S. Comprehensive Review on the Role of Surfactants in the Chemical Enhanced Oil Recovery Process. Ind. Eng. Chem. Res. 2022, 61, 21–64. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, W.; Wang, C.; Han, X.; Wang, H.; Zhang, H. Microstructure of Heavy Oil Components and Mechanism of Influence on Viscosity of Heavy Oil. ACS Omega 2023, 8, 10980–10990. [Google Scholar] [CrossRef]
- Ren, B.; Guo, J.; Zhang, D. Research on lift friction of ultra-deep heavy oil with viscosity reduction in wellbore under high temperature/pressure. Sci. Technol. Eng. 2018, 18, 1–6. [Google Scholar]
- Liu, J.; Zhong, L.; Ren, L.; Hao, T.; Wang, C.; Liu, Y.; Jiang, Y.; Zhou, Y. Laboratory Evaluation of Fluidity of Heavy Oil Emulsions in Formation Pores Medium. ACS Omega 2021, 6, 623–632. [Google Scholar] [CrossRef]
- Vavra, E.; Puerto, M.; Biswal, S.L.; Hirasaki, G.J. A systematic approach to alkaline-surfactant-foam flooding of heavy oil: Microfluidic assessment with a novel phase-behavior viscosity map. Sci. Rep. 2020, 10, 12930. [Google Scholar] [CrossRef] [PubMed]
- Manda, A. Chemical flood enhanced oil recovery a review. Int. J. Oil Gas. Coal Technol. 2015, 9, 241–264. [Google Scholar] [CrossRef]
- Demirbas, A.; Alsulami, H.E.; Hassanein, W.S. Utilization of Surfactant Flooding Processes for Enhanced Oil Recovery (EOR). Pet. Sci. Technol. 2015, 33, 1331–1339. [Google Scholar] [CrossRef]
- Gbadamosi, A.O.; Junin, R.; Manan, M.A.; Agi, A.; Yusuff, A.S. An overview of chemical enhanced oil recovery: Recent advances and prospects. Int. Nano Lett. 2019, 9, 171–202. [Google Scholar] [CrossRef] [Green Version]
- Afolabi, F.; Mahmood, S.M.; Yekeen, N.; Akbari, S.; Sharifigaliuk, H. Polymeric surfactants for enhanced oil recovery: A review of recent progress. J. Pet. Sci. Eng. 2022, 208, 109358. [Google Scholar] [CrossRef]
- Lemahieu, G.; Ontiveros, J.F.; Molinier, V.; Aubry, J.-M. SPI-slope/PIT-slope mapping as a guiding tool for the selection of technical grade surfactants for chemical enhanced oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130362. [Google Scholar] [CrossRef]
- Souayeh, M.; Al-Maamari, R.S.; Karimi, M.; Aoudia, M. Wettability alteration and oil recovery by surfactant assisted low salinity water in carbonate rock: The impact of nonionic/anionic surfactants. J. Pet. Sci. Eng. 2021, 197, 108108. [Google Scholar] [CrossRef]
- Zulkifli, N.N.; Mahmood, S.M.; Akbari, S.; Manap, A.A.A.; Kechut, N.I.; Elrais, K.A. Evaluation of new surfactants for enhanced oil recovery applications in high-temperature reservoirs. J. Pet. Explor. Prod. Technol. 2019, 10, 283–296. [Google Scholar] [CrossRef] [Green Version]
- Belhaj, A.F.; Elraies, K.A.; Alnarabiji, M.S.; Abdul Kareem, F.A.; Shuhli, J.A.; Mahmood, S.M.; Belhaj, H. Experimental investigation, binary modelling and artificial neural network prediction of surfactant adsorption for enhanced oil recovery application. Chem. Eng. J. 2021, 406, 127081. [Google Scholar] [CrossRef] [PubMed]
- Beaman, D.K.; Robertson, E.J.; Richmond, G.L. From Head to Tail: Structure, Solvation, and Hydrogen Bonding of Carboxylate Surfactants at the Organic–Water Interface. J. Phys. Chem. C 2011, 115, 12508–12516. [Google Scholar] [CrossRef]
- Kamal, M.S.; Sultan, A.S.; Al-Mubaiyedh, U.A.; Hussein, I.A. Review on Polymer Flooding: Rheology, Adsorption, Stability, and Field Applications of Various Polymer Systems. Polym. Rev. 2015, 55, 491–530. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, G.; Dong, M.; Zhao, S.; Liang, Z. Evaluation of Different Factors on Enhanced Oil Recovery of Heavy Oil Using Different Alkali Solutions. Energy Fuels 2016, 30, 3860–3869. [Google Scholar] [CrossRef]
- Samanta, A.; Ojha, K.; Mandal, A. Interactions between Acidic Crude Oil and Alkali and Their Effects on Enhanced Oil Recovery. Energy Fuels 2011, 25, 1642–1649. [Google Scholar] [CrossRef]
- Liang, T.; Hou, J.-R.; Qu, M.; Xi, J.-X.; Raj, I. Application of nanomaterial for enhanced oil recovery. Pet. Sci. 2022, 19, 882–899. [Google Scholar] [CrossRef]
- Tavakkoli, O.; Kamyab, H.; Shariati, M.; Mustafa Mohamed, A.; Junin, R. Effect of nanoparticles on the performance of polymer/surfactant flooding for enhanced oil recovery: A review. Fuel 2022, 312, 122867. [Google Scholar] [CrossRef]
- Hu, R.; Tang, S.; Mpelwa, M.; Jiang, Z.; Feng, S. Research progress of viscoelastic surfactants for enhanced oil recovery. Energy Explor. Exploit. 2021, 39, 1324–1348. [Google Scholar] [CrossRef]
- Machale, J.; Majumder, S.K.; Ghosh, P.; Sen, T.K. Role of chemical additives and their rheological properties in enhanced oil recovery. Rev. Chem. Eng. 2020, 36, 789–830. [Google Scholar] [CrossRef]
- Fu, H.Z.T.Y.H.Y.J.L.K.Z.C. Role of Alkali Type in Chemical Loss and ASP-Flooding Enhanced Oil Recovery in Sandstone Formations. SPE Reserv. Eval. Eng. 2019, 23, 431–445. [Google Scholar] [CrossRef]
- Druetta, P.; Raffa, P.; Picchioni, F. Chemical enhanced oil recovery and the role of chemical product design. Appl. Energy 2019, 252, 113480. [Google Scholar] [CrossRef]
- Li, J.; Wang, Q.; Liu, Y.; Wang, M.; Tan, Y. Long Branched-Chain Amphiphilic Copolymers: Synthesis, Properties, and Application in Heavy Oil Recovery. Energy Fuels 2018, 32, 7002–7010. [Google Scholar] [CrossRef]
- Wibowo, A.D.K.; Yoshi, L.A.; Handayani, A.S.; Joelianingsih. Synthesis of polymeric surfactant from palm oil methyl ester for enhanced oil recovery application. Colloid Polym. Sci. 2020, 299, 81–92. [Google Scholar] [CrossRef]
- Vegad, G.D.; Jana, A.K. Viscosity Reduction of Indian Heavy Crude Oil by Emulsification to O/W Emulsion Using Polysorbate-81. J. Surfactants Deterg. 2020, 24, 301–311. [Google Scholar] [CrossRef]
- Kang, X.; Kang, W.; Zhu, T.; Hou, X.; Yang, H.; Li, M.; Zhang, M. Study on the self-emulsified heavy oil by using amphiphilic polymer/surfactant mixtures. China Surfactant Deterg. Cosmet. 2020, 50, 287–292. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, L.; Jiang, J.; Lu, Q. Study on the emulsification performance of sulfonate-based polymeric surfactants. Drill. Prod. Technol. 2018, 41, 95–97. [Google Scholar] [CrossRef]
- Wang, J.; Liu, R.; Tang, Y.; Zhu, J.; Sun, Y.; Zhang, G. Synthesis of Polycarboxylate Viscosity Reducer and the Effect of Different Chain Lengths of Polyether on Viscosity Reduction of Heavy Oil. Polymers 2022, 14, 3367. [Google Scholar] [CrossRef]
- Liu, J.; Zhong, L.; Zewen, Y.; Liu, Y.; Meng, X.; Zhang, W.; Zhang, H.; Yang, G.; Shaojie, W. High-efficiency emulsification anionic surfactant for enhancing heavy oil recovery. Colloids Surf. A Physicochem. Eng. Asp. 2022, 642, 128654. [Google Scholar] [CrossRef]
- Zhang, G.; Yang, D.; Du, L.; Liu, J.; Ni, M.; Luo, J.; Zhao, L. Preparation and performance comparison of two amphoteric polycarboxylate salt coal slurry dispersants with different carboxylic acid monomers. Fine Chem. 2020, 37, 2474–2481. [Google Scholar] [CrossRef]
- Hantal, G.; Sega, M.; Horvai, G.; Jedlovszky, P. Contribution of Different Molecules and Moieties to the Surface Tension in Aqueous Surfactant Solutions. J. Phys. Chem. C 2019, 123, 16660–16670. [Google Scholar] [CrossRef]
- Riccardi, E.; Tichelkamp, T. Calcium ion effects on the water/oil interface in the presence of anionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2019, 573, 246–254. [Google Scholar] [CrossRef]
- Wang, L.; Liu, R.; Hu, Y.; Sun, W. Adsorption of mixed DDA/NaOL surfactants at the air/water interface by molecular dynamics simulations. Chem. Eng. Sci. 2016, 155, 167–174. [Google Scholar] [CrossRef]
- Ergin, G.; Lbadaoui-Darvas, M.; Takahama, S. Molecular Structure Inhibiting Synergism in Charged Surfactant Mixtures: An Atomistic Molecular Dynamics Simulation Study. Langmuir 2017, 33, 14093–14104. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Guo, X.L.; Yuan, S.L.; Liu, C.B. Molecular dynamics study of the effect of calcium ions on the monolayer of SDC and SDSn surfactants at the vapor/liquid interface. Langmuir 2011, 27, 5762–5771. [Google Scholar] [CrossRef]
- He, X.-L.; Wang, Z.-Y.; Gang, H.-Z.; Ye, R.-Q.; Yang, S.-Z.; Mu, B.-Z. Less bound cations and stable inner salt structure enhanced the salt tolerance of the bio-based zwitterionic surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2022, 635, 128074. [Google Scholar] [CrossRef]
- Norouzpour, M.; Nabipour, M.; Azdarpour, A.; Akhondzadeh, H.; Santos, R.M.; Keshavarz, A. Experimental investigation of the effect of a quinoa-derived saponin-based green natural surfactant on enhanced oil recovery. Fuel 2022, 318, 123652. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Liu, S.; Fan, M. Effects of Surfactant Headgroups on Oil-in-Water Emulsion Droplet Formation: An Experimental and Simulation Study. J. Surfactants Deterg. 2019, 22, 85–93. [Google Scholar] [CrossRef] [Green Version]
- Kamal, M.S.; Hussain, S.M.S.; Fogang, L.T. Role of Ionic Headgroups on the Thermal, Rheological, and Foaming Properties of Novel Betaine-Based Polyoxyethylene Zwitterionic Surfactants for Enhanced Oil Recovery. Processes 2019, 7, 908. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.-b.; Yue, X.-a.; Yang, C.-c. New method to quantitatively characterize the emulsification capability of chemical flooding agents. J. Pet. Sci. Eng. 2021, 196, 107810. [Google Scholar] [CrossRef]
Surfactant | APAS | APASD | APAD | APA | AP5AD |
---|---|---|---|---|---|
Net charge (mol) | 0.13705 | 0.134225 | 0.131635 | 0.1352 | 0.152646 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Liu, R.; Wang, B.; Cheng, Z.; Liu, C.; Tang, Y.; Zhu, J. Synthesis of Polyether Carboxylate and the Effect of Different Electrical Properties on Its Viscosity Reduction and Emulsification of Heavy Oil. Polymers 2023, 15, 3139. https://doi.org/10.3390/polym15143139
Wang J, Liu R, Wang B, Cheng Z, Liu C, Tang Y, Zhu J. Synthesis of Polyether Carboxylate and the Effect of Different Electrical Properties on Its Viscosity Reduction and Emulsification of Heavy Oil. Polymers. 2023; 15(14):3139. https://doi.org/10.3390/polym15143139
Chicago/Turabian StyleWang, Junqi, Ruiqing Liu, Bo Wang, Zhigang Cheng, Chengkun Liu, Yiwen Tang, and Junfeng Zhu. 2023. "Synthesis of Polyether Carboxylate and the Effect of Different Electrical Properties on Its Viscosity Reduction and Emulsification of Heavy Oil" Polymers 15, no. 14: 3139. https://doi.org/10.3390/polym15143139
APA StyleWang, J., Liu, R., Wang, B., Cheng, Z., Liu, C., Tang, Y., & Zhu, J. (2023). Synthesis of Polyether Carboxylate and the Effect of Different Electrical Properties on Its Viscosity Reduction and Emulsification of Heavy Oil. Polymers, 15(14), 3139. https://doi.org/10.3390/polym15143139