Enhancing High-Pressure Capillary Rheometer Viscosity Data Calculation with the Propagation of Uncertainties for Subsequent Cross-Williams, Landel, and Ferry (WLF) Parameter Fitting
Abstract
:1. Introduction
- Laminar flow;
- Isothermal conditions;
- Wall adherend melt;
- Incompressible melt;
- Non-pressure-dependent melt;
- Stationary conditions;
- Newtonian fluid [14].
2. Materials and Methods
2.1. Polycarbonate Lexan OQ 1028
2.2. High-Pressure Capillary Rheometer (HPCR)
2.3. Viscosity Calculation Derivation
2.3.1. Bagley Correction (BC) and Wall Shear Stress
2.3.2. Weissenberg–Rabinowitsch Correction (WRC) and Wall Shear Rate
2.3.3. Viscosity Calculation
2.4. Cross-WLF Parameter Fitting
- RSS fit: Equation (3) is minimized between the derived (measured) and the calculated (Cross-WLF) viscosities.
- WRSS fit: Equation (15) is minimized with the estimated uncertainties in the viscosity (Equation (25)) used as the weights.
2.5. Flow Simulation of the Capillary Model
2.6. Procedure Set Up for a Virtual Material
3. Results and Discussion
3.1. Viscosity Calculation
3.2. Comparison of Cross-WLF Fit Using RSS and WRSS Minimization
3.3. Comparison of Fits Regarding Simulation Results
3.4. Method Scrutinization through the Virtual Material
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Kennedy, P.; Zheng, R. Flow Analysis of Injection Molds, 2nd ed.; Hanser: München, Germany, 2013; ISBN 9781569905227. [Google Scholar]
- Michaeli, W. Extrusion Dies for Plastics and Rubber: Design and Engineering Computations, 3rd ed.; Hanser Publishers: Munich, Germany, 2003; ISBN 9783446401815. [Google Scholar]
- Friesenbichler, W.; Jegadeesan, R.; Lucyshyn, T.; Filz, P.; Webelhaus, K. Measurement of pressure dependent viscosity and its influence on injection molding simulation. In Proceedings of the 4th International PMI Conference, Ghent, Belgium, 2010; pp. 215–219. Available online: https://pure.unileoben.ac.at/en/publications/measurement-of-pressure-dependent-viscosity-and-its-influence-on--2 (accessed on 5 June 2023).
- Autodesk Inc. Cross-WLF Viscosity Model|Moldflow Insight|Autodesk Knowledge Network. Available online: https://knowledge.autodesk.com/support/moldflow-insight/learn-explore/caas/CloudHelp/cloudhelp/2018/ENU/MoldflowInsight/files/GUID-7BC3A8F0-8B41-4FCB-BDF1-F1159E4DD175-htm.html (accessed on 20 December 2021).
- Cross, M.M. Rheology of Non-Newtonian Fluids: A New Flow Equation for Pseudoplastic Systems. J. Colloid Sci. 1965, 20, 417–437. [Google Scholar] [CrossRef]
- Lord, H.A. Flow of polymers with pressure-dependent viscosity in injection molding dies. Polym. Eng. Sci. 1979, 19, 469–473. [Google Scholar] [CrossRef]
- Ferry, J.D. Viscoelastic Properties of Polymers; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1961; ISBN 978-0-471-82755-2. [Google Scholar]
- Williams, M.L.; Landel, R.F.; Ferry, J.D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. [Google Scholar] [CrossRef]
- Osswald, T.A.; Menges, G. Materials Science of Polymers for Engineers, 3rd ed.; Hanser: Munich, Germany, 2012; ISBN 9781569905241. [Google Scholar]
- Seber, G.A.F. Nonlinear Regression; Wiley Interscience: New York, NY, USA, 2003; ISBN 0471725315. [Google Scholar]
- The SciPy Community. Scipy.Optimize.Curve_Fit—SciPy v1.10.1 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html (accessed on 24 March 2023).
- Simcon kunststofftechnische Software GmbH. Cadmould Material Database: Rheological Data; V3.3.0.346; Simcon kunststofftechnische Software GmbH: Würselen, Germany, 2013. [Google Scholar]
- ISO. Plastics-Determination of the Fluidity of Plastics Using Capillary and Slit-Die Rheometers; ISO: Geneva, Switzerland, 2021; p. 11443. [Google Scholar]
- Laun, H.-M. Capillary rheometry for polymer melts revisited. Rheol. Acta 2004, 43, 509–528. [Google Scholar] [CrossRef]
- van Puyvelde, P.; Vananroye, A.; Hanot, A.-S.; Dees, M.; Mangnus, M.; Hermans, N. On the Pressure Dependency of the Bagley Correction. Int. Polym. Process. 2013, 28, 558–564. [Google Scholar] [CrossRef]
- Bagley, E.B. End Corrections in the Capillary Flow of Polyethylene. J. Appl. Phys. 1957, 28, 624–627. [Google Scholar] [CrossRef]
- Rabinowitsch, B. Über die Viskosität und Elastizität von Solen. Z. Für Phys. Chem. 1929, 145A, 1–26. [Google Scholar] [CrossRef]
- Pahl, M.; Gleißle, W.; Laun, H.-M. Praktische Rheologie der Kunststoffe und Elastomere, 4th ed.; VDI-Gesellschaft Kunststofftechnik: Düsseldorf, Germany, 1995; ISBN 3182341928. [Google Scholar]
- Aho, J.; Syrjälä, S. Measurement of the pressure dependence of viscosity of polymer melts using a back pressure-regulated capillary rheometer. J. Appl. Polym. Sci. 2010, 117, 1076–1084. [Google Scholar] [CrossRef]
- Raha, S.; Sharma, H.; Senthilmurugan, M.; Bandyopadhyay, S.; Mukhopadhyay, P. Determination of the pressure dependence of polymer melt viscosity using a combination of oscillatory and capillary rheometer. Polym. Eng. Sci. 2020, 60, 517–523. [Google Scholar] [CrossRef]
- Ockendon, H. Channel flow with temperature-dependent viscosity and internal viscous dissipation. J. Fluid Mech. 1979, 93, 737. [Google Scholar] [CrossRef]
- Syrjälä, S.; Aho, J. Capillary rheometry of polymer melts—Simulation and experiment. Korea-Aust. Rheol. J. 2012, 24, 241–247. [Google Scholar] [CrossRef]
- Laun, H.-M. Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts. Rheol. Acta 2003, 42, 295–308. [Google Scholar] [CrossRef]
- Tadmor, Z.; Duvdevani, I.; Klein, I. Melting in plasticating extuders theory and experiments. Polym. Eng. Sci. 1967, 7, 198–217. [Google Scholar] [CrossRef]
- Laun, H.-M. Polymer melt rheology with a slit die. Rheol. Acta 1983, 22, 171–185. [Google Scholar] [CrossRef]
- Malkin, A.; Ilyin, S.; Vasilyev, G.; Arinina, M.; Kulichikhin, V. Pressure losses in flow of viscoelastic polymeric fluids through short channels. J. Rheol. 2014, 58, 433–448. [Google Scholar] [CrossRef]
- Agassant, J.-F. Polymer Processing: Principles and Modeling, 2nd ed.; Hanser Publishers: Munich, Germany, 2017; ISBN 9781569906064. [Google Scholar]
- Barlow, R. Statistics: A Guide to the Use of Statistical Methods in the Physical Sciences, 5th ed.; Wiley: Chichester, UK, 1999; ISBN 0471922951. [Google Scholar]
- SABIC. LEXAN™ RESIN OQ1028. 2020. Available online: https://www.sabic.com/en/products/documents/lexan-resin_oq1028_europe_technical_data_sheet/en (accessed on 26 May 2023).
- Taylor, J.R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements, 2nd ed.; University Science Books: Sausalito, CA, USA, 1997; ISBN 9780935702750. [Google Scholar]
- SymPy Development Team. SymPy. Available online: https://www.sympy.org/en/index.html (accessed on 11 May 2022).
- Ansys Inc. POLYFLOW in Workbench User’s Guide; Ansys Inc.: Canonsburg, PA, USA, 2022. [Google Scholar]
- Couch, M.; Binding, D. High pressure capillary rheometry of polymeric fluids. Polymer 2000, 41, 6323–6334. [Google Scholar] [CrossRef]
- Sorrentino, A.; Pantani, R. Pressure-dependent viscosity and free volume of atactic and syndiotactic polystyrene. Rheol. Acta 2009, 48, 467–478. [Google Scholar] [CrossRef]
Symbol | Unit | Designation | Lower Bound | Upper Bound |
---|---|---|---|---|
K | Reference temperature (frequently: ) | 0 | ||
Pa∙s | Zero-shear viscosity at | 0 | - | |
Pa | Critical stress level at the transition to shear thinning | 0 | ||
/ | Power law index slope in the shear thinning domain | 0 | 1 | |
/ | WLF parameter | 0 | ||
K | WLF parameter (frequently: 51.6 K) | 0 | ||
K/Pa | Linear pressure dependence | 0 |
Temperature (°C) | Counter-Pressure (bar) | Capillary Configuration | Apparent Shear Rate (1/s) |
---|---|---|---|
310, 325, 340 | 0 | , , 20, 30 | 200, 300, 400, 600, 800, 1000 |
, , 20, 30 | 2000, 3000, 7000, 10,000, 15,000, 20,000, 30,000, 50,000 | ||
300, 600 | , , 20, 30 | 300, 400, 600, 800, 1000, 1500 |
(Pa·s) | (Pa) | (/) | (/) | (K/Pa) | (K) | (K) |
---|---|---|---|---|---|---|
0.40 | 17.44 | 0 | 51.6 | 413.5 |
Temperature (°C) | Capillary Configuration | Apparent Shear Rate (1/s) | Subjected Relative Error (/) |
---|---|---|---|
310, 325, 340 | , , 20, 30 | 1, 3, | 0.2 |
10, 32, 100, 316, 1000, 3162, | 0.1 | ||
10,000, 31,623 | 0.2 |
(°C) | (1/s) | (bar) | (bar) | (/) | (1/s) | (/) | (Pa·s) | (/) |
---|---|---|---|---|---|---|---|---|
310 | 300 | 0.00 ± 2.49 | 0.46 ± 0.03 | 97.78% | 306.76 | 99.99% | 149.92 ± 10.08 | 0.07 |
400 | 0.00 ± 3.54 | 0.61 ± 0.04 | 97.11% | 406.28 | 149.58 ± 10.35 | 0.07 | ||
600 | 0.00 ± 9.86 | 0.87 ± 0.11 | 90.47% | 609.08 | 143.57 ± 18.67 | 0.13 | ||
800 | 0.00 ± 8.25 | 1.16 ± 0.10 | 95.83% | 817.02 | 142.12 ± 11.44 | 0.08 | ||
1000 | 0.00 ± 10.15 | 1.42 ± 0.12 | 95.77% | 1029.11 | 137.90 ± 11.00 | 0.08 | ||
1500 | 0.00 ± 13.34 | 2.01 ± 0.15 | 96.77% | 1574.33 | 127.71 ± 9.36 | 0.07 | ||
325 | 300 | 3.57 ± 2.45 | 0.22 ± 0.03 | 89.70% | 299.39 | 99.93% | 73.89 ± 10.51 | 0.14 |
400 | 3.59 ± 1.96 | 0.30 ± 0.02 | 96.21% | 391.78 | 77.37 ± 6.12 | 0.08 | ||
600 | 3.70 ± 2.54 | 0.46 ± 0.03 | 97.26% | 583.24 | 79.28 ± 5.08 | 0.06 | ||
800 | 0.49 ± 3.85 | 0.67 ± 0.04 | 96.97% | 785.38 | 84.78 ± 5.47 | 0.06 | ||
1000 | 2.28 ± 3.74 | 0.81 ± 0.04 | 98.04% | 993.05 | 81.55 ± 4.12 | 0.05 | ||
1500 | 0.77 ± 4.01 | 1.21 ± 0.05 | 98.99% | 1544.96 | 78.52 ± 3.62 | 0.05 |
Fit Type | (Pa·s) | (Pa) | (/) | (/) | (K/Pa) |
---|---|---|---|---|---|
RSS fit | 0 | 35.0 | |||
WRSS fit | 0 | 30.0 |
Fit Type | (Pa·s) | (Pa) | (/) | (/) |
---|---|---|---|---|
Original | 0.40 | 17.44 | ||
RSS fit | 0.37 | 19.41 | ||
WRSS fit | 0.40 | 18.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hubmann, M.; Schuschnigg, S.; Ðuretek, I.; Groten, J.; Holzer, C. Enhancing High-Pressure Capillary Rheometer Viscosity Data Calculation with the Propagation of Uncertainties for Subsequent Cross-Williams, Landel, and Ferry (WLF) Parameter Fitting. Polymers 2023, 15, 3147. https://doi.org/10.3390/polym15143147
Hubmann M, Schuschnigg S, Ðuretek I, Groten J, Holzer C. Enhancing High-Pressure Capillary Rheometer Viscosity Data Calculation with the Propagation of Uncertainties for Subsequent Cross-Williams, Landel, and Ferry (WLF) Parameter Fitting. Polymers. 2023; 15(14):3147. https://doi.org/10.3390/polym15143147
Chicago/Turabian StyleHubmann, Martin, Stephan Schuschnigg, Ivica Ðuretek, Jonas Groten, and Clemens Holzer. 2023. "Enhancing High-Pressure Capillary Rheometer Viscosity Data Calculation with the Propagation of Uncertainties for Subsequent Cross-Williams, Landel, and Ferry (WLF) Parameter Fitting" Polymers 15, no. 14: 3147. https://doi.org/10.3390/polym15143147
APA StyleHubmann, M., Schuschnigg, S., Ðuretek, I., Groten, J., & Holzer, C. (2023). Enhancing High-Pressure Capillary Rheometer Viscosity Data Calculation with the Propagation of Uncertainties for Subsequent Cross-Williams, Landel, and Ferry (WLF) Parameter Fitting. Polymers, 15(14), 3147. https://doi.org/10.3390/polym15143147