Study of Ethylene-Removing Materials Based on Eco-Friendly Composites with Nano-TiO2
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. X-ray Diffraction (XRD)
2.3. Fourier Transform Spectroscopy (FTIR)
2.4. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM)
2.5. Particle Sizes (PS)
2.6. Thermogravimetric Analysis (TGA)
2.7. Photocatalytic Activity of TiO2
2.8. Ethylene-Removal Study
2.9. Fabrication of Nanocomposites
2.10. Colorimetric Properties
3. Results and Discussion
3.1. Characterization of Nano-TiO2
3.2. Photocatalytic Activity
3.3. Evaluation of Ethylene Degradation by Nano-TiO2
3.4. Elaboration and Characterization of TiO2 Nanocomposites through Extrusion Process
3.4.1. Optical Properties
3.4.2. Morphological Properties
3.4.3. Evaluation of Ethylene Degradation by PLA and MB Nanocomposites
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yadav, P.; Ansari, M.W.; Kaula, B.C.; Rao, Y.R.; Al Meselmani, M.; Siddiqui, Z.H.; Brajendra; Kumar, S.B.; Rani, V.; Sarkar, A.; et al. Regulation of Ethylene Metabolism in Tomato under Salinity Stress Involving Linkages with Important Physiological Signaling Pathways. Plant Sci. 2023, 334, 111736. [Google Scholar] [CrossRef]
- Kızıldeniz, T.; Hepsağ, F.; Hayoğlu, İ. Improving Mulberry Shelf-Life with 1-Methylcyclopropene and Modified Atmosphere Packaging. Biochem. Syst. Ecol. 2023, 106, 104578. [Google Scholar] [CrossRef]
- Siripatrawan, U.; Kaewklin, P. Fabrication and Characterization of Chitosan-Titanium Dioxide Nanocomposite Film as Ethylene Scavenging and Antimicrobial Active Food Packaging. Food Hydrocoll. 2018, 84, 125–134. [Google Scholar] [CrossRef]
- English, A. Food and Agriculture Organization of the United Nations. In The State of Food and Agriculture. 2019, Moving forward on Food Loss and Waste Reduction; FAO: Rome, Italy, 2019; ISBN 9789251317891. [Google Scholar]
- Gaikwad, K.K.; Singh, S.; Lee, Y.S. High Adsorption of Ethylene by Alkali-Treated Halloysite Nanotubes for Food-Packaging Applications. Environ. Chem. Lett. 2018, 16, 1055–1062. [Google Scholar] [CrossRef]
- Wang, H.; Wang, L.; Ye, S.; Song, X. Construction of Bi2WO6–TiO2/Starch Nanocomposite Films for Visible-Light Catalytic Degradation of Ethylene. Food Hydrocoll. 2019, 88, 92–100. [Google Scholar] [CrossRef]
- Böhmer-Maas, B.W.; Fonseca, L.M.; Otero, D.M.; da Rosa Zavareze, E.; Zambiazi, R.C. Photocatalytic Zein-TiO2 Nanofibers as Ethylene Absorbers for Storage of Cherry Tomatoes. Food Packag. Shelf Life 2020, 24, 100508. [Google Scholar] [CrossRef]
- Keller, N.; Ducamp, M.N.; Robert, D.; Keller, V. Ethylene Removal and Fresh Product Storage: A Challenge at the Frontiers of Chemistry. Toward an Approach by Photocatalytic Oxidation. Chem. Rev. 2013, 113, 5029–5070. [Google Scholar] [CrossRef]
- Nevárez-Martínez, M.C.; Espinoza-Montero, P.J.; Quiroz-Chávez Francisco, J.; Ohtani, B. Fotocatálisis: Inicio, Actualidad y Perspectivas a Través Del TiO 2 Photocatalysis: Beginning, Present and Trends through TiO2. Av. Química 2017, 12, 45–59. [Google Scholar]
- Zhang, Q.; Ye, S.; Chen, X.; Song, X.; Li, L.; Huang, X. Photocatalytic Degradation of Ethylene Using Titanium Dioxide Nanotube Arrays with Ag and Reduced Graphene Oxide Irradiated by γ-Ray Radiolysis. Appl. Catal. B 2017, 203, 673–683. [Google Scholar] [CrossRef]
- Scaffaro, R.; Sutera, F.; Botta, L. Biopolymeric Bilayer Films Produced by Co-Extrusion Film Blowing. Polym. Test. 2018, 65, 35–43. [Google Scholar] [CrossRef]
- Cruz, R.; Nisar, M.; Palza, H.; Yazdani-Pedram, M.; Aguilar-Bolados, H.; Quijada, R. Development of Bio Degradable Nanocomposites Based on PLA and Functionalized Graphene Oxide. Polym. Test. 2023, 124, 108066. [Google Scholar] [CrossRef]
- Sanyang, M.L.; Sapuan, S.M. Development of Expert System for Biobased Polymer Material Selection: Food Packaging Application. J. Food Sci. Technol. 2015, 52, 6445–6454. [Google Scholar] [CrossRef] [Green Version]
- Scaffaro, R.; Sutera, F.; Mistretta, M.C.; Botta, L.; La Mantia, F.P. Structure-Properties Relationships in Melt Reprocessed PLA/Hydrotalcites Nanocomposites. Express Polym. Lett. 2017, 11, 555. [Google Scholar] [CrossRef]
- Zhang, W.; Rhim, J.W. Titanium Dioxide (TiO2) for the Manufacture of Multifunctional Active Food Packaging Films. Food Packag. Shelf Life 2022, 31, 100806. [Google Scholar] [CrossRef]
- Kaewklin, P.; Siripatrawan, U.; Suwanagul, A.; Lee, Y.S. Active Packaging from Chitosan-Titanium Dioxide Nanocomposite Film for Prolonging Storage Life of Tomato Fruit. Int. J. Biol. Macromol. 2018, 112, 523–529. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.R.; Cui, G.; Rigg, B. The Development of the CIE 2000 Colour-Difference Formula: CIEDE2000. Color Res. Appl. 2001, 26, 340–350. [Google Scholar] [CrossRef]
- Sunny, N.E.; Mathew, S.S.; Chandel, N.; Saravanan, P.; Rajeshkannan, R.; Rajasimman, M.; Vasseghian, Y.; Rajamohan, N.; Kumar, S.V. Green Synthesis of Titanium Dioxide Nanoparticles Using Plant Biomass and Their Applications—A Review. Chemosphere 2022, 300, 134612. [Google Scholar] [CrossRef]
- Molina Higgins, M.C.; Hall, H.; Rojas, J.V. The Effect of X-Ray Induced Oxygen Defects on the Photocatalytic Properties of Titanium Dioxide Nanoparticles. J. Photochem. Photobiol. A Chem. 2021, 409, 113138. [Google Scholar] [CrossRef]
- Ilyas, M.; Waris, A.; Khan, A.U.; Zamel, D.; Yar, L.; Baset, A.; Muhaymin, A.; Khan, S.; Ali, A.; Ahmad, A. Biological Synthesis of Titanium Dioxide Nanoparticles from Plants and Microorganisms and Their Potential Biomedical Applications. Inorg. Chem. Commun. 2021, 133, 108968. [Google Scholar] [CrossRef]
- Mathan Kumar, P.; Paramasivam, V.; Beemaraj, R.K.; Mathalai Sundaram, C.; Arun Prasath, K. Investigate the Characterization and Synthesis Process of Titanium Dioxide Nanoparticles. Mater. Today Proc. 2022, 52, 1140–1142. [Google Scholar]
- Ortiz-Bustos, J.; Fajardo, M.; del Hierro, I.; Pérez, Y. Versatile Titanium Dioxide Nanoparticles Prepared by Surface-Grown Polymerization of Polyethylenimine for Photodegradation and Catalytic C[Sbnd]C Bond Forming Reactions. Mol. Catal. 2019, 475, 110501. [Google Scholar] [CrossRef]
- Mutuma, B.K.; Shao, G.N.; Kim, W.D.; Kim, H.T. Sol-Gel Synthesis of Mesoporous Anatase-Brookite and Anatase-Brookite-Rutile TiO2 Nanoparticles and Their Photocatalytic Properties. J. Colloid. Interface Sci. 2015, 442, 1–7. [Google Scholar] [CrossRef] [PubMed]
- He, P.; Zhao, Z.; Tan, Y.; Hengchao, E.; Zuo, M.; Wang, J.; Yang, J.; Cui, S.; Yang, X. Photocatalytic Degradation of Deoxynivalenol Using Cerium Doped Titanium Dioxide under Ultraviolet Light Irradiation. Toxins 2021, 13, 481. [Google Scholar] [CrossRef] [PubMed]
- Alizadeh Sani, M.; Maleki, M.; Eghbaljoo-Gharehgheshlaghi, H.; Khezerlou, A.; Mohammadian, E.; Liu, Q.; Jafari, S.M. Titanium Dioxide Nanoparticles as Multifunctional Surface-Active Materials for Smart/Active Nanocomposite Packaging Films. Adv. Colloid. Interface Sci. 2022, 300, 102593. [Google Scholar] [CrossRef]
- Behnajady, M.A.; Modirshahla, N.; Shokri, M.; Elham, H.; Zeininezhad, A. The Effect of Particle Size and Crystal Structure of Titanium Dioxide Nanoparticles on the Photocatalytic Properties. J. Environ. Sci. Health A Toxic Hazard. Subst. Environ. Eng. 2008, 43, 460–467. [Google Scholar] [CrossRef]
- Pereira, G. Efecto del Uso de una Película Plástica Activa Sobre la Maduración de un Fruto Climatérico tal Como la Banana de Variedad “Cavendish”. Bachelor’s Thesis, Universidad de Santiago de Chile, Santiago, Chile, 2017. [Google Scholar]
- Zhang, W.; Zhang, Y.; Cao, J.; Jiang, W. Improving the Performance of Edible Food Packaging Films by Using Nanocellulose as an Additive. Int. J. Biol. Macromol. 2021, 166, 288–296. [Google Scholar] [CrossRef]
- de Almeida, F.; Costa e Silva, E.; Correia, A.; Silva, F.J.G. Rheological Behaviour of PP Nanocomposites by Extrusion Process. Procedia Manuf. 2019, 38, 1516–1523. [Google Scholar] [CrossRef]
- Shih, Y.H.; Lin, C.H. Effect of Particle Size of Titanium Dioxide Nanoparticle Aggregates on the Degradation of One Azo Dye. Environ. Sci. Pollut. Res. 2012, 19, 1652–1658. [Google Scholar] [CrossRef]
- Rodríguez, F.; Galotto, M.; Guarda, A.; Bruna, J. Active Film That Can Remove Ethylene, Comprising a Modifying Natural Zeolite. WO/2018/094543, 31 May 2018. [Google Scholar]
Particle Size (nm) | C2H4 Degradation (%) | |
---|---|---|
Irradiation Time (min) | ||
5 | 15 | |
15 | 52 ± 7 ABa | 51 ± 2 ABa |
21 | 73 ± 2 Ca | 64 ± 1 Ca |
40 | 42 ± 4 Aa | 49 ± 3 Aa |
100 | 50 ± 2 Ba | 58 ± 3 Ba |
Particle Size (nm) | C2H4 Degradation (%) | |
---|---|---|
Irradiation Time (min) | ||
5 | 15 | |
15 | 23 ± 1 ABa | 33 ± 1 ABa |
21 | 22 ± 2 ABb | 33 ± 1 ABa |
40 | 19 ± 1 Bb | 40 ± 2 Ba |
100 | 18 ± 2 Ab | 30 ± 1 Aa |
Matrix | TiO2 Concentration (%) | L* | a* | b* | ∆E00 |
---|---|---|---|---|---|
PLA | 0 (control) | 84.8 ± 1.3 Ba | −1.0 ± 0.2 Bb | 10.4 ± 0.1 Ba | - |
5 | 92.8 ± 0.6 Ba | −0.2 ± 0.2 Ba | 6.0 ± 0.1 Bb | 9.2 ± 0.5 Ab | |
10 | 94.8 ± 1.8 Ba | 0.3 ± 0.2 Bc | 6.3 ± 0.2 Bc | 11.0 ± 1.7 Aa | |
MB | 0 (control) | 94.1 ± 0.2 Aa | 3.2 ± 0.2 Ab | 13.5 ± 0.2 Aa | - |
5 | 92.1 ± 0.2 Aa | 3.0 ± 0.2 Aa | 11.5 ± 0.2 Ab | 2.9 ± 0.5 Bb | |
10 | 90.5 ± 0.1 Aa | 2.1 ± 0.2 Ac | 9.8 ± 0.2 Ac | 5.3 ± 0.4 Ba |
TiO2 Concentration (%) | C2H4 Degradation (%) | |
---|---|---|
Matrix | ||
PLA | MB | |
0 (control) | 20 ± 2 Ac | 18 ± 2 Ac |
5 | 51 ± 6 Aa | 57 ± 2 Aa |
10 | 46 ± 2 Ab | 51 ± 5 Ab |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maldonado, A.; Cheuquepan, P.; Gutiérrez, S.; Gallegos, N.; Donoso, M.; Hauser, C.; Arrieta, M.P.; Torres, A.; Bruna, J.; Valenzuela, X.; et al. Study of Ethylene-Removing Materials Based on Eco-Friendly Composites with Nano-TiO2. Polymers 2023, 15, 3369. https://doi.org/10.3390/polym15163369
Maldonado A, Cheuquepan P, Gutiérrez S, Gallegos N, Donoso M, Hauser C, Arrieta MP, Torres A, Bruna J, Valenzuela X, et al. Study of Ethylene-Removing Materials Based on Eco-Friendly Composites with Nano-TiO2. Polymers. 2023; 15(16):3369. https://doi.org/10.3390/polym15163369
Chicago/Turabian StyleMaldonado, Alba, Paulina Cheuquepan, Sofía Gutiérrez, Nayareth Gallegos, Makarena Donoso, Carolin Hauser, Marina P. Arrieta, Alejandra Torres, Julio Bruna, Ximena Valenzuela, and et al. 2023. "Study of Ethylene-Removing Materials Based on Eco-Friendly Composites with Nano-TiO2" Polymers 15, no. 16: 3369. https://doi.org/10.3390/polym15163369
APA StyleMaldonado, A., Cheuquepan, P., Gutiérrez, S., Gallegos, N., Donoso, M., Hauser, C., Arrieta, M. P., Torres, A., Bruna, J., Valenzuela, X., Guarda, A., Galotto, M., & Rodríguez-Mercado, F. (2023). Study of Ethylene-Removing Materials Based on Eco-Friendly Composites with Nano-TiO2. Polymers, 15(16), 3369. https://doi.org/10.3390/polym15163369