Structural Characteristics and Properties of Redissolved Silk Sericin
Abstract
:1. Introduction
2. Experimental Section
2.1. Extraction and Redissolution of Silk Sericin
2.2. Measurement and Characterization
- W1: dry weight of extracted sericin powder (i.e., sericin powder before redissolution);
- W2: dry weight of redissolved sericin powder (i.e., sericin powder after redissolution).
- A1616cm−1: the absorbance at 1616 cm−1 attributed to the β-sheet conformation in the crystalline region;
- A1643cm−1: the absorbance at 1643 cm−1 corresponds to the random coil in the amorphous region.
3. Results and Discussion
3.1. Solubility of Extracted Sericin
3.2. Rheological Properties of Redissolved Sericins
3.3. Structural Characteristics of Redissolved Sericins
3.4. Cell Viability of Redissolved Sericin
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aramwit, P.; Siritientong, T.; Srichana, T. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Manag. Res. 2012, 30, 217–224. [Google Scholar] [CrossRef]
- Rastogi, S.; Kandasubramanian, B. Processing trends of silk fibers: Silk degumming, regeneration and physical functionalization. J. Text. Inst. 2020, 111, 1794–1810. [Google Scholar] [CrossRef]
- Aramwit, P.; Palapinyo, S.; Srichana, T.; Chottanapund, S.; Muangman, P. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Arch. Dermatol. Res. 2013, 305, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Padamwar, M.N.; Pawar, A.P.; Daithankar, A.V.; Mahadik, K.R. Silk sericin as a moisturizer: An in vivo study. J. Cosmet. Dermatol. 2005, 4, 250–257. [Google Scholar] [CrossRef]
- Kato, N.; Sato, S.; Yamanaka, A.; Yamada, H.; Fuwa, N.; Nomura, M. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 1998, 62, 145–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chlapanidas, T.; Faragò, S.; Lucconi, G.; Perteghella, S.; Galuzzi, M.; Mantelli, M.; Avanzini, M.A.; Tosca, M.C.; Marazzi, M.; Vigo, D.; et al. Sericins exhibit ROS-scavenging, anti-tyrosinase, anti-elastase, and in vitro immunomodulatory activities. Int. J. Biol. Macromol. 2013, 58, 47–56. [Google Scholar] [CrossRef]
- Jassim, K.N.; Al-Saree, O.J. Study of the antimicrobial activity of silk sericin from silkworm Bombyx mori. Iraqi J. Community Med. 2010, 23, 130–133. [Google Scholar]
- Saha, J.; Mondal, M.I.H.; Sheikh, M.R.K.; Habib, M.A. Extraction, structural and functional properties of silk sericin biopol-ymer from Bombyx mori silk cocoon waste. J. Text. Sci. Eng. 2019, 9, 1000390. [Google Scholar]
- Schäfer, S.; Aavani, F.; Köpf, M.; Drinic, A.; Stürmer, E.K.; Fuest, S.; Grust, A.L.C.; Smeets, R. Silk proteins in reconstructive surgery: Do they possess an inherent antibacterial activity? A systematic review. Wound Repair Regen. 2023, 31, 99–110. [Google Scholar] [CrossRef]
- Gulrajani, M.L.; Purwar, R.; Prasad, R.K.; Joshi, M. Studies on structural and functional properties of sericin recovered from silk degumming liquor by membrane technology. J. Appl. Polym. Sci. 2009, 113, 2796–2804. [Google Scholar] [CrossRef]
- Teramoto, H.; Kameda, T.; Tamada, Y. Preparation of gel film from Bombyx mori silk sericin and its characterization as a wound dressing. Biosci. Biotechnol. Biochem. 2008, 72, 3189–3196. [Google Scholar] [CrossRef] [Green Version]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A versatile material for tissue engineering and drug delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef] [PubMed]
- Chongjun, Y.; Bing, L.; Fusheng, C. Extraction of sericin and its application in cosmetics. Anim. Husb. Feed. Sci. 2016, 8, 223. [Google Scholar]
- Jang, M.J.; Um, I.C. Effect of sericin concentration and ethanol content on gelation behavior, rheological properties, and sponge characteristics of silk sericin. Eur. Polym. J. 2017, 93, 761–774. [Google Scholar] [CrossRef]
- Bianchet, R.T.; Cubas, A.L.V.; Machado, M.M.; Moecke, E.H.S. Applicability of bacterial cellulose in cosmetics—Bibliometric review. Biotechnol. Rep. 2020, 27, e00502. [Google Scholar] [CrossRef]
- Wang, H.; Zhou, B. Development and performance study of a natural silk fiber facial mask paper. J. Eng. Fibers Fabr. 2020, 15, 1558925020975756. [Google Scholar] [CrossRef]
- Takasu, Y.; Yamada, H.; Tsubouchi, K. Extraction and chromatographic analysis of cocoon sericin of the silkworm, Bombyx mori. J. Insect Biotechnol. Sericology 2002, 71, 151–156. [Google Scholar]
- Lee, K.H. Application of silk sericin as a polymer material. Polym. Sci. Technol. 2005, 16, 577–587. [Google Scholar]
- Teramoto, H.; Kakazu, A.; Asakura, T. Native structure and degradation pattern of silk sericin studied by C-13 NMR spectroscopy. Macromolecules 2006, 39, 6–8. [Google Scholar] [CrossRef]
- Yoo, Y.J.; Um, I.C. Effect of extraction time on the rheological properties of sericin solutions and gels. Int. J. Ind. Entomol. 2013, 27, 180–185. [Google Scholar] [CrossRef] [Green Version]
- Park, C.J.; Ryoo, J.Y.; Ki, C.S.; Kim, J.W.; Kim, I.S.; Bae, D.G.; Um, I.C. Effect of molecular weight on the structure and mechanical properties of silk sericin gel, film, and sponge. Int. J. Biol. Macromol. 2018, 119, 821–832. [Google Scholar] [CrossRef]
- Yun, H.; Oh, H.; Kim, M.K.; Kwak, H.W.; Lee, J.Y.; Um, I.C.; Vootla, S.K.; Lee, K.H. Extraction conditions of Antheraea mylitta sericin with high yields and minimum molecular weight degradation. Int. J. Biol. Macromol. 2013, 52, 59–65. [Google Scholar] [CrossRef]
- Zhang, Q.; Cui, L.; Wang, P.; Deng, C.; Wang, Q.; Fan, X. Improving properties of silk sericin membranes via enzymatic oxidation with laccase and TEMPO. Biotechnol. Appl. Biochem. 2018, 65, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.N.; Park, B.D.; Um, I.C. Effect of storage and drying temperature on the gelation behavior and structural characteristics of sericin. Int. J. Biol. Macromol. 2015, 81, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.N.; Um, I.C. Effects of solvent on the solution properties, structural characteristics and properties of silk sericin. Int. J. Biol. Macromol. 2015, 78, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.N.; Bae, D.G.; Um, I.C. The effect of extraction conditions and film side on the molecular conformation of silk sericin film. Int. J. Indust. Entomol. 2013, 26, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Shaker, K.; Nawab, Y.; Ashraf, M.; Basit, A.; Shahid, S.; Umair, M. Impact of hydrophobic treatment of jute on moisture regain and mechanical properties of composite material. J. Reinf. Plast. Compos. 2015, 34, 2059–2068. [Google Scholar] [CrossRef]
- Gogoi, R.; Tyagi, A.K. Surface modification of jute fabric by treating with silane coupling agent for reducing its moisture regain characteristics. J. Nat. Fibers 2021, 18, 803–812. [Google Scholar] [CrossRef]
- Kweon, H.Y.; Um, I.C.; Park, Y.H. Thermal behavior of regenerated Antheraea pernyi silk fibroin film treated with aqueous methanol. Polymer 2000, 41, 7361–7367. [Google Scholar] [CrossRef]
- Ding, L.; Song, S.; Chen, L.; Shi, J.; Zhao, B.; Teng, G.; Zhang, J. A freeze-thawing method applied to the fabrication of 3-d curdlan/polyvinyl alcohol hydrogels as scaffolds for cell culture. Int. J. Biol. Macromol. 2021, 174, 101–109. [Google Scholar] [CrossRef]
- Um, I.C.; Kweon, H.Y.; Lee, K.G.; Park, Y.H. The role of formic acid in solution stability and crystallization of silk protein polymer. Int. J. Biol. Macromol. 2003, 33, 203–213. [Google Scholar] [CrossRef]
- Teh, T.K.; Toh, S.L.; Goh, J.C. Optimization of the silk scaffold sericin removal process for retention of silk fibroin protein structure and mechanical properties. Biomed. Mater. 2010, 5, 035008. [Google Scholar] [CrossRef]
- Oh, H.J.; Lee, J.Y.; Kim, M.K.; Um, I.C.; Lee, K.H. Refining hot-water extracted silk sericin by ethanol-induced precipitation. Int. J. Biol. Macromol. 2011, 48, 32–37. [Google Scholar] [CrossRef]
- Koh, L.D.; Cheng, Y.; Teng, C.P.; Khin, Y.W.; Loh, X.J.; Tee, S.Y.; Low, M.; Ye, E.; Yu, Y.W.; Zhang, Y.W.; et al. Structures, mechanical properties and applications of silk fibroin materials. Prog. Polym. Sci. 2015, 46, 86–110. [Google Scholar] [CrossRef]
- Chung, D.E.; Um, I.C. Effect of molecular weight and concentration on crystallinity and post drawing of wet spun silk fibroin fiber. Fibers Polym. 2014, 15, 153–160. [Google Scholar] [CrossRef]
- Kim, H.J.; Um, I.C. Effect of degumming ratio on wet spinning and post drawing performance of regenerated silk. Int. J. Biol. Macromol. 2014, 67, 387–393. [Google Scholar] [CrossRef]
- Lee, J.H.; Song, D.W.; Park, Y.H.; Um, I.C. Effect of residual sericin on the structural characteristics and properties of regenerated silk films. Int. J. Biol. Macromol. 2016, 89, 273–278. [Google Scholar] [CrossRef]
- Park, C.J.; Um, I.C. Effect of centrifugation on the structure and properties of silk sericin. Int. J. Ind. Entomol. 2016, 33, 144–148. [Google Scholar] [CrossRef]
- Chen, X.; Shao, Z.; Marinkovic, N.S.; Miller, L.M.; Zhou, P.; Chance, M.R. Conformation transition kinetics of regenerated Bombyx mori silk fibroin membrane monitored by time-resolved FTIR spectroscopy. Biophys. Chem. 2001, 89, 25–34. [Google Scholar] [CrossRef] [PubMed]
- Kweon, H.; Ha, H.C.; Um, I.C.; Park, Y.H. Physical properties of silk fibroin/chitosan blend films. J. Appl. Polym. Sci. 2001, 80, 928–934. [Google Scholar] [CrossRef]
- Kim, H.J.; Chung, D.E.; Um, I.C. Effect of processing conditions on the homogeneity of partially degummed silk evaluated by FTIR spectroscopy. Int. J. Ind. Entomol. 2013, 26, 54–60. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Bae, Y.S.; Kim, S.J.; Song, D.W.; Park, Y.H.; Bae, D.G.; Choi, J.H.; Um, I.C. Preparation of new natural silk non-woven fabrics by using adhesion characteristics of sericin and their characterization. Int. J. Biol. Macromol. 2018, 106, 39–47. [Google Scholar] [CrossRef]
- Kim, S.J.; Um, I.C. Preparation, structural characterization, and properties of natural silk non-woven fabrics from different silkworm varieties. Fibers Polym. 2022, 23, 1130–1141. [Google Scholar] [CrossRef]
- Bae, Y.J.; Jang, M.J.; Um, I.C. Silk/rayon webs and nonwoven fabrics: Fabrication, structural characteristics, and properties. Int. J. Mol. Sci. 2022, 23, 7511. [Google Scholar] [CrossRef]
- Lee, K.G.; Kweon, H.Y.; Yeo, J.H.; Woo, S.O.; Lee, Y.W.; Cho, C.S.; Kim, K.H.; Park, Y.H. Effect of methyl alcohol on the morphology and conformational characteristics of silk sericin. Int. J. Biol. Macromol. 2003, 33, 75–80. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Tsukada, M.; Zhang, X.; Morikawa, H. Preparation and characterization of electrospun nanofibers based on silk sericin powders. J. Mater. Sci. 2013, 48, 3731–3736. [Google Scholar] [CrossRef]
- Migliaresi, C.; Cohn, D.; Lollis, A.D.; Fambri, L. Dynamic mechanical and calorimetric analysis of compression-molded PLLA of different molecular weights: Effect of thermal treatments. J. Appl. Polym. Sci. 1991, 43, 83–95. [Google Scholar] [CrossRef]
- Archana, D.; Dutta, J.; Dutta, P.K. Evaluation of chitosan nano dressing for wound healing: Characterization, in vitro and in vivo studies. Int. J. Biol. Macromol. 2013, 57, 193–203. [Google Scholar]
- Kitisin, T.; Maneekan, P.; Luplertlop, N. In-vitro characterization of silk sericin as an anti-aging agent. J. Agric. Sci. 2013, 5, 54. [Google Scholar] [CrossRef]
- Kumkun, P.; Tuancharoensri, N.; Ross, G.; Mahasaranon, S.; Jongjitwimol, J.; Topham, P.D.; Ross, S. Green fabrication route of robust, biodegradable silk sericin and poly (vinyl alcohol) nanofibrous scaffolds. Polym. Int. 2019, 68, 1903–1913. [Google Scholar] [CrossRef]
- Das, G.; Shin, H.S.; Campos, E.V.R.; Fraceto, L.F.; Rodriguez-Torres, M.P.; Mariano, K.C.F.; Araujo, D.R.; Fernández-Luqueño, F.; Grillo, R.; Patra, J.K. Sericin based nanoformulations: A comprehensive review on molecular mechanisms of interaction with organisms to biological applications. J. Nanobiotechnol. 2021, 19, 30. [Google Scholar] [CrossRef] [PubMed]
- Vaishnav, S.R.; Singh, S.A. Sericin, a by-product of the silk industry: Extraction and applications. In Value-Addition in Agri-Food Industry Waste through Enzyme Technology; Academic Press: Cambridge, MA, USA, 2023; pp. 199–208. [Google Scholar]
- Kim, Y.E.; Bae, Y.J.; Jang, M.J.; Um, I.C. Effect of sericin content on the structural characteristics and properties of new silk nonwoven fabrics. Biomolecules 2023, 13, 1186. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, H.G.; Jang, M.J.; Park, B.-D.; Um, I.C. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers 2023, 15, 3405. https://doi.org/10.3390/polym15163405
Lee HG, Jang MJ, Park B-D, Um IC. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers. 2023; 15(16):3405. https://doi.org/10.3390/polym15163405
Chicago/Turabian StyleLee, Hye Gyeoung, Mi Jin Jang, Byung-Dae Park, and In Chul Um. 2023. "Structural Characteristics and Properties of Redissolved Silk Sericin" Polymers 15, no. 16: 3405. https://doi.org/10.3390/polym15163405
APA StyleLee, H. G., Jang, M. J., Park, B. -D., & Um, I. C. (2023). Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers, 15(16), 3405. https://doi.org/10.3390/polym15163405