Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Experimental Determination of Roughness Parameters, Coefficient of Friction, Cumulative Linear Wear, and Hardness
3.2. Optimization of Process Parameters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rouf, S.; Raina, A.; Irfan Ul Haq, M.; Naveed, N.; Jeganmohan, S.; Farzana Kichloo, A. 3D Printed Parts and Mechanical Properties: Influencing Parameters, Sustainability Aspects, Global Market Scenario, Challenges and Applications. Adv. Ind. Eng. Polym. Res. 2022, 5, 143–158. [Google Scholar] [CrossRef]
- Frunzaverde, D.; Cojocaru, V.; Ciubotariu, C.-R.; Miclosina, C.-O.; Ardeljan, D.D.; Ignat, E.F.; Marginean, G. The Influence of the Printing Temperature and the Filament Color on the Dimensional Accuracy, Tensile Strength, and Friction Performance of FFF-Printed PLA Specimens. Polymers 2022, 14, 1978. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; Wu, B.; Cui, C.; Guo, Y.; Yan, C. A Critical Review of Fused Deposition Modeling 3D Printing Technology in Manufacturing Polylactic Acid Parts. Int. J. Adv. Manuf. Technol. 2019, 102, 2877–2889. [Google Scholar] [CrossRef]
- Pezer, D.; Vukas, F.; Butir, M. Experimental Study of Tensile Strength for 3D Printed Specimens of HI-PLA Polymer Material on in-House Tensile Test Machine. Technium 2022, 4, 197–206. [Google Scholar] [CrossRef]
- Afonso, J.A.; Alves, J.L.; Caldas, G.; Gouveia, B.P.; Santana, L.; Belinha, J. Influence of 3D Printing Process Parameters on the Mechanical Properties and Mass of PLA Parts and Predictive Models. Rapid Prototyp. J. 2021, 27, 487–495. [Google Scholar] [CrossRef]
- Vasilescu, M.D.; Fleser, T. Influence of Technological Parameters on the Dimension of GEAR Parts Generated with PLA Matherial by FDM 3D Printing. Mat. Plast. 2018, 55, 247–251. [Google Scholar] [CrossRef]
- Hanon, M.M.; Marczis, R.; Zsidai, L. Influence of the 3D Printing Process Settings on Tensile Strength of PLA and HT-PLA. Period. Polytech. Mech. Eng. 2020, 65, 38–46. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Nae, I.; Portoaca, A. Comparison of the Charpy Resilience of Two 3D Printed Materials: A Study on the Impact Resistance of Plastic Parts. Eng. Technol. Appl. Sci. Res. 2023, 13, 10781–10784. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Nae, I.; Portoaca, A.I.; Ramadan, I. A Theoretical and Experimental Research on the Influence of FDM Parameters on Tensile Strength and Hardness of Parts Made of Polylactic Acid. Eng. Technol. Appl. Sci. Res. 2021, 11, 7458–7463. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Nae, I.; Portoaca, A.I. Compression Behavior of FFF Printed Parts Obtained by Varying Layer Height and Infill Percentage. Eng. Technol. Appl. Sci. Res. 2022, 12, 9747–9751. [Google Scholar] [CrossRef]
- Portoaca, A.; Nae, I.; Zisopol, D.G.; Ramadan, I. Studies on the Influence of FFF Parameters on the Tensile Properties of Samples Made of ABS. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1235, 012008. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Nae, I.; Portoaca, A.I.; Ramadan, I. A Statistical Approach of the Flexural Strength of PLA and ABS 3D Printed Parts. Eng. Technol. Appl. Sci. Res. 2022, 12, 8248–8252. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Iacob, D.V.; Portoaca, A.I. A Theoretical-Experimental Study of the Influence of FDM Parameters on PLA Spur Gear Stiffness. Eng. Technol. Appl. Sci. Res. 2022, 12, 9329–9335. [Google Scholar] [CrossRef]
- Farzadi, A.; Waran, V.; Solati-Hashjin, M.; Rahman, Z.A.A.; Asadi, M.; Osman, N.A.A. Effect of Layer Printing Delay on Mechanical Properties and Dimensional Accuracy of 3D Printed Porous Prototypes in Bone Tissue Engineering. Ceram. Int. 2015, 41, 8320–8330. [Google Scholar] [CrossRef]
- Galantucci, L.M.; Lavecchia, F.; Percoco, G. Study of Compression Properties of Topologically Optimized FDM Made Structured Parts. CIRP Ann. 2008, 57, 243–246. [Google Scholar] [CrossRef]
- Torrado, A.R.; Shemelya, C.M.; English, J.D.; Lin, Y.; Wicker, R.B.; Roberson, D.A. Characterizing the Effect of Additives to ABS on the Mechanical Property Anisotropy of Specimens Fabricated by Material Extrusion 3D Printing. Addit. Manuf. 2015, 6, 16–29. [Google Scholar] [CrossRef]
- Zisopol, D.G.; Minescu, M.; Iacob, D.V. A Theoretical-Experimental Study on the Influence of FDM Parameters on the Dimensions of Cylindrical Spur Gears Made of PLA. Eng. Technol. Appl. Sci. Res. 2023, 13, 10471–10477. [Google Scholar] [CrossRef]
- Hanon, M.M.; Zsidai, L.; Ma, Q. Accuracy Investigation of 3D Printed PLA with Various Process Parameters and Different Colors. Mater. Today Proc. 2021, 42, 3089–3096. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Zayas-Figueras, E.E. Comparative Study about Dimensional Accuracy and Form Errors of FFF Printed Spur Gears Using PLA and Nylon. Polym. Test. 2023, 117, 107862. [Google Scholar] [CrossRef]
- Nugroho, W.T.; Dong, Y.; Pramanik, A. Dimensional Accuracy and Surface Finish of 3D Printed Polyurethane (PU) Dog-Bone Samples Optimally Manufactured by Fused Deposition Modelling (FDM). Rapid Prototyp. J. 2022, 28, 1779–1795. [Google Scholar] [CrossRef]
- Buj-Corral, I.; Bagheri, A.; Sivatte-Adroer, M. Effect of Printing Parameters on Dimensional Error, Surface Roughness and Porosity of FFF Printed Parts with Grid Structure. Polymers 2021, 13, 1213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Li, P.; Chu, F.; Shen, G. Influence of the Three-Dimensional Printing Technique and Printing Layer Thickness on Model Accuracy. J. Orofac. Orthop. 2019, 80, 194–204. [Google Scholar] [CrossRef] [PubMed]
- Kumar Maurya, N.; Rastogi, V.; Singh, P. Investigation of Dimensional Accuracy and International Tolerance Grades of 3D Printed Polycarbonate Parts. Mater. Today Proc. 2020, 25, 537–543. [Google Scholar] [CrossRef]
- Luis-Pérez, C.J.; Buj-Corral, I.; Sánchez-Casas, X. Modeling of the Influence of Input AM Parameters on Dimensional Error and Form Errors in PLA Parts Printed with FFF Technology. Polymers 2021, 13, 4152. [Google Scholar] [CrossRef] [PubMed]
- Kluska, E.; Gruda, P.; Majca-Nowak, N. The Accuracy and the Printing Resolution Comparison of Different 3D Printing Technologies. Trans. Aerosp. Res. 2018, 2018, 69–86. [Google Scholar] [CrossRef]
- Sood, A.K.; Ohdar, R.K.; Mahapatra, S.S. Improving Dimensional Accuracy of Fused Deposition Modelling Processed Part Using Grey Taguchi Method. Mater. Des. 2009, 30, 4243–4252. [Google Scholar] [CrossRef]
- Bolat, Ç.; Ergene, B.; Ispartalı, H. A Comparative Analysis of the Effect of Post Production Treatments and Layer Thickness on Tensile and Impact Properties of Additively Manufactured Polymers. Int. Polym. Process. 2023, 38, 244–256. [Google Scholar] [CrossRef]
- Ardi, D.T.; Guowei, L.; Maharjan, N.; Mutiargo, B.; Leng, S.H.; Srinivasan, R. Effects of Post-Processing Route on Fatigue Performance of Laser Powder Bed Fusion Inconel 718. Addit. Manuf. 2020, 36, 101442. [Google Scholar] [CrossRef]
- Elangeswaran, C.; Cutolo, A.; Muralidharan, G.K.; de Formanoir, C.; Berto, F.; Vanmeensel, K.; Van Hooreweder, B. Effect of Post-Treatments on the Fatigue Behaviour of 316L Stainless Steel Manufactured by Laser Powder Bed Fusion. Int. J. Fatigue 2019, 123, 31–39. [Google Scholar] [CrossRef]
- Afkhami, S.; Javaheri, V.; Dabiri, E.; Piili, H.; Björk, T. Effects of Manufacturing Parameters, Heat Treatment, and Machining on the Physical and Mechanical Properties of 13Cr10Ni1.7Mo2Al0.4Mn0.4Si Steel Processed by Laser Powder Bed Fusion. Mater. Sci. Eng. A 2021, 832, 142402. [Google Scholar] [CrossRef]
- Cheruvathur, S.; Lass, E.A.; Campbell, C.E. Additive Manufacturing of 17-4 PH Stainless Steel: Post-Processing Heat Treatment to Achieve Uniform Reproducible Microstructure. JOM 2016, 68, 930–942. [Google Scholar] [CrossRef]
- Ali, M.; Sari, R.; Sajjad, U.; Sultan, M.; Ali, H. Effect of Annealing on Microstructures and Mechanical Properties of PA-12 Lattice Structures Proceeded by Multi Jet Fusion Technology. Addit. Manuf. 2021, 47, 102285. [Google Scholar] [CrossRef]
- Arjun, P.; Bidhun, V.K.; Lenin, U.K.; Amritha, V.P.; Pazhamannil, R.V.; Govindan, P. Effects of Process Parameters and Annealing on the Tensile Strength of 3D Printed Carbon Fiber Reinforced Polylactic Acid. Mater. Today Proc. 2022, 62, 7379–7384. [Google Scholar] [CrossRef]
- Butt, J.; Bhaskar, R. Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics. J. Manuf. Mater. Process. 2020, 4, 38. [Google Scholar] [CrossRef]
- Diniță, A.; Neacșa, A.; Portoacă, A.I.; Tănase, M.; Ilinca, C.N.; Ramadan, I.N. Additive Manufacturing Post-Processing Treatments, a Review with Emphasis on Mechanical Characteristics. Materials 2023, 16, 4610. [Google Scholar] [CrossRef] [PubMed]
- Zisopol, D.G.; Portoaca, A.I.; Nae, I.; Ramadan, I. A Comparative Analysis of the Mechanical Properties of Annealed PLA. Eng. Technol. Appl. Sci. Res. 2022, 12, 8978–8981. [Google Scholar] [CrossRef]
- Galantucci, L.M.; Lavecchia, F.; Percoco, G. Quantitative Analysis of a Chemical Treatment to Reduce Roughness of Parts Fabricated Using Fused Deposition Modeling. CIRP Ann. 2010, 59, 247–250. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Schüürmann, J.; Berto, F.; Reinicke, T. On the Post-Processing of 3D-Printed ABS Parts. Polymers 2021, 13, 1559. [Google Scholar] [CrossRef]
- Cao, L.; Xiao, J.; Kim, J.K.; Zhang, X. Effect of Post-Process Treatments on Mechanical Properties and Surface Characteristics of 3D Printed Short Glass Fiber Reinforced PLA/TPU Using the FDM Process. CIRP J. Manuf. Sci. Technol. 2023, 41, 135–143. [Google Scholar] [CrossRef]
- Agrawal, A.P.; Kumar, V.; Kumar, J.; Paramasivam, P.; Dhanasekaran, S.; Prasad, L. An Investigation of Combined Effect of Infill Pattern, Density, and Layer Thickness on Mechanical Properties of 3D Printed ABS by Fused Filament Fabrication. Heliyon 2023, 9, e16531. [Google Scholar] [CrossRef]
- Shahrjerdi, A.; Karamimoghadam, M.; Bodaghi, M. Enhancing Mechanical Properties of 3D-Printed PLAs via Optimization Process and Statistical Modeling. J. Compos. Sci. 2023, 7, 151. [Google Scholar] [CrossRef]
- Sahoo, S.; Sutar, H.; Senapati, P.; Shankar Mohanto, B.; Ranjan Dhal, P.; Kumar Baral, S. Experimental Investigation and Optimization of the FDM Process Using PLA. Mater. Today Proc. 2023, 74, 843–847. [Google Scholar] [CrossRef]
- Jaisingh Sheoran, A.; Kumar, H. Fused Deposition Modeling Process Parameters Optimization and Effect on Mechanical Properties and Part Quality: Review and Reflection on Present Research. Mater. Today Proc. 2020, 21, 1659–1672. [Google Scholar] [CrossRef]
- Singh, M.; Bharti, P.S. Grey Relational Analysis Based Optimization of Process Parameters for Efficient Performance of Fused Deposition Modelling Based 3D Printer. J. Eng. Res. 2022, 10. [Google Scholar] [CrossRef]
- Mushtaq, R.T.; Iqbal, A.; Wang, Y.; Rehman, M.; Petra, M.I. Investigation and Optimization of Effects of 3D Printer Process Parameters on Performance Parameters. Materials 2023, 16, 3392. [Google Scholar] [CrossRef] [PubMed]
- Al-Tamimi, A.A.; Tlija, M.; Abidi, M.H.; Anis, A.; Abd Elgawad, A.E.E. Material Extrusion of Multi-Polymer Structures Utilizing Design and Shrinkage Behaviors: A Design of Experiment Study. Polymers 2023, 15, 2683. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Reyna, S.L.; Mata, C.; Díaz-Aguilera, J.H.; Acevedo-Parra, H.R.; Tapia, F. Mechanical Properties Optimization for PLA, ABS and Nylon + CF Manufactured by 3D FDM Printing. Mater. Today Commun. 2022, 33, 104774. [Google Scholar] [CrossRef]
- Selvam, A.; Mayilswamy, S.; Whenish, R.; Naresh, K.; Shanmugam, V.; Das, O. Multi-Objective Optimization and Prediction of Surface Roughness and Printing Time in FFF Printed ABS Polymer. Sci. Rep. 2022, 12, 16887. [Google Scholar] [CrossRef]
- Waseem, M.; Habib, T.; Ghani, U.; Abas, M.; Jan, Q.; Khan, M. Optimization of Tensile and Compressive Behavior of PLA 3-D Printed Parts Using Categorical Response Surface Methodology. Int. J. Ind. Syst. Eng. 2022, 41, 417–437. [Google Scholar] [CrossRef]
- Nguyen, V.H.; Huynh, T.N.; Nguyen, T.P.; Tran, T.T. Single and Multi-Objective Optimization of Processing Parameters for Fused Deposition Modeling in 3D Printing Technology. Int. J. Automot. Mech. Eng. 2020, 17, 7542–7551. [Google Scholar] [CrossRef]
- Vanaei, H.R.; Khelladi, S.; Tcharkhtchi, A. Roadmap: Numerical-Experimental Investigation and Optimization of 3D-Printed Parts Using Response Surface Methodology. Materials 2022, 15, 7193. [Google Scholar] [CrossRef] [PubMed]
- Nazan, M.; Ramli, F.; Alkahari, M.R.; Sudin, M.N.; Abdullah, M. Process Parameter Optimization of 3D Printer Using Response Surface Method. ARPN J. Eng. Appl. Sci. 2017, 12, 17. [Google Scholar]
- Vardhan Rai, H.; Kumar Modi, Y.; Pare, A. Process Parameter Optimization for Tensile Strength of 3D Printed Parts Using Response Surface Methodology. IOP Conf. Ser. Mater. Sci. Eng. 2018, 377, 012027. [Google Scholar] [CrossRef]
- Tontowi, A.E.; Ramdani, L.; Erdizon, R.V.; Baroroh, D.K. Optimization of 3D-Printer Process Parameters for Improving Quality of Polylactic Acid Printed Part. Int. J. Eng. Technol. 2017, 9, 589–600. [Google Scholar] [CrossRef]
- Waseem, M.; Salah, B.; Habib, T.; Saleem, W.; Abas, M.; Khan, R.; Ghani, U.; Siddiqi, M.U.R. Multi-Response Optimization of Tensile Creep Behavior of PLA 3D Printed Parts Using Categorical Response Surface Methodology. Polymers 2020, 12, 2962. [Google Scholar] [CrossRef]
- Aslani, K.-E.; Kitsakis, K.; Kechagias, J.D.; Vaxevanidis, N.M.; Manolakos, D.E. On the Application of Grey Taguchi Method for Benchmarking the Dimensional Accuracy of the PLA Fused Filament Fabrication Process. SN Appl. Sci. 2020, 2, 1016. [Google Scholar] [CrossRef]
- John, J.; Devjani, D.; Ali, S.; Abdallah, S.; Pervaiz, S. Optimization of 3D Printed Polylactic Acid Structures with Different Infill Patterns Using Taguchi-Grey Relational Analysis. Adv. Ind. Eng. Polym. Res. 2023, 6, 62–78. [Google Scholar] [CrossRef]
- Shakeria, Z.; Benfriha, K.; Zirak, N.; Shirinbayan, M. Optimization of FFF Processing Parameters to Improve Geometrical Accuracy and Mechanical Behavior of Polyamide 6 Using Grey Relational Analysis (GRA). Research Square 2021. in review. [Google Scholar]
- Garg, P.K.; Singh, R.; Ahuja, I. Multi-Objective Optimization of Dimensional Accuracy, Surface Roughness and Hardness of Hybrid Investment Cast Components. Rapid Prototyp. J. 2017, 23, 845–857. [Google Scholar] [CrossRef]
- Venkatasubbareddy, O.Y.; Siddikali, P.; Saleem, S.M. Improving the Dimensional Accuracy and Surface Roughness of FDM Parts Using Optimization Techniques. IOSR J. Mech. Civ. Eng. 2016, 16, 18–22. [Google Scholar] [CrossRef]
- Kumar, K.; Singh, H. Multi-Objective Optimization of Fused Deposition Modeling for Mechanical Properties of Biopolymer Parts Using the Grey-Taguchi Method. Chin. J. Mech. Eng. 2023, 36, 30. [Google Scholar] [CrossRef]
- Shakeri, Z.; Benfriha, K.; Shirinbayan, M.; Ahmadifar, M.; Tcharkhtchi, A. Mathematical Modeling and Optimization of Fused Filament Fabrication (FFF) Process Parameters for Shape Deviation Control of Polyamide 6 Using Taguchi Method. Polymers 2021, 13, 3697. [Google Scholar] [CrossRef] [PubMed]
- Mani, M.; Karthikeyan, A.G.; Kalaiselvan, K.; Muthusamy, P.; Muruganandhan, P. Optimization of FDM 3-D Printer Process Parameters for Surface Roughness and Mechanical Properties Using PLA Material. Mater. Today Proc. 2022, 66, 1926–1931. [Google Scholar] [CrossRef]
- Hanon, M.M.; Zsidai, L. Comprehending the Role of Process Parameters and Filament Color on the Structure and Tribological Performance of 3D Printed PLA. J. Mater. Res. Technol. 2021, 15, 647–660. [Google Scholar] [CrossRef]
- Dawoud, M.; Taha, I.; Ebeid, S.J. Effect of Processing Parameters and Graphite Content on the Tribological Behaviour of 3D Printed Acrylonitrile Butadiene Styrene: Einfluss von Prozessparametern Und Graphitgehalt Auf Das Tribologische Verhalten von 3D-Druck Acrylnitril-Butadien-Styrol Bauteilen. Mat. Wiss. Werkst. 2015, 46, 1185–1195. [Google Scholar] [CrossRef]
- Aziz, R.; Ul Haq, M.I.; Raina, A. Effect of Surface Texturing on Friction Behaviour of 3D Printed Polylactic Acid (PLA). Polym. Test. 2020, 85, 106434. [Google Scholar] [CrossRef]
- Şirin, Ş.; Aslan, E.; Akincioğlu, G. Effects of 3D-Printed PLA Material with Different Filling Densities on Coefficient of Friction Performance. Rapid Prototyp. J. 2023, 29, 157–165. [Google Scholar] [CrossRef]
- Dangnan, F.; Espejo, C.; Liskiewicz, T.; Gester, M.; Neville, A. Friction and Wear of Additive Manufactured Polymers in Dry Contact. J. Manuf. Process. 2020, 59, 238–247. [Google Scholar] [CrossRef]
- Perepelkina, S.; Kovalenko, P.; Pechenko, R.; Makhmudova, K. Investigation of Friction Coefficient of Various Polymers Used in Rapid Prototyping Technologies with Different Settings of 3D Printing. Tribol. Ind. 2017, 39, 519–526. [Google Scholar] [CrossRef]
- Roy, R.; Mukhopadhyay, A. Tribological Studies of 3D Printed ABS and PLA Plastic Parts. Mater. Today Proc. 2021, 41, 856–862. [Google Scholar] [CrossRef]
- Chisiu, G.; Stoica, N.A.; Stoica, A.M. Friction Behavior of 3D-Printed Polymeric Materials Used in Sliding Systems. Mat. Plast. 2021, 58, 176–185. [Google Scholar] [CrossRef]
- Maguluri, N.; Lakshmi Srinivas, C.; Suresh, G. Assessing the Wear Performance of 3D Printed Polylactic Acid Polymer Parts. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Berto, F.; Ayatollahi, M.R.; Reinicke, T. Fracture Behavior of Additively Manufactured Components: A Review. Theor. Appl. Fract. Mech. 2020, 109, 102763. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Soltani, P.; Reinicke, T. Fracture and Structural Performance of Adhesively Bonded 3D-Printed PETG Single Lap Joints under Different Printing Parameters. Theor. Appl. Fract. Mech. 2021, 116, 103087. [Google Scholar] [CrossRef]
- Khosravani, M.R.; Rezaei, S.; Ruan, H.; Reinicke, T. Fracture Behavior of Anisotropic 3D-Printed Parts: Experiments and Numerical Simulations. J. Mater. Res. Technol. 2022, 19, 1260–1270. [Google Scholar] [CrossRef]
- Ripeanu, R.G.; Badicioiu, M.; Caltaru, M.; Dinita, A.; Laudacescu, E. Tribological Characterization of the Drill Collars and Casing Friction Couples. IOP Conf. Ser. Mater. Sci. Eng. 2018, 295, 012009. [Google Scholar] [CrossRef]
- Cursaru, D.L.; Ramadan, I.; Tanasescu, C.; Ripeanu, R. Study of the Tribological Behavior of Different Carbonaceous Nanomaterials Such as Antiwear Additives for an Environmentally Friendly Lubricant. Dig. J. Nanomater. Biostruct. 2013, 8, 205–815. [Google Scholar]
Printing Options for 1 Set of Samples | ABS | PLA |
---|---|---|
Shell width (mm) | 1 | 1 |
Infill speed (mm/s) | 40 | 70 |
Estimated print time (min) | 60 | 46 |
Estimated filament used (g) | 10.6 | 10.6 |
Extruder temperature (°C) | 240 | 210 |
Bed temperature (°C) | 110 | 60 |
Platform addition | Raft only | Raft only |
Parameter | Level | ||
---|---|---|---|
1 | 2 | 3 | |
Infill percentage, % | 50 | 75 | 100 |
Layer thickness, mm | 0.10 | 0.15 | 0.20 |
Printing Parameters | Normalized Data | ||||
---|---|---|---|---|---|
Infill percentage, % | Layer thickness, mm | ABS | PLA | ||
Cumulative linear wear, μm | Coeff. of friction | Cumulative linear wear, μm | Coeff. of friction | ||
50 | 0.1 | 1.000 | 1.000 | 0.839 | 0.496 |
75 | 0.1 | 0.404 | 0.813 | 0.379 | 0.000 |
100 | 0.1 | 0.993 | 0.817 | 0.000 | 0.037 |
50 | 0.15 | 0.668 | 0.361 | 1.000 | 0.486 |
75 | 0.15 | 0.924 | 0.000 | 0.134 | 1.000 |
100 | 0.15 | 0.822 | 0.939 | 0.978 | 0.102 |
50 | 0.2 | 0.930 | 0.115 | 0.952 | 0.518 |
75 | 0.2 | 0.000 | 0.498 | 0.656 | 0.833 |
100 | 0.2 | 0.526 | 0.102 | 0.850 | 0.597 |
Printing Parameters | Deviation Sequence | ||||
---|---|---|---|---|---|
Infill percentage, % | Layer thickness, mm | ABS | PLA | ||
Cumulative linear wear, μm | Coeff. of friction | Cumulative linear wear, μm | Coeff. of friction | ||
50 | 0.1 | 0.000 | 0.000 | 0.161 | 0.504 |
75 | 0.1 | 0.596 | 0.187 | 0.621 | 1.000 |
100 | 0.1 | 0.007 | 0.183 | 1.000 | 0.963 |
50 | 0.15 | 0.332 | 0.639 | 0.000 | 0.514 |
75 | 0.15 | 0.076 | 1.000 | 0.866 | 0.000 |
100 | 0.15 | 0.178 | 0.061 | 0.022 | 0.898 |
50 | 0.2 | 0.070 | 0.885 | 0.048 | 0.482 |
75 | 0.2 | 1.000 | 0.502 | 0.344 | 0.167 |
100 | 0.2 | 0.474 | 0.898 | 0.150 | 0.403 |
Printing Parameters | Grey Relational Coefficient | ||||
---|---|---|---|---|---|
Infill percentage, % | Layer thickness, mm | ABS | PLA | ||
Cumulative linear wear, μm | Coeff. of friction | Cumulative linear wear, μm | Coeff. of friction | ||
50 | 0.1 | 1.000 | 1.000 | 0.756 | 0.498 |
75 | 0.1 | 0.456 | 0.728 | 0.446 | 0.333 |
100 | 0.1 | 0.987 | 0.733 | 0.333 | 0.342 |
50 | 0.15 | 0.601 | 0.439 | 1.000 | 0.493 |
75 | 0.15 | 0.867 | 0.333 | 0.366 | 1.000 |
100 | 0.15 | 0.737 | 0.892 | 0.959 | 0.358 |
50 | 0.2 | 0.876 | 0.361 | 0.912 | 0.509 |
75 | 0.2 | 0.333 | 0.499 | 0.592 | 0.750 |
100 | 0.2 | 0.514 | 0.358 | 0.770 | 0.553 |
Printing Parameters | I. | ||||
---|---|---|---|---|---|
Infill percentage, % | Layer thickness, mm | ABS | PLA | ||
Grade | Rank | Grade | Rank | ||
50 | 0.1 | 1.000 | 1 * | 0.627 | 7 |
75 | 0.1 | 0.592 | 6 | 0.390 | 8 |
100 | 0.1 | 0.860 | 2 | 0.338 | 9 |
50 | 0.15 | 0.520 | 7 | 0.747 | 1 * |
75 | 0.15 | 0.600 | 5 | 0.683 | 3 |
100 | 0.15 | 0.815 | 3 | 0.658 | 6 |
50 | 0.2 | 0.619 | 4 | 0.711 | 2 |
75 | 0.2 | 0.416 | 9 | 0.671 | 4 |
100 | 0.2 | 0.436 | 8 | 0.662 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Portoacă, A.I.; Ripeanu, R.G.; Diniță, A.; Tănase, M. Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance. Polymers 2023, 15, 3419. https://doi.org/10.3390/polym15163419
Portoacă AI, Ripeanu RG, Diniță A, Tănase M. Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance. Polymers. 2023; 15(16):3419. https://doi.org/10.3390/polym15163419
Chicago/Turabian StylePortoacă, Alexandra Ileana, Razvan George Ripeanu, Alin Diniță, and Maria Tănase. 2023. "Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance" Polymers 15, no. 16: 3419. https://doi.org/10.3390/polym15163419
APA StylePortoacă, A. I., Ripeanu, R. G., Diniță, A., & Tănase, M. (2023). Optimization of 3D Printing Parameters for Enhanced Surface Quality and Wear Resistance. Polymers, 15(16), 3419. https://doi.org/10.3390/polym15163419