Functional Polymer Nanocomposites with Increased Anticorrosion Properties and Wear Resistance for Water Transport
Abstract
:1. Introduction
- Corrosive resistance of the protective coatings is determined by immersion of specimens in water and 10% sulfuric acid solution. The duration of exposition specimens with a size of 60 × 10 × 10 mm in aggressive media is 150 days at temperature T = 20 ± 2 °C.
- The corrosion resistance of CM is also determined by immersing the samples in technical water (CAS No. 7732-18-5), gasoline (CAS No. 64742-82-1), acetone (CAS No. 67-64-1), I-20A lubricant (CAS No. 64742-62-7), solutions of sodium (CAS No. 1310-73-2), and sulfuric acid (CAS No. 7664-93-9). The duration of exposure of samples with a size of 60 × 10 × 10 mm in aggressive environments is 720 h at a temperature of T = 293 ± 2 K.
- As a result of the mathematical planning of the experiment, optimize the content of fillers to obtain epoxy composites with increased operational characteristics and protective coatings based on them, which work under the influence of hydroabrasives and aggressive environments;
- Investigate the corrosion resistance of the developed materials in various aggressive environments;
- Investigate the resistance to hydroabrasive action of the developed materials;
- Issue recommendations on the creation of protective coatings based on the developed composites for their introduction into the industry.
2. Materials and Methods
2.1. Materials
2.2. Research Methods
2.3. Material-Forming Technology
3. Results and Discussion
3.1. Mathematical Planning of the Experiment
3.2. The Results of the Study of the Corrosion Resistance of Polymer CM
- Matrix (control sample) (the matrix is formed using the following ratio of components: epoxy oligomer ED-20 to hardener PEPA: 100:10);
- CM 1 (the composite is formed according to the following ratio of components: matrix to nanopowder, which is a mixture of nanodispersed compounds (MNDC), (30–90 nm) to iron scale (IS) (60–63 μm) to Waltrop (WT) (8–12 μm): 100:0.25:70:10);
- CM 2 (the composite is formed according to the following ratio of components: binder to MNDC to IS to WT: 100:0.25:60:20);
- CM 3 (the composite is formed according to the following ratio of components: binder to MNDC to IS to Agocel S-2000 (AC) (8–12 μm): 100:0.25:60:30);
- CM 4 (the composite is formed according to the following ratio of components: binder to MNDC to IS to AC: 100:0.25:70:20).
- It is established that the protective coating filled with particles of a mixture of nanodispersed compounds (30–90 nm) (q = 0.25 pts.wt.), iron scale (60–63 μm) (q = 70 pts.wt.), and Waltrop (8–12 μm) (q = 10 pts.wt.) has the lowest permeability indicators. The permeability in natural conditions of such a coating during time t = 250–300 days of the study is χ = 0.5%, which is 3.6 times less than the similar indicators of the epoxy matrix. This is due to the increased cohesive and adhesive strength of the developed coating to the metal base, which is decisive in the formation of adhesives with improved anticorrosion properties.
- It is proven that the formation of an epoxy-based coating with particles of iron slag and Waltrop at the optimal content (respectively, q = 70 pts.wt. and q = 10 pts.wt. for q = 100 pts.wt. of ED-20 resin) increases relative to the initial chemical resistance indicators of the epoxy matrix: 2.9 times in gasoline; 3.3 times in acetone; 2.9 times in NaOH (50%); 2.9 times in I-20A lubricant; 2.0 times in H2SO4 (10%). This is due to the cohesive interaction at the “polymer—filler” phase-separation boundary, which significantly affects the protective properties of the adhesive.
3.3. The Results of the Study of Hydroabrasive Wear Resistance of Polymer CMs
3.4. Protective Epoxy Composite Coatings with Increased Operational Characteristics for the Repair of Parts of Transport Equipment
- -
- Epoxy dian oligomer ED-20—100;
- -
- Polyethylene polyamine (PEPA) hardener—10.
- -
- Nanodispersed filler in the form of a mixture of nanodispersed compounds (Si3N4, I2O3, and Al2O3) (MNDC), (30–90 nm)—0.25–0.50;
- -
- Waltrop (WT), (8–12 μm)—10–20;
- -
- Iron scale (IS), (60–63 μm)—60–70.
- -
- Epoxy dian oligomer ED-20—100;
- -
- Polyethylene polyamine (PEPA) hardener—10.
- -
- Nanodispersed filler in the form of a mixture of nanodispersed compounds (Si3N4, I2O3, and Al2O3) (MNDC), (30–90 nm)—0.10–0.25;
- -
- Agocel S-2000 (AC), (8–12 μm)—20–30;
- -
- Iron scale (IS), (60–63 μm)—60–70.
4. Conclusions
5. Prospects for Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Su, Y.; Qiu, S.; Yang, D.; Liu, S.; Zhao, H.; Wang, L.; Xue, Q. Active anti-corrosion of epoxy coating by nitrite ions intercalated MgAl LDH. J. Hazard. Mater. 2020, 391, 122215. [Google Scholar] [CrossRef]
- Calabrese, L.; Badagliacco, D.; Sanfilippo, C.; Fiore, V. Fiber Reinforced Hybrid Composites Exposed to a Salt-Fog/Dry Cycle: A Simplified Approach to Predict Their Performance Recovery. Polymers 2023, 15, 2542. [Google Scholar] [CrossRef]
- Matkovska, L.; Iurzhenko, M.; Mamunya, Y.; Tkachenko, I.; Demchenko, V.; Synyuk, V.; Shadrin, A.; Boiteux, G. Structural Peculiarities of Ion-Conductive Organic-Inorganic Polymer Composites Based on Aliphatic Epoxy Resin and Salt of Lithium Perchlorate. Nanoscale Res. Lett. 2017, 12, 423. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Ju, P.; Pan, M.; Zhang, D.; Huang, Y.; Li, G.; Li, X. Selfhealing mechanisms in smart protective coatings: A review. Corros. Sci. 2018, 144, 74–88. [Google Scholar] [CrossRef]
- Panda, A.; Dyadyura, K.; Valíček, J.; Harničárová, M.; Kušnerová, M.; Ivakhniuk, T.; Hrebenyk, L.; Sapronov, O.; Sotsenko, V.; Vorobiov, P.; et al. Ecotoxicity Study of New Composite Materials Based on Epoxy Matrix DER-331 Filled with Biocides Used for Industrial Applications. Polymers 2022, 14, 3275. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Zhang, D.; Liu, T.; Liu, Z.; Liu, W.; Pu, J.; Chen, H.; Zhao, H.; Li, X. Improvement of anticorrosion ability of epoxy matrix in simulate marine environment by filled with superhydrophobic POSS-GO nanosheets. J. Hazard. Mater. 2019, 364, 244–255. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, D.; Liu, T.; Liu, Z.; Pu, J.; Liu, W.; Zhao, H.; Li, X.; Wang, L. Superior corrosion resistance and self-healable epoxy coating pigmented with silanzied trianiline-intercalated graphene. Carbon 2019, 142, 164–176. [Google Scholar] [CrossRef]
- Luo, X.; Zhong, J.; Zhou, Q.; Du, S.; Yuan, S.; Liu, Y. Cationic reduced graphene oxide as self-aligned nanofiller in the epoxy nanocomposite coating with excellent anticorrosive performance and its high antibacterial activity. ACS Appl. Mater. Interfaces 2018, 10, 18400–18415. [Google Scholar] [CrossRef]
- Sapronov, O.O.; Buketov, A.V.; Maruschak, P.O.; Panin, S.V.; Brailo, M.V.; Yakushchenko, S.V.; Sapronova, A.V.; Leshchenko, O.V.; Menou, A. Research of crack initiation and propagation under loading for providing impact resilience of protective coating. Funct. Mater. 2019, 26, 114–120. [Google Scholar] [CrossRef]
- Buketov, A.V.; Sapronov, O.O.; Brailo, M.V.; Maruschak, P.O.; Yakushchenko, S.V.; Panin, S.V.; Nigalatiy, V.D. Dynamics of destruction of epoxy composites filled with ultra-dispersed diamond under impact conditions. Mech. Adv. Mater. Struct. 2020, 27, 725–733. [Google Scholar] [CrossRef]
- Dello Iacono, S.; Martone, A.; Pastore, A.; Filippone, G.; Acierno, D.; Zarrelli, M.; Giordano, M.; Amendola, E. Thermally activated multiple self-healing diels-alder epoxy system. Polym. Eng. Sci. 2017, 57, 674–679. [Google Scholar] [CrossRef]
- Leal, D.A.; Riegel-Vidotti, I.C.; Ferreira, M.G.S.; Marino, C.E.B. Smart coating based on double stimuli-responsive microcapsules containing linseed oil and benzotriazole for active corrosion protection. Corros. Sci. 2018, 130, 56–63. [Google Scholar] [CrossRef]
- Lysenkov, E.; Lysenkova, I. Study of Organic-Inorganic Polymer Nanocomposite Materials for Polyfunctional Resistive Sensor Devices. In Proceedings of the IEEE 41st International Conference on Electronics and Nanotechnology, ELNANO 2022—Proceedings, Kyiv, Ukraine, 10–14 October 2022; pp. 732–735. [Google Scholar]
- Buketov, A.V.; Dolgov, N.A.; Sapronov, A.A.; Nigalatii, V.D. Adhesive pull and shear strength of epoxy nanocomposite coatings filled with ultradispersed diamond. Strength Mater. 2018, 50, 425–431. [Google Scholar] [CrossRef]
- Patti, A.; Acierno, D. Structure-property relationships of waterborne polyurethane (WPU) in aqueous formulations. J. Vinyl Addit. Technol. 2023, 29, 589–606. [Google Scholar] [CrossRef]
- Pistone, A.; Scolaro, C.; Visco, A. Mechanical Properties of Protective Coatings against Marine Fouling: A Review. Polymers 2021, 13, 173. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.M.; Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Developments in polyester composite materials—An in-depth review on natural fibres and nano fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
- Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of natural fiber reinforced polymer composites in sandwich structures: A review on its mechanical properties. Polymers 2021, 13, 423. [Google Scholar] [CrossRef]
- Fiore, V.; Sanfilippo, C.; Calabrese, L. Dynamic mechanical behavior analysis of flax/jute fiber-reinforced composites under salt-fog spray environment. Polymers 2020, 12, 716. [Google Scholar] [CrossRef]
- Calabrese, L.; Fiore, V.; Piperopoulos, E.; Badagliacco, D.; Palamara, D.; Valenza, A.; Proverbio, E. In situ monitoring of moisture uptake of flax fiber reinforced composites under humid/dry conditions. J. Appl. Polym. Sci. 2021, 139, 51969. [Google Scholar] [CrossRef]
- Fiore, V.; Calabrese, L.; Miranda, R.; Badagliacco, D.; Sanfilippo, C.; Palamara, D.; Valenza, A.; Proverbio, E. An experimental investigation on performances recovery of glass fiber reinforced composites exposed to a salt-fog/dry cycle. Compos. Part B Eng. 2023, 257, 110693. [Google Scholar] [CrossRef]
- Hasanin, M.; Abd El-Aziz, M.E.; Youssef, A.M. Compatibility of polymer/fiber to enhance the wood plastic composite properties and their applications. Egypt. J. Chem. 2021, 64, 5335–5343. [Google Scholar]
- Buketov, A.V.; Sapronov, A.A.; Brailo, M.V.; Zinchenko, D.O.; Nigalatii, V.D. Investigation of the Hydroabrasive Wear of Epoxy Composites with Two-Component Filler. Mater. Sci. 2017, 53, 62–69. [Google Scholar] [CrossRef]
- Bórquez-Mendivil, A.; Hurtado-Macías, A.; Leal-Pérez, J.E.; Flores-Valenzuela, J.; Vargas-Ortíz, R.Á.; Cabrera-Covarrubias, F.G.; Almaral-Sánchez, J.L. Hybrid Coatings of SiO2—Recycled PET Unsaturated Polyester Resin by Sol-Gel Process. Polymers 2022, 14, 3280. [Google Scholar] [CrossRef] [PubMed]
- Venkatachalam, G.; Vimalanand, S.; Thozhuvur, G.L.; Srinath, S.; Vijiyashree, R.C. Prediction of virtual fatigue parameters of fly ash, boron nitride, and sugarcane fiber-reinforced epoxy composite. Compos. Mech. Comput. Appl. Int. J. 2023, 14, 31–48. [Google Scholar]
- Gopalan, V.; Pradhyumn, B.; Rohit, O.P.; Omkar, N. Investigations on Tensile and Flexural Behaviors of Sugarcane Fiber/Boron Nitride/Fly Ash Reinforced Polymer Matrix Composites. Polym. Compos. 2022, 43, 1730–1741. [Google Scholar]
- Abd El-Aziz, M.E.; Shafik, E.S.; Tawfic, M.L.; Morsi, S.M.M. Biochar from waste agriculture as reinforcement filer for styrene/butadiene rubber. Polym. Compos. 2022, 43, 1295–1304. [Google Scholar] [CrossRef]
- Buketov, A.; Sapronov, O.; Brailo, M.; Stukhlyak, D.; Yakushchenko, S.; Buketova, N.; Sapronova, A.; Sotsenko, V. The Use of Complex Additives for the Formation of Corrosion- and Wear-Resistant Epoxy Composites. Adv. Mater. Sci. Eng. 2019, 2019, 8183761. [Google Scholar] [CrossRef]
- Sapronov, O.O.; Buketov, A.V.; Sapronova, A.V.; Sotsenko, V.V.; Brailo, M.V.; Yakushchenko, S.V.; Maruschak, P.O.; Smetankin, S.O.; Kuinich, A.G.; Kulinich, V.G.; et al. The Influence of the Content and Nature of the Dispersive Filler at the Formation of Coatings for Protection of the Equipment of River and Sea Transport. SAE Int. J. Mater. Manf. 2020, 13, 81–92. [Google Scholar] [CrossRef]
- Van Schoors, L.; Cadu, T.; Moscardelli, S.; Divet, L.; Fontaine, S.; Sicot, O. Why cyclic hygrothermal ageing modifies the transverse mechanical properties of a unidirectional epoxy-flax fibres composite? Ind. Crops Prod. 2021, 164, 113341. [Google Scholar] [CrossRef]
- Ruiz de Luzuriaga, A.; Markaide, N.; Salaberria, A.M.; Azcune, I.; Rekondo, A.; Grande, H.J. Aero Grade Epoxy Vitrimer towards Commercialization. Polymers 2022, 14, 3180. [Google Scholar] [CrossRef]
- Hu, Q.; Memon, H.; Qiu, Y.; Liu, W.; Wei, Y. A Comprehensive Study on the Mechanical Properties of Different 3D Woven Carbon Fiber-Epoxy Composites. Materials 2020, 13, 2765. [Google Scholar] [CrossRef] [PubMed]
- Guerre, M.; Taplan, C.; Winne, J.M.; Du Prez, F.E. Vitrimers: Directing chemical reactivity to control material properties. Chem. Sci. 2020, 11, 4855–4870. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, Y.; Ji, Y.; Wei, Y. Functional epoxy vitrimers and composites. Prog. Mater. Sci. 2021, 120, 100710. [Google Scholar] [CrossRef]
- Tsai, H.-Y.; Nakamura, Y.; Hu, W.-H.; Fujita, T.; Naito, M. Mechanochromism of dynamic disulfide bonds as a chromophoric indicator of adhesion strength for epoxy adhesive. Mater. Adv. 2021, 2, 5047–5051. [Google Scholar] [CrossRef]
- Wilson García, N.A.; Almaral Sánchez, J.L.; Vargas Ortiz, R.Á.; Hurtado Macías, A.; Flores Ramírez, N.; Aguilar Palazuelos, E.; Flores Valenzuela, J.; Castro Beltrán, A.; Alvarado Beltrán, C.G. Physical and mechanical properties of unsaturated polyester resin matrix from recycled PET (based PG) with corn straw fiber. J. Appl. Polym. Sci. 2021, 138, 51305. [Google Scholar] [CrossRef]
- Sapronov, O.O.; Buketov, A.V.; Yakushchenko, S.V.; Syzonenko, O.M.; Sapronova, A.V.; Sotsenko, V.V.; Vorobiov, P.O.; Lypian, Y.e.V.; Sieliverstov, I.A.; Dobrotvor, I.H. Application of synthesized iron/titanium carbide mixture for restoration of water transport parts by epoxy composites. Compos. Mech. Comput. Appl. Int. J. 2021, 12, 23–35. [Google Scholar] [CrossRef]
- Syzonenko, O.; Sheregii, E.; Prokhorenko, S.; Torpakov, A. Method of Preparation of Blend for Aluminium Matrix Composites by High Voltage Electric Discharge. Mach. Technol. Mater. 2017, 11, 171–173. [Google Scholar]
- Xinyu, L.; Liang, G.; Xinyu, S.; Chaoyong, Z.; Cuiyu, W. Mathematical modeling and evolutionary algorithm-based approach for integrated process planning and scheduling. Comput. Oper. Res. 2010, 37, 656–667. [Google Scholar]
- Zotti, A.; Zuppolini, S.; Borriello, A.; Zarrelli, M. Thermal Properties and Fracture Toughness of Epoxy Nanocomposites Loaded with Hyperbranched-Polymers-Based Core/Shell Nanoparticles. Nanomaterials 2019, 9, 418. [Google Scholar] [CrossRef]
- Spiesschaert, Y.; Guerre, M.; De Baere, I.; Van Paepegem, W.; Winne, J.M.; Du Prez, F.E. Dynamic Curing Agents for Amine-Hardened Epoxy Vitrimers with Short (Re)processing Times. Macromolecules 2020, 53, 2485–2495. [Google Scholar] [CrossRef]
- Cerbu, C. Mechanical Characterization of the Flax Epoxy Composite Material. Procedia Technol. 2015, 19, 268–275. [Google Scholar] [CrossRef]
- Van Lijsebetten, F.; Maiheu, T.; Winne, J.M.; Du Prez, F.E. Epoxy Adhesives with Reversible Hardeners: Controllable Thermal Debonding in Bulk and at Interfaces. Adv. Mater. 2023, 35, 2300802. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Herrera, C.A.; Cruz-Cruz, I.; Jiménez-Cedeño, I.H.; Martínez-Romero, O.; Elías-Zúñiga, A. Influence of the Epoxy Resin Process Parameters on the Mechanical Properties of Produced Bidirectional [±45°] Carbon/Epoxy Woven Composites. Polymers 2021, 13, 1273. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, Q.-H.; Meng, X.-Z.; Liu, P.; Wu, L.-K.; Cao, F.-H. A novel cerium organic network modified graphene oxide prepared multifunctional waterborne epoxy-based coating with excellent mechanical and passive/active anti-corrosion properties. Chem. Eng. J. 2023, 465, 142997. [Google Scholar] [CrossRef]
- Fan, X.; Yan, H.; Cai, M.; Song, S.; Huang, Y.; Zhu, M. Achieving parallelly-arranged Ti3C2Tx in epoxy coating for anti-corrosive/wear high-efficiency protection. Compos. Part B Eng. 2022, 231, 109581. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, W. Silk fibroin-Ti3C2TX hybrid nanofiller enhance corrosion protection for waterborne epoxy coatings under deep sea environment. Chem. Eng. J. 2021, 423, 130195. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, T.; Liu, L.; Cui, Y.; Wang, F. Failure behaviour of an epoxy coating with polyaniline modified graphene oxide under marine alternating hydrostatic pressure. Surf. Coat. Technol. 2019, 361, 188–195. [Google Scholar] [CrossRef]
- Wang, H.; Li, R.; Wu, Q.; Fei, G.; Li, Y.; Zou, M.; Sun, L. Gemini surfactant-assisted fabrication of graphene oxide/polyaniline towards high-performance waterborne anti-corrosive coating. Appl. Surf. Sci. 2021, 565, 150581. [Google Scholar] [CrossRef]
- Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R. Exploring corrosion protection properties of solvent based epoxy-graphene oxide nanocomposite coatings on mild steel. Corros. Sci. 2017, 115, 78–92. [Google Scholar] [CrossRef]
- Tian, Y.; Huang, H.; Wang, W.; Ma, Y.; He, X.; Zhang, L.; Sheng, X.; Zhang, X. Chapter 24. Corrosion resistant nanoscale polymer-based coatings. In Polymer-Based Nanoscale Materials for Surface Coatings; Thomas, S., George, J.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 547–584. [Google Scholar]
- Aviles, M.D.; Saurin, N.; Carrion, F.J.; Arias-Pardilla, J.; Martinez-Mateo, I.; Sanes, J.; Bermudez, M.D. Epoxy resin coatings modified by ionic liquid. Study of abrasion resistance. Express Polym. Lett. 2019, 13, 303–310. [Google Scholar] [CrossRef]
- Barhoumi, N.; Ghanem, A.; Koudhai, M.; Khlifi, K.; Terras, M.A. Improving the mechanical, wear and anti-corrosion performance of polyester coating on structural steel by graphite addition. Express Polym. Lett. 2022, 16, 476–487. [Google Scholar] [CrossRef]
- Valášek, P.; D’Amato, R.; Müller, M.; Ruggiero, A. Mechanical properties and abrasive wear of white/brown coir epoxy composites. Compos. Part B Eng. 2018, 146, 88–97. [Google Scholar] [CrossRef]
- Milosevic, M.; Dzunic, D.; Valasek, P.; Mitrovic, S.; Ruggiero, A. Effect of Fiber Orientation on the Tribological Performance of Abaca-Reinforced Epoxy Composite under Dry Contact Conditions. J. Compos. Sci. 2022, 6, 204. [Google Scholar] [CrossRef]
- Kurien, R.A.; Selvaraj, D.P.; Sekar, M.; Rajasekar, R.; Koshy, C.P. Experimental investigation on tribological characteristics of naoh treated chopped abaca fiber reinforced epoxy composites. Mater. Sci. Forum 2021, 1019, 25–31. [Google Scholar] [CrossRef]
- Alshammari, F.Z.; Saleh, K.H.; Yousif, B.F.; Alajmi, A.; Shalwan, A.; Alotaibi, J.G. The influence of fibre orientation on tribological performance of jute fibre reinforced epoxy composites considering different mat orientations. Tribol. Ind. 2018, 40, 335–348. [Google Scholar] [CrossRef]
Characteristics | Si3N4 | I2O3 | Al2O3 |
---|---|---|---|
Specific surface area, S, m2/g | 44 | 14 | 44 |
Particle size, determined by the method of thermal adsorption, d, nm | 41 | 89 | 41 |
Particle size determined by electron microscopy, d, nm | 39 | 35 | 76 |
Characteristics | Agocel S-2000 | Waltrop |
---|---|---|
Shape | Round powder particles | Round powder particles |
Color | White | Yellow |
Smell | Absent | Absent |
Destruction temperature, °C | 140 | 220 |
Flowability density, ρ, kg/m3 | 660 | 520 |
Solubility in water at 20 °C, g/L | 5 | 12 |
pH value at 20 °C | 5–7 | 6–8 |
Dynamic viscosity at 20 °C, η, mPa·s | 1500 | 1850 |
Components | Factor | Medium Level, q, pts.wt. | Step of Variation, Δq, pts.wt. | Values of Variable Levels (pts.wt.) Corresponding to Conventional Units | ||
---|---|---|---|---|---|---|
−1 | 0 | +1 | ||||
The main filler— iron slag | x1 | 70 | 10 | 60 | 70 | 80 |
Additional filler— Waltrop | x2 | 20 | 10 | 10 | 20 | 30 |
No. (u) | x0 | x1 | x2 | |||
---|---|---|---|---|---|---|
1 | 1 | −1 | −1 | 0.33 | 0.33 | +1 |
2 | 1 | +1 | −1 | 0.33 | 0.33 | −1 |
3 | 1 | −1 | +1 | 0.33 | 0.33 | −1 |
4 | 1 | +1 | +1 | 0.33 | 0.33 | +1 |
5 | 1 | 0 | 0 | −0.67 | −0.67 | 0 |
6 | 1 | +1 | 0 | 0.33 | −0.67 | 0 |
7 | 1 | −1 | 0 | 0.33 | −0.67 | 0 |
8 | 1 | 0 | +1 | −0.67 | 0.33 | 0 |
9 | 1 | 0 | −1 | −0.67 | 0.33 | 0 |
9 | 6 | 6 | 2 | 2 | 4 |
No. | Content of Components, q, pts.wt. | Elastic Modulus, E, GPa | Impact Resilience, W, kJ/m2 | |
---|---|---|---|---|
x1 | x2 | y1 | y2 | |
1 | 60 | 10 | 5.8 | 8.5 |
2 | 80 | 10 | 4.0 | 7.3 |
3 | 60 | 30 | 5.5 | 8.1 |
4 | 80 | 30 | 4.4 | 7.4 |
5 | 70 | 20 | 5.0 | 8.3 |
6 | 80 | 20 | 4.6 | 7.6 |
7 | 60 | 20 | 5.5 | 8.7 |
8 | 70 | 30 | 4.6 | 8.2 |
9 | 70 | 10 | 5.4 | 8.0 |
b0 | b1 | b2 | b11 | b22 | b12 |
---|---|---|---|---|---|
5.06 | −0.63 | −0.12 | −0.03 | −0.08 | 0.18 |
No. | Dispersion of Adequacy | Dispersion of Reproduction | ||
---|---|---|---|---|
Conventional Symbol | Value | Conventional Symbol | Value | |
1 | 0.01 | 0.02 | ||
2 | 0.01 | 0.02 | ||
3 | 0.01 | 0.02 | ||
4 | 0.03 | 0.06 | ||
5 | 0.01 | 0.02 | ||
6 | 0.03 | 0.06 | ||
7 | 0.04 | 0.06 | ||
8 | 0.01 | 0.02 | ||
9 | 0.01 | 0.02 |
No. of Research | Elasticity Modulus, E, GPa | Average Value, E, GPa | ||
---|---|---|---|---|
1 | 2 | 3 | ||
1 | 5.7 | 5.8 | 5.9 | 5.8 |
2 | 3.9 | 4.1 | 4.0 | 4.0 |
3 | 5.5 | 5.6 | 5.4 | 5.5 |
4 | 4.3 | 4.3 | 4.6 | 4.4 |
5 | 5.1 | 4.9 | 5.0 | 5.0 |
6 | 4.5 | 4.8 | 4.5 | 4.6 |
7 | 5.3 | 5.6 | 5.6 | 5.5 |
8 | 4.5 | 4.7 | 4.6 | 4.6 |
9 | 5.3 | 5.5 | 5.4 | 5.4 |
No. | Dispersions of Regression Coefficients | Calculated Values of Student’s Test | ||
---|---|---|---|---|
Conventional Symbol | Value | Conventional Symbol | Value | |
1 | 0.002 | t0p | 116.63 | |
2 | 0.003 | t1p | 12.02 | |
3 | 0.003 | t2p | 2.21 | |
4 | 0.008 | t11p | 0.37 | |
5 | 0.008 | t22p | 0.91 | |
6 | 0.004 | t12p | 2.70 |
b0 | b1 | b2 | b11 | b22 | b12 |
---|---|---|---|---|---|
8.36 | −0.50 | −0.02 | −0.23 | −0.28 | 0.13 |
No. | Adequacy Dispersion | Reproduction Dispersion | ||
---|---|---|---|---|
Conventional Symbol | Value | Conventional Symbol | Value | |
1 | 0.01 | 0.02 | ||
2 | 0.07 | 0.14 | ||
3 | 0.04 | 0.08 | ||
4 | 0.07 | 0.14 | ||
5 | 0.03 | 0.06 | ||
6 | 0.01 | 0.02 | ||
7 | 0.04 | 0.08 | ||
8 | 0.03 | 0.06 | ||
9 | 0.01 | 0.02 |
No. of the Experiment | Impact Resilience, W, kJ/m2 | Average Value, W, kJ/m2 | ||
---|---|---|---|---|
1 | 2 | 3 | ||
1 | 8.4 | 8.5 | 8.6 | 8.5 |
2 | 7.0 | 7.5 | 7.4 | 7.3 |
3 | 7.9 | 8.3 | 8.1 | 8.1 |
4 | 7.2 | 7.7 | 7.3 | 7.4 |
5 | 8.1 | 8.4 | 8.4 | 8.3 |
6 | 7.6 | 7.7 | 7.5 | 7.6 |
7 | 8.9 | 8.5 | 8.7 | 8.7 |
8 | 8.0 | 8.3 | 8.3 | 8.2 |
9 | 8.0 | 8.1 | 7.9 | 8.0 |
No. | Dispersions of Regression Coefficients | Calculated Values of Student’s Test | ||
---|---|---|---|---|
Conventional Symbol | Value | Conventional Symbol | Value | |
1 | 0.004 | t0p | 132.44 | |
2 | 0.006 | t1p | 6.60 | |
3 | 0.006 | t2p | 0.22 | |
4 | 0.017 | t11p | 1.78 | |
5 | 0.017 | t22p | 2.16 | |
6 | 0.009 | t12p | 1.30 |
Type of Coating | Aggressive Environment | ||||
---|---|---|---|---|---|
Gasoline | Acetone | NaOH (50%) | I-20A Lubricant | H2SO4 (10%) | |
Matrix | 5.2 | 5.0 | 5.3 | 6.3 | 8.4 |
CC 1 | 1.8 | 1.5 | 1.8 | 2.2 | 4.3 |
CC 2 | 2.4 | 2.8 | 2.6 | 3.2 | 5.5 |
CC 3 | 1.9 | 1.9 | 2.2 | 2.8 | 5.0 |
CC 4 | 2.7 | 2.8 | 2.9 | 3.6 | 6.1 |
Indicator | PCC-1 | PCC-2 |
---|---|---|
Adhesive strength (σa, MPa) | 53 | 53 |
Destructive stresses during bending (σbd, MPa) | 54 | 56 |
Modulus of elasticity in bending (E, GPa) | 5.8 | 5.3 |
Heat resistance (T, K) | 364 | 366 |
Impact resilience (W, kJ/m2) | 8.7 | 8.2 |
Penetration in natural conditions of the coating during time t = 250–300 days (χ %) | 0.5 | 0.7 |
Wear resistance (at the angle of attack of hydroabrasive å = 45°), K | 1.68 | 1.75 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Buketov, A.; Sapronov, O.; Klevtsov, K.; Kim, B. Functional Polymer Nanocomposites with Increased Anticorrosion Properties and Wear Resistance for Water Transport. Polymers 2023, 15, 3449. https://doi.org/10.3390/polym15163449
Buketov A, Sapronov O, Klevtsov K, Kim B. Functional Polymer Nanocomposites with Increased Anticorrosion Properties and Wear Resistance for Water Transport. Polymers. 2023; 15(16):3449. https://doi.org/10.3390/polym15163449
Chicago/Turabian StyleBuketov, Andriy, Oleksandr Sapronov, Kostyantyn Klevtsov, and Boksun Kim. 2023. "Functional Polymer Nanocomposites with Increased Anticorrosion Properties and Wear Resistance for Water Transport" Polymers 15, no. 16: 3449. https://doi.org/10.3390/polym15163449
APA StyleBuketov, A., Sapronov, O., Klevtsov, K., & Kim, B. (2023). Functional Polymer Nanocomposites with Increased Anticorrosion Properties and Wear Resistance for Water Transport. Polymers, 15(16), 3449. https://doi.org/10.3390/polym15163449