Development of a Boron Nitride-Filled Dental Adhesive System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Exfoliation and Functionalization of BNNSs
2.2.2. Adhesive Formulation
2.2.3. Monomer-to-Polymer Degree of Conversion (FTIR)
2.2.4. Water Sorption and Solubility
2.2.5. Flexural Strength and Young’s Modulus
2.2.6. Morphological Analysis
2.2.7. Microtensile Bond Strength (µTBS) and Failure Pattern Analysis
2.2.8. Statistical Analysis
3. Results and Discussion
3.1. Degree of Conversion
3.2. Water Sorption and Solubility
3.3. Flexural Strength
3.4. Morphological Analysis
3.5. Microtensile Bond Strength and Failure Pattern Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Degrazia, F.W.; Leitune, V.C.B.; Visioli, F.; Samuel, S.M.W.; Collares, F.M. Long-term stability of dental adhesive incorporated by boron nitride nanotubes. Dent. Mater. 2018, 34, 427–433. [Google Scholar] [CrossRef]
- Sauro, S.; Pashley, D.H. Strategies to stabilise dentine-bonded interfaces through remineralising operative approaches–State of The Art. Int. J. Adhes. Adhes. 2016, 69, 39–57. [Google Scholar] [CrossRef]
- Vaidyanathan, T.; Vaidyanathan, J. Recent advances in the theory and mechanism of adhesive resin bonding to dentin: A critical review. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2009, 88, 558–578. [Google Scholar] [CrossRef]
- Pashley, D.H.; Swift, E.J., Jr. Dentin bonding. J. Esthet. Restor. Dent. Off. Publ. Am. Acad. Esthet. Dent. 2008, 20, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Sadat-Shojai, M.; Atai, M.; Nodehi, A.; Khanlar, L.N. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent. Mater. 2010, 26, 471–482. [Google Scholar] [CrossRef] [PubMed]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Nishitani, Y.; Yoshiyama, M.; Donnelly, A.; Agee, K.; Sword, J.; Tay, F.; Pashley, D.H. Effects of resin hydrophilicity on dentin bond strength. J. Dent. Res. 2006, 85, 1016–1021. [Google Scholar] [CrossRef]
- de Andrade e Silva, S.M.; Carrilho, M.; Garcia, F.; Manso, A.; Alves, M.; de Carvalho, R. Effect of an additional hydrophilic versus hydrophobic coat on the quality of dentinal sealing provided by two-step etch-and-rinse adhesives. J. Appl. Oral Sci. Rev. FOB 2009, 17, 184–189. [Google Scholar] [CrossRef]
- Ilie, N.; Serfözö, N.E.; Prodan, D.; Diegelmann, J.; Moldovan, M. Synthesis and performance of experimental resin-based dental adhesives reinforced with functionalized graphene and hydroxyapatite fillers. Mater. Des. 2022, 221, 110985. [Google Scholar] [CrossRef]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of various fillers in adhesives applications: A review. Polym. Bull. 2022, 79, 10491–10553. [Google Scholar] [CrossRef]
- Leitune, V.C.B.; Collares, F.M.; Takimi, A.; de Lima, G.B.; Petzhold, C.L.; Bergmann, C.P.; Samuel, S.M.W. Niobium pentoxide as a novel filler for dental adhesive resin. J. Dent. 2013, 41, 106–113. [Google Scholar] [CrossRef]
- Khosravi, K.; Mirmohamadi, H.; Kashani, K. Evaluation of effect of adding silica fillers to adhesive on microleakage of composite restorations in different times. J. Iran. Dent. Assoc. 2012, 24, 105–110. [Google Scholar]
- Giannini, M.; Mettenburg, D.; Arrais, C.; Rueggeberg, F.A. The effect of filler addition on biaxial flexure strength and modulus of commercial dentin bonding systems. Quintessence Int. 2011, 42, e39–e43. [Google Scholar] [PubMed]
- Rodríguez, H.A.; Kriven, W.M.; Casanova, H. Development of mechanical properties in dental resin composite: Effect of filler size and filler aggregation state. Mater. Sci. Eng. C 2019, 101, 274–282. [Google Scholar] [CrossRef]
- Shinkai, K.; Taira, Y.; Suzuki, S.; Kawashima, S.; Suzuki, M. Effect of filler size and filler loading on wear of experimental flowable resin composites. J. Appl. Oral Sci. 2018, 26, e20160652. [Google Scholar] [CrossRef]
- Raszewski, Z.; Brząkalski, D.; Derpeński, Ł.; Jałbrzykowski, M.; Przekop, R.E. Aspects and principles of material connections in Restorative dentistry—A comprehensive review. Materials 2022, 15, 7131. [Google Scholar] [CrossRef]
- Belli, R.; Kreppel, S.; Petschelt, A.; Hornberger, H.; Boccaccini, A.R.; Lohbauer, U. Strengthening of dental adhesives via particle reinforcement. J. Mech. Behav. Biomed. Mater. 2014, 37, 100–108. [Google Scholar] [CrossRef]
- Carvalho, E.; De Paula, D.; Neto, D.A.; Costa, L.; Dias, D.; Feitosa, V.; Fechine, P. Radiopacity and mechanical properties of dental adhesives with strontium hydroxyapatite nanofillers. J. Mech. Behav. Biomed. Mater. 2020, 101, 103447. [Google Scholar] [CrossRef] [PubMed]
- Torres-Rosas, R.; Torres-Gómez, N.; García-Contreras, R.; Scougall-Vilchis, R.J.; Domínguez-Díaz, L.R.; Argueta-Figueroa, L. Copper nanoparticles as nanofillers in an adhesive resin system: An in vitro study. Dent. Med. Probl. 2020, 57, 239–246. [Google Scholar] [CrossRef]
- Lezaja, M.; Jokic, B.M.; Veljovic, D.N.; Miletic, V. Shear bond strength to dentine of dental adhesives containing hydroxyapatite nano-fillers. J. Adhes. Sci. Technol. 2016, 30, 2678–2689. [Google Scholar] [CrossRef]
- da Cruz, L.B.T.; Oliveira, M.T.; Saraceni, C.H.C.; Lima, A.F. The influence of nanofillers on the properties of ethanol-solvated and non-solvated dental adhesives. Restor. Dent. Endod. 2019, 44, e28. [Google Scholar] [CrossRef] [PubMed]
- Lohbauer, U.; Wagner, A.; Belli, R.; Stoetzel, C.; Hilpert, A.; Kurland, H.-D.; Grabow, J.; Müller, F.A. Zirconia nanoparticles prepared by laser vaporization as fillers for dental adhesives. Acta Biomater. 2010, 6, 4539–4546. [Google Scholar] [CrossRef] [PubMed]
- Frank, I.; Tanenbaum, D.M.; van der Zande, A.M.; McEuen, P.L. Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2007, 25, 2558–2561. [Google Scholar] [CrossRef]
- Lucibella, M. This Month is Physics History-October 22, 2004: Discovery of Graphene. Am. Phys. Soc.-APS News 2009, 18, 2. [Google Scholar]
- Bregnocchi, A.; Zanni, E.; Uccelletti, D.; Marra, F.; Cavallini, D.; De Angelis, F.; De Bellis, G.; Bossù, M.; Ierardo, G.; Polimeni, A. Graphene-based dental adhesive with anti-biofilm activity. J. Nanobiotechnol. 2017, 15, 89. [Google Scholar] [CrossRef]
- Mei, L.; Wei, H.; Wenjing, C.; Xiaokun, H. Graphene oxide-silica composite fillers into the experimental dental adhesives for potential therapy. Med. Res. 2017, 1, 42. [Google Scholar] [CrossRef]
- Mourad, M.; Wijnhoven, J.; Van’t Zand, D.; van der Beek, D.; Lekkerkerker, H.N. Gelation versus liquid crystal phase transitions in suspensions of plate-like particles. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2006, 364, 2807–2816. [Google Scholar] [CrossRef]
- Mourad, M.C.; Petukhov, A.V.; Vroege, G.J.; Lekkerkerker, H.N. Lyotropic hexagonal columnar liquid crystals of large colloidal gibbsite platelets. Langmuir 2010, 26, 14182–14187. [Google Scholar] [CrossRef]
- Van der Kooij, F.M.; Kassapidou, K.; Lekkerkerker, H.N. Liquid crystal phase transitions in suspensions of polydisperse plate-like particles. Nature 2000, 406, 868–871. [Google Scholar] [CrossRef]
- Qi-lin, X.; Zhen-huan, L.; Xiao-geng, T. The defect-induced fracture behaviors of hexagonal boron-nitride monolayer nanosheets under uniaxial tension. J. Phys. D Appl. Phys. 2015, 48, 375502. [Google Scholar] [CrossRef]
- Singh, S.K.; Neek-Amal, M.; Costamagna, S.; Peeters, F. Thermomechanical properties of a single hexagonal boron nitride sheet. Phys. Rev. B 2013, 87, 184106. [Google Scholar] [CrossRef]
- Lee, B.; Lee, D.; Lee, J.H.; Ryu, H.J.; Hong, S.H. Enhancement of toughness and wear resistance in boron nitride nanoplatelet (BNNP) reinforced Si3N4 nanocomposites. Sci. Rep. 2016, 6, 27609. [Google Scholar] [CrossRef]
- Falin, A.; Cai, Q.; Santos, E.J.; Scullion, D.; Qian, D.; Zhang, R.; Yang, Z.; Huang, S.; Watanabe, K.; Taniguchi, T. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 2017, 8, 15815. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, B.; Li, J.; Tong, X.; Zhao, H.; Wang, L. Enhancement of mechanical and wear resistance performance in hexagonal boron nitride-reinforced epoxy nanocomposites. Polym. Int. 2017, 66, 659–664. [Google Scholar] [CrossRef]
- Sukhorukova, I.V.; Zhitnyak, I.Y.; Kovalskii, A.M.; Matveev, A.T.; Lebedev, O.I.; Li, X.; Gloushankova, N.A.; Golberg, D.; Shtansky, D.V. Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS Appl. Mater. Interfaces 2015, 7, 17217–17225. [Google Scholar] [CrossRef]
- Mateti, S.; Wong, C.S.; Liu, Z.; Yang, W.; Li, Y.; Li, L.H.; Chen, Y. Biocompatibility of boron nitride nanosheets. Nano Res. 2018, 11, 334–342. [Google Scholar] [CrossRef]
- Satsangi, N.; Rawls, H.R.; Norling, B.K. Synthesis of low-shrinkage polymerizable methacrylate liquid-crystal monomers. J. Biomed. Mater. Res. Part B Appl. Biomater. Off. J. Soc. Biomater. Jpn. Soc. Biomater. Aust. Soc. Biomater. Korean Soc. Biomater. 2005, 74, 706–711. [Google Scholar] [CrossRef]
- Zhi, C.; Bando, Y.; Tang, C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893. [Google Scholar] [CrossRef]
- Degrazia, F.W.; Leitune, V.C.B.; Samuel, S.M.W.; Collares, F.M. Boron nitride nanotubes as novel fillers for improving the properties of dental adhesives. J. Dent. 2017, 62, 85–90. [Google Scholar] [CrossRef]
- Bohns, F.R.; Degrazia, F.W.; de Souza Balbinot, G.; Leitune, V.C.B.; Samuel, S.M.W.; García-Esparza, M.A.; Sauro, S.; Collares, F.M. Boron nitride nanotubes as filler for resin-based dental sealants. Sci. Rep. 2019, 9, 7710. [Google Scholar] [CrossRef]
- Sarikaya, R.; Song, L.; Ye, Q.; Misra, A.; Tamerler, C.; Spencer, P. Evolution of network structure and mechanical properties in autonomous-strengthening dental adhesive. Polymers 2020, 12, 2076. [Google Scholar] [CrossRef] [PubMed]
- Atai, M.; Nekoomanesh, M.; Hashemi, S.; Amani, S. Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent. Mater. 2004, 20, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Solhi, L.; Atai, M.; Nodehi, A.; Imani, M.; Ghaemi, A.; Khosravi, K. Poly (acrylic acid) grafted montmorillonite as novel fillers for dental adhesives: Synthesis, characterization and properties of the adhesive. Dent. Mater. 2012, 28, 369–377. [Google Scholar] [CrossRef] [PubMed]
- ISO/TS 11405; Dental Materials—Testing of Adhesion to Tooth Structure. International Organization for Standardization ISO Central Secretariat: Geneva, Switzerland, 2003.
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; de Oliveira Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef]
- Malacarne-Zanon, J.; Pashley, D.H.; Agee, K.A.; Foulger, S.; Alves, M.C.; Breschi, L.; Cadenaro, M.; Garcia, F.P.; Carrilho, M.R. Effects of ethanol addition on the water sorption/solubility and percent conversion of comonomers in model dental adhesives. Dent. Mater. 2009, 25, 1275–1284. [Google Scholar] [CrossRef]
- Marghalani, H.Y. Sorption and solubility characteristics of self-adhesive resin cements. Dent. Mater. 2012, 28, e187–e198. [Google Scholar] [CrossRef]
- Bin-Shuwaish, M.S.; Maawadh, A.M.; Al-Hamdan, R.S.; Alresayes, S.; Ali, T.; Almutairi, B.; Vohra, F.; Abduljabbar, T. Influence of graphene oxide filler content on the dentin bond integrity, degree of conversion and bond strength of experimental adhesive. A SEM, micro-raman, FTIR and microtensile study. Mater. Res. Express 2020, 7, 115403. [Google Scholar] [CrossRef]
- Carneiro, K.K.; Meier, M.M.; Santos, C.C.d.; Maciel, A.P.; Carvalho, C.N.; Bauer, J. Adhesives doped with bioactive niobophosphate micro-filler: Degree of conversion and microtensile bond strength. Braz. Dent. J. 2016, 27, 705–711. [Google Scholar] [CrossRef] [PubMed]
- Aguiar, T.R.; De Oliveira, M.; Arrais, C.A.; Ambrosano, G.M.; Rueggeberg, F.; Giannini, M. The effect of photopolymerization on the degree of conversion, polymerization kinetic, biaxial flexure strength, and modulus of self-adhesive resin cements. J. Prosthet. Dent. 2015, 113, 128–134. [Google Scholar] [CrossRef]
- AlRefeai, M.H.; AlHamdan, E.M.; Al-Saleh, S.; Farooq, I.; Abrar, E.; Vohra, F.; Abduljabbar, T. Assessment of bond integrity, durability, and degree of conversion of a calcium fluoride reinforced dentin adhesive. Polymers 2021, 13, 2418. [Google Scholar] [CrossRef]
- Ito, S.; Hashimoto, M.; Wadgaonkar, B.; Svizero, N.; Carvalho, R.M.; Yiu, C.; Rueggeberg, F.A.; Foulger, S.; Saito, T.; Nishitani, Y. Effects of resin hydrophilicity on water sorption and changes in modulus of elasticity. Biomaterials 2005, 26, 6449–6459. [Google Scholar] [CrossRef] [PubMed]
- Durner, J.; Spahl, W.; Zaspel, J.; Schweikl, H.; Hickel, R.; Reichl, F.-X. Eluted substances from unpolymerized and polymerized dental restorative materials and their Nernst partition coefficient. Dent. Mater. 2010, 26, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Zandinejad, A.; Atai, M.; Pahlevan, A. The effect of ceramic and porous fillers on the mechanical properties of experimental dental composites. Dent. Mater. 2006, 22, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, Y.; Kitagawa, T.; Aida, M.; Nishiyama, N. Experimental and computational approach for evaluating the mechanical characteristics of dental composite resins with various filler sizes. Acta Biomater. 2006, 2, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tan, Y.; Lei, T.; Xiang, Q.; Han, Y.; Huang, B. Effect of porous glass–ceramic fillers on mechanical properties of light-cured dental resin composites. Dent. Mater. 2009, 25, 709–715. [Google Scholar] [CrossRef]
- Reynolds, I. A review of direct orthodontic bonding. Br. J. Orthod. 1975, 2, 171–178. [Google Scholar] [CrossRef]
- Reynolds, I. Composite filling materials as adhesives in orthodontics. Br. Dent. J. 1975, 138, 83. [Google Scholar] [CrossRef]
- Brantley, W.A.; Eliades, T. Orthodontic materials: Scientific and clinical aspects. Am. J. Orthod. Dentofac. Orthop. 2001, 119, 672–673. [Google Scholar]
- Menezes, L.R.d.; Silva, E.O.d. The use of montmorillonite clays as reinforcing fillers for dental adhesives. Mater. Res. 2016, 19, 236–242. [Google Scholar] [CrossRef]
- Al-Hamdan, R.S.; Almutairi, B.; Kattan, H.F.; Alsuwailem, N.A.; Farooq, I.; Vohra, F.; Abduljabbar, T. Influence of hydroxyapatite nanospheres in dentin adhesive on the dentin bond integrity and degree of conversion: A scanning electron microscopy (SEM), raman, fourier transform-infrared (FTIR), and microtensile study. Polymers 2020, 12, 2948. [Google Scholar] [CrossRef]
- AlFawaz, Y.F.; Almutairi, B.; Kattan, H.F.; Zafar, M.S.; Farooq, I.; Naseem, M.; Vohra, F.; Abduljabbar, T. Dentin bond integrity of hydroxyapatite containing resin adhesive enhanced with graphene oxide nano-particles—An SEM, EDX, micro-Raman, and microtensile bond strength study. Polymers 2020, 12, 2978. [Google Scholar] [CrossRef] [PubMed]
Samples | Water Sorption (µg/mm3) | Water Solubility (µg/mm3) | |
---|---|---|---|
7 Days | 12 Months | ||
Control | 103.4 ± 7.2 | 118.78 ± 6.48 | 5.54 ± 2.01 |
0.1 wt% BNNSs | 101.9 ± 7.5 | 118.67 ± 7.87 | 2.62 ± 1.88 |
1 wt% BNNSs | 103.3 ± 2.4 | 119.72 ± 9.63 | 3.48 ± 2.53 |
Time | Samples | Failure Mode Analysis (%) | |||
---|---|---|---|---|---|
Adhesive | Dentin | Composite | Mixed | ||
24 h | Control | 58.82 | 35.29 | 5.88 | 0 |
0.1 wt% BNNSs | 35.29 | 58.82 | 0 | 5.88 | |
1 wt% BNNSs | 64.71 | 23.53 | 0 | 11.76 | |
6 months | Control | 41.18 | 41.18 | 11.76 | 5.88 |
0.1 wt% BNNSs | 11.76 | 64.71 | 23.53 | 0 | |
1 wt% BNNSs | 47.06 | 41.18 | 11.76 | 0 | |
12 months | Control | 47.06 | 41.18 | 0 | 11.76 |
0.1 wt% BNNSs | 29.41 | 41.18 | 17.65 | 11.76 | |
1 wt% BNNSs | 58.82 | 23.53 | 0 | 17.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kulanthaivel, S.; Poppen, J.; Ribeiro Cunha, S.; Furman, B.; Whang, K.; Teixeira, E.C. Development of a Boron Nitride-Filled Dental Adhesive System. Polymers 2023, 15, 3512. https://doi.org/10.3390/polym15173512
Kulanthaivel S, Poppen J, Ribeiro Cunha S, Furman B, Whang K, Teixeira EC. Development of a Boron Nitride-Filled Dental Adhesive System. Polymers. 2023; 15(17):3512. https://doi.org/10.3390/polym15173512
Chicago/Turabian StyleKulanthaivel, Senthilguru, Jeremiah Poppen, Sandra Ribeiro Cunha, Benjamin Furman, Kyumin Whang, and Erica C. Teixeira. 2023. "Development of a Boron Nitride-Filled Dental Adhesive System" Polymers 15, no. 17: 3512. https://doi.org/10.3390/polym15173512
APA StyleKulanthaivel, S., Poppen, J., Ribeiro Cunha, S., Furman, B., Whang, K., & Teixeira, E. C. (2023). Development of a Boron Nitride-Filled Dental Adhesive System. Polymers, 15(17), 3512. https://doi.org/10.3390/polym15173512