Green Synthesis of Mesquite-Gum-Stabilized Gold Nanoparticles for Biomedical Applications: Physicochemical Properties and Biocompatibility Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mesquite Gum Purification
2.3. Synthesis of Gold Nanoparticles Using Mesquite Gum (AuNPs@MG)
2.4. Characterization Techniques
2.5. Preliminary Assessment of the Stability of AuNPs in Biological Media
2.6. Biological Assays
2.6.1. Cytotoxicity: MTT Assay
2.6.2. Hematoxylin and Eosin (H&E) Stains
2.6.3. Statistical Analysis
3. Results and Discussion
3.1. UV-Vis Spectroscopy
3.2. Dynamic Light Scattering (DLS)
3.3. Zeta Potential
3.4. Transmission Electron Microscopy
3.5. FTIR Spectroscopy
MG [24,28] | AuNPs@MG (1:15) | ||
---|---|---|---|
Peak Position (cm−1) | Peak Assignment | Peak Position (cm−1) | Peak Assignment |
3290 | O-H | 3268 | O-H |
2922 | C-H | 2920 | C-H |
------ | ------ | 1539 | COO- asymmetric stretching [43]. |
1600 | Amide I (stretching of the C=O and C-N). | 1634 | Amide I (stretching of the C=O and C-N) [44]. |
1416 | COO- symmetric stretching. | 1416 | COO- symmetric stretching. |
1011 | C-O and the C-O-H groups of carbohydrates (such as glucose, mannose, and galactose). | 1009 | C-O and the C-O-H groups of carbohydrates (such as glucose, mannose, and galactose). |
990 | C-O and the C-O-H groups of carbohydrates (such as glucose, mannose, and galactose). | ||
902 | C-O and the C-O-H groups of carbohydrates (such as glucose, mannose, and galactose). | 907 | C-O and the C-O-H groups of carbohydrates (such as glucose, mannose, and galactose). |
834 | Pyranose glycosidic acetal groups. | 831 | Pyranose glycosidic acetal groups. |
3.6. Evaluation of the Stability of Gold Nanoparticles at Physiological pH
3.7. Biological Assays
3.7.1. Hemolysis Assay
3.7.2. MTT Assay
3.7.3. H&E Staining
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morsin, M.; Salleh, M.M.; Umar, A.A.; Sahdan, M.Z. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor. Sensors 2017, 17, 947. [Google Scholar] [CrossRef]
- Singh, A.V.; Batuwangala, M.; Mundra, R.; Mehta, K.; Patke, S.; Falletta, E.; Patil, R.; Gade, W.N. Biomineralized Anisotropic Gold Microplate–Macrophage Interactions Reveal Frustrated Phagocytosis-like Phenomenon: A Novel Paclitaxel Drug Delivery Vehicle. ACS Appl. Mater. Interfaces 2014, 6, 14679–14689. [Google Scholar] [CrossRef]
- Maturi, M.; Locatelli, E.; Sambri, L.; Tortorella, S.; Šturm, S.; Kostevšek, N.; Franchini, M.C. Synthesis of Ultrasmall Single-Crystal Gold–Silver Alloy Nanotriangles and Their Application in Photothermal Therapy. Nanomaterials 2021, 11, 912. [Google Scholar] [CrossRef]
- Wang, G.; Akiyama, Y.; Takarada, T.; Maeda, M. Rapid Non-Crosslinking Aggregation of DNA-Functionalized Gold Nanorods and Nanotriangles for Colorimetric Single-Nucleotide Discrimination. Chem.–A Eur. J. 2015, 22, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Mzwd, E.; Ahmed, N.M.; Suradi, N.; Alsaee, S.K.; Altowyan, A.S.; Almessiere, M.A.; Omar, A.F. Green synthesis of gold nanoparticles in Gum Arabic using pulsed laser ablation for CT imaging. Sci. Rep. 2022, 12, 10549. [Google Scholar] [CrossRef] [PubMed]
- Ogarev, V.A.; Rudoi, V.M.; Dement’eva, O.V. Gold nanoparticles: Synthesis, optical properties, and application. Inorg. Mater. Appl. Res. 2018, 9, 134–140. [Google Scholar] [CrossRef]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of Gold Nanoparticles and Their Endocytotic Fate Inside the Cellular Compartment: A Microscopic Overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef]
- Habibullah, G.; Viktorova, J.; Ruml, T. Current Strategies for Noble Metal Nanoparticle Synthesis. Nanoscale Res. Lett. 2021, 16, 47. [Google Scholar] [CrossRef]
- Note, C.; Kosmella, S.; Koetz, J. Poly(ethyleneimine) as reducing and stabilizing agent for the formation of gold nanoparticles in w/o microemulsions. Colloids Surf. A Physicochem. Eng. Asp. 2006, 290, 150–156. [Google Scholar] [CrossRef]
- Barai, A.C.; Paul, K.; Dey, A.; Manna, S.; Roy, S.; Bag, B.G.; Mukhopadhyay, C. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg. 2018, 5, 10. [Google Scholar] [CrossRef]
- Turkevich, J.; Stevenson, P.C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75. [Google Scholar] [CrossRef]
- Boruah, J.S.; Devi, C.; Hazarika, U.; Reddy, P.V.B.; Chowdhury, D.; Barthakur, M.; Kalita, P. Green synthesis of gold nanoparticles using an antiepileptic plant extract: In vitro biological and photo-catalytic activities. RSC Adv. 2021, 11, 28029–28041. [Google Scholar] [CrossRef]
- Singh, J.; Dutta, T.; Kim, K.-H.; Rawat, M.; Samddar, P.; Kumar, P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnol. 2018, 16, 84. [Google Scholar] [CrossRef]
- ElMitwalli, O.S.; Barakat, O.A.; Daoud, R.M.; Akhtar, S.; Henari, F.Z. Green synthesis of gold nanoparticles using cinnamon bark extract, characterization, and fluorescence activity in Au/eosin Y assemblies. J. Nanoparticle Res. 2020, 22, 309. [Google Scholar] [CrossRef]
- Rodríguez-León, E.; Rodríguez-Vázquez, B.E.; Martínez-Higuera, A.; Rodríguez-Beas, C.; Larios-Rodríguez, E.; Navarro, R.E.; López-Esparza, R.; Iñiguez-Palomares, R.A. Synthesis of Gold Nanoparticles Using Mimosa tenuiflora Extract, Assessments of Cytotoxicity, Cellular Uptake, and Catalysis. Nanoscale Res. Lett. 2019, 14, 334. [Google Scholar] [CrossRef] [PubMed]
- Molnár, Z.; Bódai, V.; Szakacs, G.; Erdélyi, B.; Fogarassy, Z.; Sáfrán, G.; Varga, T.; Kónya, Z.; Tóth-Szeles, E.; Szűcs, R.; et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci. Rep. 2018, 8, 3943. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-C.; Chen, D.-H. Facile green synthesis of gold nanoparticles with gum arabic as a stabilizing agent and reducing agent. Gold Bull. 2010, 43, 234–240. [Google Scholar] [CrossRef]
- Gamal-Eldeen, A.M.; Moustafa, D.; El-Daly, S.M.; El-Hussieny, E.A.; Saleh, S.; Khoobchandani, M.; Bacon, K.L.; Gupta, S.; Katti, K.; Shukla, R.; et al. Photothermal therapy mediated by gum Arabic-conjugated gold nanoparticles suppresses liver preneoplastic lesions in mice. J. Photochem. Photobiol. B: Biol. 2016, 163, 47–56. [Google Scholar] [CrossRef]
- Iranpour, P.; Ajamian, M.; Safavi, A.; Iranpoor, N.; Abbaspour, A.; Javanmardi, S. Synthesis of highly stable and biocompatible gold nanoparticles for use as a new X-ray contrast agent. J. Mater. Sci. Mater. Med. 2018, 29, 48. [Google Scholar] [CrossRef]
- Jafarizad, A.; Safaee, K.; Ekinci, D. Green Synthesis of Gold Nanoparticles Using Aqueous Extracts of Ziziphus jujuba and Gum arabic. J. Clust. Sci. 2017, 28, 2765–2777. [Google Scholar] [CrossRef]
- Patel, S.; Goyal, A. Applications of Natural Polymer Gum Arabic: A Review. Int. J. Food Prop. 2015, 18, 986–998. [Google Scholar] [CrossRef]
- Gonçalves, J.P.; da Cruz, A.F.; Nunes, M.; Meneghetti, M.R.; de Barros, H.R.; Borges, B.S.; de Medeiros, L.C.; Soares, M.J.; dos Santos, M.P.; Grassi, M.T.; et al. Biocompatible gum arabic-gold nanorod composite as an effective therapy for mistreated melanomas. Int. J. Biol. Macromol. 2021, 185, 551–561. [Google Scholar] [CrossRef] [PubMed]
- De Barros, H.R.; Cardoso, M.B.; de Oliveira, C.C.; Franco, C.R.C.; Belan, D.d.L.; Vidotti, M.; Riegel-Vidotti, I.C. Stability of gum arabic-gold nanoparticles in physiological simulated pHs and their selective effect on cell lines. RSC Adv. 2016, 6, 9411–9420. [Google Scholar] [CrossRef]
- Moreno-Trejo, M.B.; Sánchez-Domínguez, M. Mesquite Gum as a Novel Reducing and Stabilizing Agent for Modified Tollens Synthesis of Highly Concentrated Ag Nanoparticles. Materials 2016, 9, 817. [Google Scholar] [CrossRef] [PubMed]
- Burkart, A. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). J. Arnold. Arbor. 1976, 57, 450–525. [Google Scholar] [CrossRef]
- López-Franco, Y.L.; de la Barca, A.M.C.; Valdez, M.A.; Peter, M.G.; Rinaudo, M.; Chambat, G.; Goycoolea, F.M. Structural Characterization of Mesquite (Prosopis velutina) Gum and its Fractions. Macromol. Biosci. 2008, 8, 749–757. [Google Scholar] [CrossRef]
- Alftrén, J.; Peñarrieta, J.M.; Bergenståhl, B.; Nilsson, L. Comparison of molecular and emulsifying properties of gum arabic and mesquite gum using asymmetrical flow field-flow fractionation. Food Hydrocoll. 2012, 26, 54–62. [Google Scholar] [CrossRef]
- Pinilla-Torres, A.M.; Carrión-García, P.Y.; Sánchez-Domínguez, C.N.; Gallardo-Blanco, H.; Sánchez-Domínguez, M. Modification of Branched Polyethyleneimine Using Mesquite Gum for Its Improved Hemocompatibility. Polymers 2021, 13, 2766. [Google Scholar] [CrossRef]
- López-Franco, Y.; Cervantes-Montaño, C.; Martínez-Robinson, K.; Lizardi-Mendoza, J.; Robles-Ozuna, L. Physicochemical characterization and functional properties of galactomannans from mesquite seeds (Prosopis spp.). Food Hydrocoll. 2013, 30, 656–660. [Google Scholar] [CrossRef]
- Córdova, M.R.E. Clasificación y Caracterización Fisicoquímica de la Goma de Mezquite (Chúcata) Cruda y Ultra-Filtrada; Universidad de Sonora: Hermosillo, Mexico, 2004. [Google Scholar]
- Roacho-Pérez, J.; Rodríguez-Aguillón, K.; Gallardo-Blanco, H.; Velazco-Campos, M.; Sosa-Cruz, K.; García-Casillas, P.; Rojas-Patlán, L.; Sánchez-Domínguez, M.; Rivas-Estilla, A.; Gómez-Flores, V.; et al. A Full Set of In Vitro Assays in Chitosan/Tween 80 Microspheres Loaded with Magnetite Nanoparticles. Polymers 2021, 13, 400. [Google Scholar] [CrossRef]
- Balasubramanian, S.; Bezawada, S.R.; Raghavachari, D. Green, Selective, Seedless and One-Pot Synthesis of Triangular Au Nanoplates of Controlled Size Using Bael Gum and Mechanistic Study. ACS Sustain. Chem. Eng. 2016, 4, 3830–3839. [Google Scholar] [CrossRef]
- Tagad, C.K.; Rajdeo, K.S.; Kulkarni, A.; More, P.; Aiyer, R.C.; Sabharwal, S. Green synthesis of polysaccharide stabilized gold nanoparticles: Chemo catalytic and room temperature operable vapor sensing application. RSC Adv. 2014, 4, 24014–24019. [Google Scholar] [CrossRef]
- Vinod, V.; Saravanan, P.; Sreedhar, B.; Devi, D.K.; Sashidhar, R. A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium). Colloids Surf. B Biointerfaces 2011, 83, 291–298. [Google Scholar] [CrossRef]
- Haiss, W.; Thanh, N.T.K.; Aveyard, J.; Fernig, D.G. Determination of Size and Concentration of Gold Nanoparticles from UV−Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. [Google Scholar] [CrossRef] [PubMed]
- Amendola, V.; Meneghetti, M. Size Evaluation of Gold Nanoparticles by UV−vis Spectroscopy. J. Phys. Chem. C 2009, 113, 4277–4285. [Google Scholar] [CrossRef]
- Atgié, M.; Garrigues, J.; Chennevière, A.; Masbernat, O.; Roger, K. Gum Arabic in solution: Composition and multi-scale structures. Food Hydrocoll. 2019, 91, 319–330. [Google Scholar] [CrossRef]
- Roacho-Perez, J.A.; Gallardo-Blanco, H.L.; Sanchez-Dominguez, M.; Garcia-Casillas, P.E.; Chapa-Gonzalez, C.; Sanchez-Dominguez, C.N. Nanoparticles for death-induced gene therapy in cancer. Mol. Med. Rep. 2017, 17, 1413–1420. [Google Scholar] [CrossRef]
- Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Ipe, B.I.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol. 2007, 25, 1165–1170. [Google Scholar] [CrossRef]
- Berenice Moreno-Trejo, M.; Adrián Rodríguez-Rodríguez, A.; Suarez-Jacobo, Á.; Sánchez-Domínguez, M. Development of Nano-Emulsions of Essential Citrus Oil Stabilized with Mesquite Gum. In Nanoemulsions-Properties, Fabrications and Applications; Seng Koh, K., Loong Wong, V., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Eskandari-Nojehdehi, M.; Jafarizadeh-Malmiri, H.; Jafarizad, A. Microwave Accelerated Green Synthesis of Gold Nanoparticles Using Gum Arabic and their Physico-Chemical Properties Assessments. Z. Für Phys. Chem. 2017, 232, 325–343. [Google Scholar] [CrossRef]
- Tipson, R.S. Infrared Spectroscopy of Carbohydrates: A Review of the Literature; National Bureau of Standards: Gaithersburg, MD, USA, 1968.
- Otero, V.; Sanches, D.; Montagner, C.; Vilarigues, M.; Carlyle, L.; Lopes, J.A.; Melo, M.J. Characterisation of metal carboxylates by Raman and infrared spectroscopy in works of art. J. Raman Spectrosc. 2014, 45, 1197–1206. [Google Scholar] [CrossRef]
- De Meutter, J.; Goormaghtigh, E. Amino acid side chain contribution to protein FTIR spectra: Impact on secondary structure evaluation. Eur. Biophys. J. 2021, 50, 641–651. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Primavera, R.; Wilson, R.J.; Thakor, A.S.; Kevadiya, B.D. Cellular uptake and retention of nanoparticles: Insights on particle properties and interaction with cellular components. Mater. Today Commun. 2020, 25, 101692. [Google Scholar] [CrossRef]
- Moore, T.L.; Rodriguez-Lorenzo, L.; Hirsch, V.; Balog, S.; Urban, D.; Jud, C.; Rothen-Rutishauser, B.; Lattuada, M.; Petri-Fink, A. Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem. Soc. Rev. 2015, 44, 6287–6305. [Google Scholar] [CrossRef]
- Madhusudhan, A.; Reddy, G.B.; Krishana, I.M. Green Synthesis of Gold Nanoparticles by Using Natural Gums. In Nanomaterials and Plant Potential; Husen, A., Iqbal, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 111–134. [Google Scholar]
- Pooja, D.; Panyaram, S.; Kulhari, H.; Rachamalla, S.S.; Sistla, R. Xanthan gum stabilized gold nanoparticles: Characterization, biocompatibility, stability and cytotoxicity. Carbohydr. Polym. 2014, 110, 1–9. [Google Scholar] [CrossRef]
- Greco, I.; Molchanova, N.; Holmedal, E.; Jenssen, H.; Hummel, B.D.; Watts, J.L.; Håkansson, J.; Hansen, P.R.; Svenson, J. Correlation between hemolytic activity, cytotoxicity and systemic in vivo toxicity of synthetic antimicrobial peptides. Sci. Rep. 2020, 10, 13206. [Google Scholar] [CrossRef] [PubMed]
- ASTM F756-08; Standard Practice for Assessment of Hemolytic Properties of Materials. ASTM International: West Conshohocken, PA, USA, 2008.
- Macías-Martínez, B.I.; Cortés-Hernández, D.A.; Zugasti-Cruz, A.; Cruz-Ortíz, B.R.; Múzquiz-Ramos, E.M. Heating ability and hemolysis test of magnetite nanoparticles obtained by a simple co-precipitation method. J. Appl. Res. Technol. 2016, 14, 239–244. [Google Scholar] [CrossRef]
- Aldawsari, H.M.; Singh, S.; Alhakamy, N.A.; Bakhaidar, R.B.; Halwani, A.A.; Badr-Eldin, S.M. Gum Acacia Functionalized Colloidal Gold Nanoparticles of Letrozole as Biocompatible Drug Delivery Carrier for Treatment of Breast Cancer. Pharmaceutics 2021, 13, 1554. [Google Scholar] [CrossRef] [PubMed]
- León-Mejía, G.; Miranda Guevara, A.; Fiorillo Moreno, O.; Uribe Cruz, C. Cytotoxicity as a Fundamental Response to Xenobiotics. In Cytotoxicity-New Insights into Toxic Assessment; Soloneski, S.L., Larramendy, M., Eds.; IntechOpen: London, UK, 2021. [Google Scholar]
HAuCl4 Concentration (mM) | HAuCl4:MG Ratio | PdI | Size (d.nm) ± SE (%Volume) | |
---|---|---|---|---|
1st Peak | 2nd Peak | |||
1 | 1:15 | 0.193 | 77.60 ± 42.1 (100%) | |
1 | 1:26 | 0.292 | 15.53 ± 12.69 (100%) | |
1 | 1:50 | 0.438 | 5.43 ± 1.69 (97.7%) | 39.10 ± 17.86 (2.3%) |
HAuCl4 Concentration (mM) | HAuCl₄:GM Ratio | Zeta Potential (mV) |
---|---|---|
1 | 1:15 | −30.9 ± 11.2 |
1 | 1:26 | −26.4 ± 10.3 |
1 | 1:50 | −26.2 ± 9.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinilla-Torres, A.M.; Sanchez-Dominguez, C.N.; Basilio-Bernabe, K.; Carrion-Garcia, P.Y.; Roacho-Perez, J.A.; Garza-Treviño, E.N.; Gallardo-Blanco, H.; Sanchez-Dominguez, M. Green Synthesis of Mesquite-Gum-Stabilized Gold Nanoparticles for Biomedical Applications: Physicochemical Properties and Biocompatibility Assessment. Polymers 2023, 15, 3533. https://doi.org/10.3390/polym15173533
Pinilla-Torres AM, Sanchez-Dominguez CN, Basilio-Bernabe K, Carrion-Garcia PY, Roacho-Perez JA, Garza-Treviño EN, Gallardo-Blanco H, Sanchez-Dominguez M. Green Synthesis of Mesquite-Gum-Stabilized Gold Nanoparticles for Biomedical Applications: Physicochemical Properties and Biocompatibility Assessment. Polymers. 2023; 15(17):3533. https://doi.org/10.3390/polym15173533
Chicago/Turabian StylePinilla-Torres, Ana M., Celia N. Sanchez-Dominguez, Karla Basilio-Bernabe, Paola Y. Carrion-Garcia, Jorge A. Roacho-Perez, Elsa N. Garza-Treviño, Hugo Gallardo-Blanco, and Margarita Sanchez-Dominguez. 2023. "Green Synthesis of Mesquite-Gum-Stabilized Gold Nanoparticles for Biomedical Applications: Physicochemical Properties and Biocompatibility Assessment" Polymers 15, no. 17: 3533. https://doi.org/10.3390/polym15173533
APA StylePinilla-Torres, A. M., Sanchez-Dominguez, C. N., Basilio-Bernabe, K., Carrion-Garcia, P. Y., Roacho-Perez, J. A., Garza-Treviño, E. N., Gallardo-Blanco, H., & Sanchez-Dominguez, M. (2023). Green Synthesis of Mesquite-Gum-Stabilized Gold Nanoparticles for Biomedical Applications: Physicochemical Properties and Biocompatibility Assessment. Polymers, 15(17), 3533. https://doi.org/10.3390/polym15173533