Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Preparation Procedure
2.2. Characterization
3. Results and Discussion
3.1. Surface Morphology Characterization
3.2. Surface Structure and Spectroscopy Characterization
3.3. Mechanical Performance
3.4. Application Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Zhuo, F.; Zhou, J.; Liu, Y.; Zhang, J.; Dong, S.; Liu, X.; Elmarakbi, A.; Duan, H.; Fu, Y. Advances in graphene-based flexible and wearable strain sensors. Chem. Eng. J. 2023, 464, 142576. [Google Scholar] [CrossRef]
- Zhang, S.; Chhetry, A.; Zahed, M.; Sharma, S.; Park, C.; Yoon, S.; Park, J. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 2022, 6, 1–12. [Google Scholar] [CrossRef]
- Lu, L.; Wei, X.; Zhang, Y.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition property. J. Mater. Chem. C 2017, 5, 7035–7042. [Google Scholar] [CrossRef]
- Wang, H.; He, X.; Huang, X.; Su, P.; Xia, T.; Liu, W.; Ye, Y. Vapor-based fabrication of PEDOT coating for wearable strain sensors with excellent sensitivity and self-cleaning capability. Mater. Today Chem. 2023, 28, 101361. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Z.; Li, N.; Yao, T.; Ge, M. Flexible pressure sensors based on MXene/PDMS porous films. Adv. Mater. Technol.-US 2023, 8, 2200826. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, P.; Zhang, D.; Lin, H.; Chen, Y. Wearable resistive-type sensors based on graphene fibers for monitoring human motions. ACS Appl. Nano Mater. 2022, 5, 10912–10921. [Google Scholar] [CrossRef]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.; Yacaman, M.; Yakobson, B.; Tour, J. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef]
- Yang, H.; Wang, S.; Huang, Q.; Tan, C.; Gao, C.; Xu, S.; Ye, H.; Zhang, G. Stretchable strain sensor based on HfSe2/LIG composite with high sensitivity and good linearity within a wide range. Appl. Surf. Sci. 2023, 636, 157772. [Google Scholar] [CrossRef]
- Xu, Y.; Fei, Q.; Page, M.; Zhao, G.; Ling, Y.; Chen, D.; Yan, Z. Laser-induced graphene for bioelectronics and soft actuators. Nano Res. 2021, 14, 3033–3050. [Google Scholar] [CrossRef]
- Le, T.S.; Phan, H.P.; Kwon, S.; Park, S.; Jung, Y.; Min, J.; Chun, B.; Yoon, H.; Ko, S.; Kim, S.W.; et al. Recent advances in laser-induced graphene: Mechanism, fabrication, properties, and applications in flexible electronics. Adv. Funct. Mater. 2022, 32, 2205158. [Google Scholar] [CrossRef]
- Long, H.; Lin, X.; Wang, Y.; Mao, H.; Zhu, Y.; Zhu, Y.; Fu, C.; Wan, C.; Wan, Q. Multifunctional ultraviolet laser induced graphene for flexible artificial sensory neuron. Adv. Mater. Technol.-US 2023, 8, 2201761. [Google Scholar] [CrossRef]
- Akintola, T.; Kumar, B.; Dickens, T. Combined additive and laser-induced processing of functional structures for monitoring under deformation. Polymers 2023, 15, 443. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, F.; Liu, X.; Yue, Z.; Chen, X.; Wan, Z. Doping of laser-induced graphene and its applications. Adv. Mater. Technol.-US 2023, 8, 2300244. [Google Scholar] [CrossRef]
- Nam, H.; Le, T.S.; Yang, D.; Kim, B.; Lee, Y.; Hwang, J.; Kim, Y.R.; Yoon, H.; Kim, S.W.; Kim, Y.J. Smart wooden home enabled by direct-written laser-induced graphene. Adv. Mater. Technol.-US 2023, 8, 2201952. [Google Scholar] [CrossRef]
- Kulyk, B.; Matos, M.; Silva, B.; Carvalho, A.; Fernandes, A.; Evtuguin, D.; Fortunato, E.; Cost, F. Conversion of paper and xylan into laser-induced graphene for environmentally friendly sensors. Diam. Relat. Mater. 2022, 123, 108855. [Google Scholar] [CrossRef]
- Wang, W.; Lu, L.; Zhang, D.; Yao, Y.; Xie, Y. Experimental and modeling study of laser induced silicon carbide/graphene on cotton cloth for superhydrophobic applications. Opt. Laser Technol. 2023, 158, 108782. [Google Scholar] [CrossRef]
- Gilavan, M.; Rahman, M.; Minhas-Khan, A.; Nambi, S.; Grau, G. One-step fabrication of low-resistance conductors on 3D-printed structures by laser-induced graphene. ACS Appl. Electron. Mater. 2021, 3, 3867–3875. [Google Scholar] [CrossRef]
- Zhang, Z.; Song, M.; Hao, J.; Wu, K.; Li, C.; Hu, C. Visible light laser-induced graphene from phenolic resin: A new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 2018, 127, 287–296. [Google Scholar] [CrossRef]
- Zhu, Y.; Cai, H.; Ding, H.; Pan, N.; Wang, X. Fabrication of low-cost and highly sensitive graphene-based pressure sensors by direct laser scribing polydimethylsiloxane. ACS Appl. Mater. Interfaces 2019, 11, 6195–6200. [Google Scholar] [CrossRef]
- Wang, J.; Wang, N.; Xu, D.; Tang, L.; Sheng, B. Flexible humidity sensors composed with electrodes of laser induced graphene and sputtered sensitive films derived from poly(ether-ether-ketone). Sensor Actuat. B-Chem. 2022, 375, 132846. [Google Scholar] [CrossRef]
- Ye, R.; James, D.; Tour, J. Laser-induced graphene: From discovery to translation. Adv. Mater. 2018, 31, 1803621. [Google Scholar] [CrossRef] [PubMed]
- Vivaldi, F.; Dallinger, A.; Bonini, A.; Poma, N.; Sembranti, L.; Biagini, D.; Salvo, P.; Greco, F.; Francesco, F. Three-dimensional (3D) laser-induced graphene: Structure, properties, and application to chemical sensing. ACS Appl. Mater. Interfaces 2021, 13, 30245–30260. [Google Scholar] [CrossRef]
- Cheng, L.; Fang, G.; Wei, L.; Gao, W.; Wang, X.; Lv, Z.; Xu, W.; Ding, C.; Wu, H.; Zhang, W.; et al. Laser-induced graphene strain sensor for conformable lip-reading recognition and human-machine interaction. ACS Appl. Nano Mater. 2023, 6, 7290–7298. [Google Scholar] [CrossRef]
- Huang, L.; Su, J.; Song, Y.; Ye, R. Laser-induced graphene: En route to smart sensing. Nano-Micro. Lett. 2020, 12, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kaidarova, A.; Kosel, J. Physical sensors based on laser-induced graphene: A review. IEEE Sens. J. 2020, 21, 12426–12443. [Google Scholar] [CrossRef]
- Chen, X.; Luo, F.; Yuan, M.; Xie, D.; Shen, L.; Zheng, K.; Wang, Z.; Li, X.; Tao, L. A dual-functional graphene-based self-alarm health-monitoring E-skin. Adv. Funct. Mater. 2019, 29, 1904706. [Google Scholar] [CrossRef]
- Raza, T.; Tufail, M.; Ali, A.; Boakye, A.; Qi, X.; Ma, Y.; Ali, A.; Qu, L.; Tian, M. Wearable and flexible multifunctional sensor based on laser-induced graphene for the sports monitoring system. ACS Appl. Mater. Interfaces 2022, 14, 54170–54181. [Google Scholar] [CrossRef]
- Vićentić, T.; Rašljić, R.M.; Ilić, S.D.; Koteska, B.; Bogdanova, A.M.; Pašti, I.A.; Lehocki, F.; Spasenovi´, M. Laser-induced graphene for heartbeat monitoring with HeartPy analysis. Sensors 2022, 22, 6326. [Google Scholar] [CrossRef]
- Hong, S.; Kim, J.; Jung, S.; Lee, J.; Shin, B. Surface morphological growth characteristics of laser-induced graphene with UV pulsed laser and sensor applications. ACS Mater. Lett. 2023, 5, 1261–1270. [Google Scholar] [CrossRef]
- Santos, N.; Pereira, S.; Moreira, A.; Girão, A.; Carvalho, A.; Fernandes, A.; Costa, F. IR and UV laser-induced graphene: Application as dopamine electrochemical sensors. Adv. Mater. Technol.-US 2021, 6, 2100007. [Google Scholar] [CrossRef]
- Wang, W.; Lu, L.; Li, Z.; Xie, Y. Laser induced 3D porous graphene dots: Bottom-up growth mechanism, multi-physics coupling effect and surface wettability. Appl. Surf. Sci. 2022, 592, 153242. [Google Scholar] [CrossRef]
- Abdulhafez, M.; Tomaraei, G.; Bedewy, M. Fluence-dependent morphological transitions in laser-induced graphene electrodes on polyimide substrates for flexible devices. ACS Appl. Nano Mater. 2021, 4, 2973–2986. [Google Scholar] [CrossRef]
- Luo, S.; Hoang, P.; Liu, T. Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 2016, 96, 522–531. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Wu, P.; Huang, W.; Zhu, Z. Wearable flexible strain sensor based on three-dimensional wavy waser-induced graphene and silicone rubber. Sensors-basel 2020, 20, 4266. [Google Scholar] [CrossRef]
- Wu, X.; Luo, X.; Song, Z.; Bai, Y.; Zhang, B.; Zhang, G. Ultra-robust and sensitive flexible strain sensor for real-time and wearable sign language translation. Adv. Funct. Mater. 2023, 2303504. [Google Scholar] [CrossRef]
- Duy, L.; Peng, Z.; Li, Y.; Zhang, J.; Ji, Y.; Tour, J. Laser-induced graphene fibers. Carbon 2018, 126, 472–479. [Google Scholar] [CrossRef]
- Liu, W.; Chen, Q.; Huang, Y.; Wang, D.; Li, L.; Liu, Z. In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability. Carbon 2022, 190, 245–254. [Google Scholar] [CrossRef]
- Chhetry, A.; Sharifuzzaman, M.; Yoon, H.; Sharma, S.; Xuan, X.; Park, J. MoS2-decorated laser-induced graphene for a highly sensitive, hysteresis-free, and reliable piezoresistive strain sensor. ACS Appl. Mater. Interfaces 2019, 11, 22531–22542. [Google Scholar] [CrossRef]
- He, M.; Wang, G.; Zhu, Y.; Wang, Y.; Liu, F.; Luo, S. In-situ joule heating-triggered nanopores generation in laser-induced graphene papers for capacitive enhancement. Carbon 2021, 186, 215–226. [Google Scholar] [CrossRef]
- Zhu, C.; Tao, L.; Wang, Y.; Zheng, K.; Yu, J.; Li, X.; Chen, X.; Huang, Y. Graphene oxide humidity sensor with laser-induced graphene porous electrodes. Sensor Actuat. B-Chem. 2020, 325, 128790. [Google Scholar] [CrossRef]
- Sindhu, B.; Kothuru, A.; Sahatiya, P.; Goel, S.; Nandi, S. Laser-induced graphene printed wearable flexible antenna-based strain sensor for wireless human motion monitoring. IEEE T. Electron Dev. 2021, 68, 3189–3194. [Google Scholar] [CrossRef]
- Carvalho, A.; Fernandes, A.; Leitão, C.; Deuermeier, J.; Marques, A.; Martins, R.; Fortunato, E.; Costa, F. Laser-induced graphene strain sensors produced by ultraviolet irradiation of polyimide. Adv. Funct. Mater. 2018, 28, 1805271. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, Y.; Moon, K.S.; Chen, Y.; Shi, D.; Chen, X.; Wong, C.P. Ambient-air in situ fabrication of high-surface-area, superhydrophilic, and microporous few-layer activated graphene films by ultrafast ultraviolet laser for enhanced energy storage. Nano Energy 2021, 94, 106902. [Google Scholar] [CrossRef]
- Wei, S.; Liu, Y.; Yang, L.; Wang, H.; Niu, H.; Zhou, C.; Wang, Y.; Guo, Q.; Chen, D. Flexible large e-skin array based on patterned laser-induced graphene for tactile perception. Sensor Actuat. A-phys. 2022, 334, 113308. [Google Scholar] [CrossRef]
- Hao, D.; Yang, R.; Cheng, H.; Yi, N. Highly sensitive piezoresistive pressure sensors based on laser-induced graphene with molybdenum disulfide nanoparticles. Sci. China Technol. Sci. 2021, 64, 2408–2414. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Ma, Y.W.; Lee, J.U.; Je, G.J.; Shin, B.S. Flexible and highly sensitive strain sensor based on laser-induced graphene pattern fabricated by 355 nm pulsed laser. Sensors 2019, 19, 4867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Y.; Zhong, M.; Li, S.; Qing, Z.; Xing, X.; Gong, G.; Yan, R.; Qin, W.; Shen, J.; Zhang, H.; et al. Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals. Polymers 2023, 15, 3553. https://doi.org/10.3390/polym15173553
Zou Y, Zhong M, Li S, Qing Z, Xing X, Gong G, Yan R, Qin W, Shen J, Zhang H, et al. Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals. Polymers. 2023; 15(17):3553. https://doi.org/10.3390/polym15173553
Chicago/Turabian StyleZou, Yao, Mian Zhong, Shichen Li, Zehao Qing, Xiaoqing Xing, Guochong Gong, Ran Yan, Wenfeng Qin, Jiaqing Shen, Huazhong Zhang, and et al. 2023. "Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals" Polymers 15, no. 17: 3553. https://doi.org/10.3390/polym15173553
APA StyleZou, Y., Zhong, M., Li, S., Qing, Z., Xing, X., Gong, G., Yan, R., Qin, W., Shen, J., Zhang, H., Jiang, Y., Wang, Z., & Zhou, C. (2023). Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals. Polymers, 15(17), 3553. https://doi.org/10.3390/polym15173553