Polymer Tablet Matrix Systems for the Controlled Release of Dry Betula pendula Leaf Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Dry Betula pendula Leaf Extract
2.3. Experimental Design
2.4. Granulation and Tableting Process
2.5. Characterization of Granules and Tablets
2.6. In Vitro Drug Release
3. Results and Discussion
3.1. Rheological Characteristics of the Granules and Control Parameters of the Obtained Tablets
3.2. In Vitro Drug Release and Dissolution Profiles
3.3. Influence of the Hydrophobic/Hydrophilic Polymer Ratio (EC/HPMC)—Factor A on t80
3.4. Influence of the HPMC Molecular Weight—Factor B on t80
3.5. Influence of the Compression Force—Factor C on t80
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015, 33, 1582–1614. [Google Scholar] [CrossRef] [PubMed]
- Ghori, M.U.; Conway, B.R. Hydrophilic matrices for oral control drug delivery. Am. J. Pharmacol. Sci. 2015, 3, 103–109. [Google Scholar]
- Adepu, S.; Ramakrishna, S. Controlled drug delivery systems: Current status and future directions. Molecules 2021, 26, 5905. [Google Scholar] [CrossRef]
- Ashburner, K.; McAllister, H.A. The Genus Betula: A Taxonomic Revision of Birches; Kew Publishing: London, UK, 2016. [Google Scholar]
- González de Andrés, E.; Colangelo, M.; Luelmo-Lautenschlaeger, R.; López-Sáez, J.A.; Camarero, J.J. Sensitivity of Eurasian Rear-Edge Birch Populations to Regional Climate and Local Hydrological Conditions. Forests 2023, 14, 1360. [Google Scholar] [CrossRef]
- Rastogi, S.; Pandey, M.M.; Kumar Singh Rawat, A. Medicinal plants of the genus Betula-traditional uses and a phytochemical-pharmacological review. J. Ethnopharmacol. 2015, 159, 62–83. [Google Scholar] [CrossRef] [PubMed]
- Penkov, D.; Kassarova, M. Distribution and use of Silver Birch (Betula pendula, Roth). Sci. Work. USB-Plovdiv Ser. G. Med. Pharm. Dent. Med. 2020, 25, 25–257. [Google Scholar]
- Penkov, D.; Andonova, V.; Delev, D.; Kostadinov, I.; Kassarova, M. Antioxidant activity of dry Birch (Betula pendula) leaves extract. Folia Med. 2018, 60, 571–579. [Google Scholar] [CrossRef]
- Penkov, D.; Dimitrova, S.; Andonova, V.; Milieva, E.; Murdjeva, M.; Stanimirova, I.; Draganov, M.; Kassarova, M. Biological activity of Bulgarian Folia Betulae dry extract. Int. J. Pharm. Pharm. Sci. 2015, 7, 289–294. [Google Scholar]
- Lee, H.-J.; Na, Y.-G.; Han, M.; Pham, T.M.A.; Lee, H.; Lee, H.-K.; Myung, C.-S.; Han, J.-H.; Kang, J.-S.; Kim, K.-T.; et al. Statistical Design of Sustained-Release Tablet Garcinia cambogia Extract and Bioconverted Mulberry Leaf Extract for Anti-Obesity. Pharmaceutics 2020, 12, 932. [Google Scholar] [CrossRef]
- Nardi-Ricart, A.; Nofrerias-Roig, I.; Suñé-Pou, M.; Pérez-Lozano, P.; Miñarro-Carmona, M.; García-Montoya, E.; Ticó-Grau, J.R.; Insa Boronat, R.; Suñé-Negre, J.M. Formulation of sustained release hydrophilic matrix tablets of tolcapone with the application of sedem diagram: Influence of tolcapone’s particle size on sustained release. Pharmaceutics 2020, 12, 674. [Google Scholar] [CrossRef]
- Kumar, A.R.; Aeila, A.S.S. Sustained release matrix type drug delivery system: An overview. World J. Pharm.Pharm. Sci. 2019, 9, 470–480. [Google Scholar]
- Mondal, N. The Role of Matrix Tablet in Drug Delivery System. Int. J. App. Pharm. 2018, 10, 1–6. [Google Scholar] [CrossRef]
- Rastogi, T.; Khadabadi, S.S. Design, development and evaluation of matrix tablet containing indigenous medicinal plants. IJPSR 2011, 2, 2806–2811. [Google Scholar] [CrossRef]
- Mostafa, M.M.; Amin, M.M.; Zakaria, M.Y.; Hussein, M.A.; Shamaa, M.M.; Abd El-Halim, S.M. Chitosan Surface-Modified PLGA Nanoparticles Loaded with Cranberry Powder Extract as a Potential Oral Delivery Platform for Targeting Colon Cancer Cells. Pharmaceutics 2023, 15, 606. [Google Scholar] [CrossRef]
- Politis, N.S.; Colombo, P.; Colombo, G.; Rekkas, D.M. Design of experiments (DoE) in pharmaceutical development. Drug Dev. Ind. Pharm. 2017, 43, 889–901. [Google Scholar] [CrossRef]
- Jawed, S.; Satish, C.S. Exploration of polymethacrylate and Hypromellose for the development of a non-sulfhydryl ACE inhibitor mucoadhesive system using Box-Behnken design: In-vitro and ex-vivo evaluation. Drug Dev. Ind. Pharm. 2023, 49, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, S.; Patil, P.; Rajput, R.; Mujumdar, A.; Naik, J. Preparation and characterization of sustained release pirfenidone loaded microparticles for pulmonary drug delivery: Spray drying approach. Dry. Technol. 2021, 39, 337–347. [Google Scholar] [CrossRef]
- Beg, S.; Swain, S.; Jena, B.R. Design of Experiments for the Development of Solid Oral Dosage Forms. In Design of Experiments for Pharmaceutical Product Development; Beg, S., Ed.; Springer: Singapore, 2021. [Google Scholar] [CrossRef]
- Beșliu-Băncescu, I.; Tamașag, I.; Slătineanu, L. Influence of 3D Printing Conditions on Some Physical–Mechanical and Technological Properties of PCL Wood-Based Polymer Parts Manufactured by FDM. Polymers 2023, 15, 2305. [Google Scholar] [CrossRef] [PubMed]
- Gouda, R.; Baishya, H.; Qing, Z. Application of Mathematical Models in Drug Release Kinetics of Carbidopa and Levodopa ER Tablets. J. Dev. Drugs 2017, 6, 171. [Google Scholar] [CrossRef]
- Verma, M.V.S.; Kaushal, A.M.; Garg, A.; Garg, S. Factors affecting mechanism and kinetics of drug release from matrix based oral controlled drug delivery systems. Am. J. Drug Deliv. 2004, 2, 43–57. [Google Scholar] [CrossRef]
- Flow Properties and Corresponding Angles of Repose. In European Pharmacopoeia, 9th ed.; Council of Europe: Strasbourg, France, 2016; p. 321.
- Skoug, J.W.; Mikelsons, M.V.; Vigneron, C.N.; Stemm, N.L. Qualitative evaluation of the mechanism of release of matrix sustained release dosage forms by measurement of polymer release. J. Cont. Rel. 1993, 27, 227–245. [Google Scholar] [CrossRef]
- Enayatifard, R.; Saeedi, M.; Akbari, J.; Haeri Tabatabaee, Y. Effect of Hydroxypropyl Methylcellulose and Ethyl Cellulose Content on Release Profile and Kinetics of Diltiazem HCl from Matrices. Trop. J. Pharm. Res. 2009, 8, 425–432. [Google Scholar] [CrossRef]
- Dash, S.; Murthy, P.; Nath, L.; Chowdhury, P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol. Pharm. 2010, 67, 217–223. [Google Scholar] [PubMed]
- Mamani, P.; Ruiz-Caro, R.; Veiga, M. Matrix Tablets: The Effect of Hydroxypropyl Methylcellulose/Anhydrous Dibasic Calcium Phosphate Ratio on the Release Rate of a Water-Soluble Drug Through the Gastrointestinal Tract I. In Vitro Tests. AAPS PharmSciTech 2012, 13, 1073–1083. [Google Scholar] [CrossRef]
- Madgulkar, A.; Bhalekar, M.; Kolhe, V.; Kenjale, Y. Formulation and Optimization of Sustained Release Tablets of Venlafaxine Resinates Using Response Surface Methodology. Indian J. Pharm. Sci. 2009, 1, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Tetsuo, H.; Hideyoshi, K. Formulation study and drug release mechanism of a new theophylline sustained-release preparation. Int. J. Pharm. 2005, 304, 91–101. [Google Scholar]
- Hirun, N.; Kraisit, P. Drug-Polymers Composite Matrix Tablets: Effect of Hydroxypropyl Methylcellulose (HPMC) K-Series on Porosity, Compatibility, and Release Behavior of the Tablet Containing a BCS Class I Drug. Polymers 2022, 14, 3406. [Google Scholar] [CrossRef]
- Jain, A.K.; Söderlind, E.; Viridén, A.; Schug, B.; Abrahamsson, B.; Knopke, C.; Tajarobi, F.; Blume, H.; Anschütz, M.; Welinder, A.; et al. The influence of hydroxypropyl methylcellulose (HPMC) molecular weight, concentration and effect of food on in vivo erosion behavior of HPMC matrix tablets. J. Control. Release 2014, 187, 50–58. [Google Scholar] [CrossRef]
- Gao, P.; Skoug, J.W.; Nixon, P.R.; Ju, T.R.; Stemm, N.L.; Sung, K.-C. Swelling of Hydroxypropyl Methylcellulose Matrix Tablets. 2. Mechanistic Study of the Influence of Formulation Variables on Matrix Performance and Drug Release. J. Pharm. Sci. 1996, 85, 732–740. [Google Scholar] [CrossRef] [PubMed]
- Adeleye, O.; Femi-Oyewo, M.; Odeniyi, M. Effect of compression pressure on mechanical and release properties of tramadol matrix tablets. Curr. Issues Pharm. Med. Sci. 2015, 28, 120–125. [Google Scholar] [CrossRef]
Model Code | Extract (g) | EC (g) | HPMC (g) | Talc (g) | Mg-Stearate (g) | Tablet Mass (g) | Compression Force (t) | HPMC Mw (kDa) |
---|---|---|---|---|---|---|---|---|
F1 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 1 | 500 |
F2 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 1.5 | 500 |
F3 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 2 | 500 |
F4 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 1 | 750 |
F5 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 1.5 | 750 |
F6 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 2 | 750 |
F7 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 1 | 1150 |
F8 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 1.5 | 1150 |
F9 | 0.500 | 0.072 | 0.108 | 0.014 | 0.006 | 0.700 | 2 | 1150 |
F10 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 1 | 500 |
F11 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 1.5 | 500 |
F12 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 2 | 500 |
F13 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 1 | 750 |
F14 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 1.5 | 750 |
F15 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 2 | 750 |
F16 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 1 | 1150 |
F17 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 1.5 | 1150 |
F18 | 0.500 | 0.045 | 0.135 | 0.014 | 0.006 | 0.700 | 2 | 1150 |
F19 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 1 | 500 |
F20 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 1.5 | 500 |
F21 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 2 | 500 |
F22 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 1 | 750 |
F23 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 1.5 | 750 |
F24 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 2 | 750 |
F25 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 1 | 1150 |
F26 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 1.5 | 1150 |
F27 | 0.500 | 0.018 | 0.162 | 0.014 | 0.006 | 0.700 | 2 | 1150 |
Independent Variable/Level | +1 | 0 | −1 |
---|---|---|---|
EC/HPMC (%) | 40/60 | 25/75 | 10/90 |
Molecular weight HPMC (kDa) | 1150 | 750 | 500 |
Compression force (t) | 2 | 1.5 | 1 |
B | C | A (EC/HPMC Ratio) | |||||
---|---|---|---|---|---|---|---|
Molecular Weight | Compression Force | Model Code | Level (+1) | Model Code | Level (0) | Model Code | Level (−1) |
−1 | −1 | F1 | +1, −1, −1 | F10 | 0, −1, −1 | F19 | −1, −1, −1 |
−1 | 0 | F2 | +1, −1, 0 | F11 | 0, −1, 0 | F20 | −1, −1, 0 |
−1 | +1 | F3 | +1, −1, +1 | F12 | 0, −1, +1 | F21 | −1, −1, +1 |
0 | −1 | F4 | +1, 0, −1 | F13 | 0, 0, −1 | F22 | −1, 0, −1 |
0 | 0 | F5 | +1, 0, 0 | F14 | 0, 0, 0 | F23 | −1, 0, 0 |
0 | +1 | F6 | +1, 0, +1 | F15 | 0, 0, +1 | F24 | −1, 0, +1 |
+1 | −1 | F7 | +1, +1, −1 | F16 | 0, +1, −1 | F25 | −1, +1, −1 |
+1 | 0 | F8 | +1, +1, 0 | F17 | 0, +1, 0 | F26 | −1, +1, 0 |
+1 | +1 | F9 | +1, +1, +1 | F18 | 0, +1, +1 | F27 | −1, +1, +1 |
Granular Models | Tablet Models | Bulk Density, ρ0, g/cm3 (± SD) | Tapped Density, ρs, g/cm3 (± SD) | Hausner Ratio (± SD) | Carr index, % (± SD) | Angle of Repose, ° (± SD) |
---|---|---|---|---|---|---|
G1 | F1, F2, F3 | 0.67 ± 0.01 | 0.78 ± 0.02 | 1.16 ± 0.07 | 14.10 ± 0.05 | 23.54 ± 0.01 |
G2 | F4, F5, F6 | 0.67 ± 0.03 | 0.79 ± 0.03 | 1.18 ± 0.05 | 15.19 ± 0.07 | 24.53 ± 0.40 |
G3 | F7, F8, F9 | 0.66 ± 0.11 | 0.76 ± 0.02 | 1.15 ± 0.09 | 13.16 ± 0.08 | 23.82 ± 0.04 |
G4 | F10, F11, F12 | 0.64 ± 0.05 | 0.76 ± 0.02 | 1.19 ± 0.08 | 15.79 ± 0.09 | 23.40 ± 0.03 |
G5 | F13, F14, F15 | 0.63 ± 0.05 | 0.77 ± 0.05 | 1.22 ± 0.06 | 18.18 ± 0.07 | 25.68 ± 0.02 |
G6 | F16, F17, F18 | 0.65 ± 0.03 | 0.77 ± 0.06 | 1.19 ± 0.07 | 15.58 ± 0.10 | 22.96 ± 0.02 |
G7 | F19, F20, F21 | 0.65 ± 0.04 | 0.78 ± 0.09 | 1.20 ± 0.12 | 16.67 ± 0.14 | 24.56 ± 0.06 |
G8 | F22, F23, F24 | 0.63 ± 0.04 | 0.77 ± 0.04 | 1.22 ± 0.09 | 18.18 ± 0.09 | 24.60 ± 0.04 |
G9 | F25, F26, F27 | 0.63 ± 0.05 | 0.76 ± 0.09 | 1.21 ± 0.07 | 17.11 ± 0.07 | 24.13 ± 0.05 |
Model | Average Mass, g ± SD | Disintegration Time, min | Friability, % ± SD | Hardness, N ± SD |
---|---|---|---|---|
F1 | 0.710 ± 0.02 | >30 | 0.126 ± 0.01 | 88 ± 7.02 |
F2 | 0.715 ± 0.04 | >30 | 0.098 ± 0.01 | 120 ± 9.23 |
F3 | 0.709 ± 0.02 | >30 | 0.010 ± 0.02 | 155 ± 8.50 |
F4 | 0.710 ± 0.05 | >30 | 0.122 ± 0.01 | 96 ± 11.60 |
F5 | 0.713 ± 0.09 | >30 | 0.014 ± 0.01 | 122 ± 5.69 |
F6 | 0.709 ± 0.02 | >30 | 0.010 ± 0.02 | 158 ± 5.80 |
F7 | 0.706 ± 0.03 | >30 | 0.090 ± 0.02 | 106 ± 9.58 |
F8 | 0.708 ± 0.04 | >30 | 0.092 ± 0.02 | 132 ± 10.02 |
F9 | 0.705 ± 0.02 | >30 | 0.012 ± 0.03 | 160 ± 12.67 |
F10 | 0.710 ± 0.08 | >30 | 0.110 ± 0.03 | 95 ± 8.41 |
F11 | 0.712 ± 0.05 | >30 | 0.082 ± 0.01 | 127 ± 6.56 |
F12 | 0.710 ± 0.05 | >30 | 0.070 ± 0.01 | 151 ± 9.63 |
F13 | 0.721 ± 0.10 | >30 | 0.116 ± 0.01 | 96 ± 11.20 |
F14 | 0.719 ± 0.11 | >30 | 0.088 ± 0.01 | 123 ± 10.48 |
F15 | 0.723 ± 0.07 | >30 | 0.070 ± 0.01 | 155 ± 13.40 |
F16 | 0.715 ± 0.08 | >30 | 0.084 ± 0.01 | 102 ± 9.65 |
F17 | 0.715 ± 0.08 | >30 | 0.090 ± 0.01 | 142 ± 7.85 |
F18 | 0.712 ± 0.06 | >30 | 0.065 ± 0.01 | 162 ± 10.14 |
F19 | 0.710 ± 0.03 | >30 | 0.115 ± 0.01 | 92 ± 9.22 |
F20 | 0.714 ± 0.04 | >30 | 0.088 ± 0.02 | 119 ± 11.54 |
F21 | 0.711 ± 0.07 | >30 | 0.090 ± 0.02 | 145 ± 7.25 |
F22 | 0.718 ± 0.07 | >30 | 0.100 ± 0.01 | 100 ± 10.80 |
F23 | 0.717 ± 0.10 | >30 | 0.096 ± 0.02 | 117 ± 14.59 |
F24 | 0.717 ± 0.12 | >30 | 0.096 ± 0.03 | 156 ± 12.52 |
F25 | 0.716 ± 0.09 | >30 | 0.100 ± 0.01 | 98 ± 9.81 |
F26 | 0.714 ± 0.11 | >30 | 0.098 ± 0.01 | 124 ± 9.87 |
F27 | 0.715 ± 0.06 | >30 | 0.071 ± 0.01 | 165 ± 11.74 |
Model | Zero-Order | First-Order | Higuchi | Korsmeyer–Peppas | Diffusion Exponent, n |
---|---|---|---|---|---|
F1 | 0.967 | 0.988 | 0.999 | 0.999 | 0.418 |
F2 | 0.978 | 0.990 | 0.997 | 0.999 | 0.455 |
F3 | 0.974 | 0.993 | 0.997 | 0.998 | 0.528 |
F4 | 0.982 | 0.980 | 0.997 | 0.997 | 0.707 |
F5 | 0.982 | 0.988 | 0.997 | 0.998 | 0.641 |
F6 | 0.981 | 0.984 | 0.997 | 0.998 | 0.653 |
F7 | 0.988 | 0.971 | 0.993 | 0.998 | 0.726 |
F8 | 0.995 | 0.959 | 0.986 | 0.999 | 0.906 |
F9 | 0.977 | 0.960 | 0.979 | 0.998 | 0.947 |
F10 | 0.937 | 0.991 | 0.980 | 0.999 | 0.512 |
F11 | 0.949 | 0.988 | 0.985 | 0.992 | 0.506 |
F12 | 0.957 | 0.993 | 0.991 | 0.995 | 0.477 |
F13 | 0.990 | 0.984 | 0.996 | 0.997 | 0.567 |
F14 | 0.988 | 0.987 | 0.998 | 0.999 | 0.555 |
F15 | 0.986 | 0.987 | 0.994 | 0.997 | 0.571 |
F16 | 0.996 | 0.955 | 0.992 | 0.997 | 0.576 |
F17 | 0.995 | 0.957 | 0.991 | 0.997 | 0.596 |
F18 | 0.997 | 0.968 | 0.991 | 0.998 | 0.657 |
F19 | 0.955 | 0.997 | 0.991 | 0.998 | 0.273 |
F20 | 0.974 | 0.997 | 0.998 | 0.999 | 0.321 |
F21 | 0.970 | 0.998 | 0.997 | 0.999 | 0.354 |
F22 | 0.979 | 0.994 | 0.998 | 0.998 | 0.460 |
F23 | 0.984 | 0.992 | 0.997 | 0.998 | 0.487 |
F24 | 0.985 | 0.991 | 0.996 | 0.997 | 0.513 |
F25 | 0.997 | 0.949 | 0.989 | 0.998 | 0.716 |
F26 | 0.997 | 0.956 | 0.991 | 0.999 | 0.732 |
F27 | 0.998 | 0.952 | 0.989 | 0.999 | 0.744 |
Model | t 80 (h) | Model | t80 (h) | Model | t 80 (h) |
---|---|---|---|---|---|
F1 | 3.12 | F10 | 5.26 | F19 | 4.40 |
F2 | 3.84 | F11 | 5.71 | F20 | 5.18 |
F3 | 3.96 | F12 | 5.78 | F21 | 5.39 |
F4 | 5.81 | F13 | 7.25 | F22 | 7.01 |
F5 | 6.08 | F14 | 7.12 | F23 | 7.17 |
F6 | 6.02 | F15 | 7.38 | F24 | 7.38 |
F7 | 5.84 | F16 | 7.63 | F25 | 7.52 |
F8 | 6.23 | F17 | 7.86 | F26 | 7.48 |
F9 | 6.45 | F18 | 7.97 | F27 | 7.60 |
(I) Hydrophobic/Hydrophilic Polymer Ratio | (J) Hydrophobic/Hydrophilic Polymer Ratio | Mean Difference (I–J) | Std. Error | Sig. |
---|---|---|---|---|
10%/90% | 25%/75% | −0.3148 | 0.05526 | 0.000 |
40%/60% | 1.3085 | 0.05526 | 0.000 | |
25%/75% | 10%/90% | 0.3148 | 0.05526 | 0.000 |
40%/60% | 1.6233 | 0.05526 | 0.000 | |
40%/60% | 10%/90% | −1.3085 | 0.05526 | 0.000 |
25%/75% | −1.6233 | 0.05526 | 0.000 |
(I) Molecular Weight HPMC | (J) Molecular Weight HPMC | Mean Difference (I–J) | Std. Error | Sig. |
---|---|---|---|---|
500 kDa | 750 kDa | −2.0637 | 0.05526 | 0.000 |
1150 kDa | −2.4381 | 0.05526 | 0.000 | |
750 kDa | 500 kDa | 2.0637 | 0.05526 | 0.000 |
1150 kDa | −0.3744 | 0.05526 | 0.000 | |
1150 kDa | 500 kDa | 2.4381 | 0.05526 | 0.000 |
750 kDa | 0.3744 | 0.05526 | 0.000 |
(I) Compression Force | (J) Compression Force | Mean Difference (I–J) | Std. Error | Sig. |
---|---|---|---|---|
1 t | 1.5 t | −0.3137 | 0.05526 | 0.000 |
2 t | −0.4548 | 0.05526 | 0.000 | |
1.5 t | 1 t | 0.3137 | 0.05526 | 0.000 |
2 t | −0.1411 | 0.05526 | 0.036 | |
2 t | 1 t | 0.4548 | 0.05526 | 0.000 |
1.5 t | 0.1411 | 0.05526 | 0.036 |
Source | Type III Sum of Squares | df | Mean Square | F | Sig. | Partial Eta Squared (η2) |
---|---|---|---|---|---|---|
Corrected model | 138.768 a | 26 | 5.337 | 129.448 | 0.000 | 0.984 |
Intercept | 3152.323 | 1 | 3152.323 | 76,455.429 | 0.000 | 0.999 |
EC/HPMC | 40.019 | 2 | 20.009 | 485.302 | 0.000 | 0.947 |
Molecular weight | 93.093 | 2 | 46.546 | 1128.922 | 0.000 | 0.977 |
Compression force | 2.927 | 2 | 1.463 | 35.491 | 0.000 | 0.568 |
EC/HPMC × molecular weight | 1.122 | 4 | 0.280 | 6.802 | 0.000 | 0.335 |
EC/HPMC × compression force | 0.207 | 4 | 0.052 | 1.254 | 0.300 | 0.085 |
Molecular weight × compression force | 1.009 | 4 | 0.252 | 6.116 | 0.000 | 0.312 |
EC/HPMC × molecular weight × compression force | 0.393 | 8 | 0.049 | 1.190 | 0.322 | 0.150 |
Error | 2.226 | 54 | 0.041 | |||
Total | 3293.318 | 81 | ||||
Corrected total | 140.995 | 80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Penkov, D.; Lukova, P.; Manev, H.; Dimitrova, S.; Kassarova, M. Polymer Tablet Matrix Systems for the Controlled Release of Dry Betula pendula Leaf Extract. Polymers 2023, 15, 3558. https://doi.org/10.3390/polym15173558
Penkov D, Lukova P, Manev H, Dimitrova S, Kassarova M. Polymer Tablet Matrix Systems for the Controlled Release of Dry Betula pendula Leaf Extract. Polymers. 2023; 15(17):3558. https://doi.org/10.3390/polym15173558
Chicago/Turabian StylePenkov, Dimitar, Paolina Lukova, Hristo Manev, Stela Dimitrova, and Margarita Kassarova. 2023. "Polymer Tablet Matrix Systems for the Controlled Release of Dry Betula pendula Leaf Extract" Polymers 15, no. 17: 3558. https://doi.org/10.3390/polym15173558
APA StylePenkov, D., Lukova, P., Manev, H., Dimitrova, S., & Kassarova, M. (2023). Polymer Tablet Matrix Systems for the Controlled Release of Dry Betula pendula Leaf Extract. Polymers, 15(17), 3558. https://doi.org/10.3390/polym15173558