Preparation and Characterization of a One-Step Electrospun Poly(Lactic Acid)/Wormwood Oil Antibacterial Nanofiber Membrane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Antibacterial Assays
2.4. Preparation of Antimicrobial Nanofilms
3. Results and Discussion
3.1. Scanning Electron Microscope (SEM) Analysis
3.2. Fourier Transform Infrared Spectra (FTIR) Analysis
3.3. Thermogravimetric Analyzer (TG) Analysis
3.4. Transmission Electron Microscope (TEM) Analysis
3.5. Antibacterial Performance and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- de Azeredo, H.M.C. Antimicrobial nanostructures in food packaging. Trends Food Sci. Technol. 2013, 30, 56–69. [Google Scholar] [CrossRef]
- Chaudhry, Q.; Castle, L. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries. Trends Food Sci. Technol. 2011, 22, 595–603. [Google Scholar] [CrossRef]
- Nieuwenhuizen, N.J.; Chen, X.; Wang, M.Y.; Matich, A.J.; Perez, R.L.; Allan, A.C.; Green, S.A.; Atkinson, R.G. Natural variation in monoterpene synthesis in kiwifruit: Transcriptional regulation of terpene synthases by NAC and ETHYLENE-INSENSITIVE3-like transcription factors. Plant Physiol. 2015, 167, 1243–1258. [Google Scholar] [CrossRef]
- Yin, J.; Ren, C.-L.; Zhan, Y.-G.; Li, C.-X.; Xiao, J.-L.; Qiu, W.; Li, X.-Y.; Peng, H.-M. Distribution and expression characteristics of triterpenoids and OSC genes in white birch (Betula platyphylla suk.). Mol. Biol. Rep. 2012, 39, 2321–2328. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Wei, X.; Liang, G.; Yi, D.; Li, H.; Liu, Q.; Tan, J.; Guo, Q. Progress in the study of genes related to mangiferous acid metabolic pathway in tea tree. Mol. Plant Breed. 2021, 19, 485–493. [Google Scholar]
- Jin, X.; Tian, Y. Mugwort and traditional Chinese culture. Chin. Folk Remedies 2018, 26, 45–46. [Google Scholar]
- Corrêa-Ferreira, M.L.; Noleto, G.R.; Petkowicz, C.L.O. Artemisia absinthium and Artemisia vulgaris: A comparative study of infusion polysaccharides. Carbohydr. Polym. 2014, 102, 738–745. [Google Scholar] [CrossRef]
- Jaenson, T.G.T.; Pålsson, K.; Borg-Karlson, A.K. Evaluation of extracts and oils of tick-repellent plants from Sweden. Med. Vet. Entomol. 2005, 19, 345–352. [Google Scholar] [CrossRef]
- Martín, L.; Mainar, A.; González-Coloma, A.; Burillo, J.; Urieta, J. Supercritical fluid extraction of wormwood (Artemisia absinthium L.). J. Supercrit. Fluids 2011, 56, 64–71. [Google Scholar] [CrossRef]
- Kordali, S.; Aslan, I.; Çalmaşur, O.; Cakir, A. Toxicity of essential oils isolated from three Artemisia species and some of their major components to granary weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). Ind. Crops Prod. 2006, 23, 162–170. [Google Scholar] [CrossRef]
- Gonzalez-Coloma, A.; Bailen, M.; Diaz, C.E.; Fraga, B.M.; Martínez-Díaz, R.; Zuñiga, G.E.; Contreras, R.A.; Cabrera, R.; Burillo, J. Major components of Spanish cultivated Artemisia absinthium populations: Antifeedant, antiparasitic, and antioxidant effects. Ind. Crops Prod. 2012, 37, 401–407. [Google Scholar] [CrossRef]
- Zeng, K.-W.; Liao, L.-X.; Song, X.-M.; Lv, H.-N.; Song, F.-J.; Yu, Q.; Dong, X.; Jiang, Y.; Tu, P.-F. Caruifolin D from Artemisia absinthium L. inhibits neuroinflammation via reactive oxygen species-dependent c-jun N-terminal kinase and protein kinase c/NF-κB signaling pathways. Eur. J. Pharmacol. 2015, 767, 82–93. [Google Scholar] [CrossRef] [PubMed]
- Mamatova, A.S.; Korona-Glowniak, I.; Skalicka-Woźniak, K.; Józefczyk, A.; Wojtanowski, K.K.; Baj, T.; Sakipova, Z.B.; Malm, A. Phytochemical composition of wormwood (Artemisia gmelinii) extracts in respect of their antimicrobial activity. BMC Complement. Altern. Med. 2019, 19, 288. [Google Scholar] [CrossRef]
- Nan, W. Study on the Anti-Enterococcus Faecalis Effect of Chitosan and Its Derivatives. Master’s Thesis, Qingdao University, Qingdao, China, 2020. [Google Scholar] [CrossRef]
- Knobloch, K.; Pauli, A.; Iberl, B.; Weigand, H.; Weis, N. Antibacterial and antifungal properties of essential oil components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Chen, Y.; Geever, L.M.; Killion, J.A.; Lyons, J.G.; Higginbotham, C.L.; Devine, D.M. Review of multifarious applications of poly (lactic acid). Polym.-Plast. Technol. Eng. 2016, 55, 1057–1075. [Google Scholar] [CrossRef]
- Gan, I.; Chow, W.S. Antimicrobial poly (lactic acid)/cellulose bionanocomposite for food packaging application: A review. Food Packag. Shelf Life 2018, 17, 150–161. [Google Scholar] [CrossRef]
- Muller, J.; González-Martínez, C.; Chiralt, A. Combination of poly (lactic) acid and starch for biodegradable food packaging. Materials 2017, 10, 952. [Google Scholar] [CrossRef] [PubMed]
- Goh, K.; Heising, J.K.; Yuan, Y.; Karahan, H.E.; Wei, L.; Zhai, S.; Koh, J.-X.; Htin, N.M.; Zhang, F.; Wang, R.; et al. Sandwich-architectured poly (lactic acid)–graphene composite food packaging films. ACS Appl. Mater. Interfaces 2016, 8, 9994–10004. [Google Scholar] [CrossRef]
- Kayaci, F.; Umu, O.C.O.; Tekinay, T.; Uyar, T. Antibacterial electrospun poly (lactic acid) (PLA) nanofibrous webs incorporating triclosan/cyclodextrin inclusion complexes. J. Agric. Food Chem. 2013, 61, 3901–3908. [Google Scholar] [CrossRef]
- Ramos, M.; Fortunati, E.; Peltzer, M.; Jimenez, A.; Kenny, J.M.; Garrigós, M.C. Characterization and disintegrability under composting conditions of PLA-based nanocomposite films with thymol and silver nanoparticles. Polym. Degrad. Stab. 2016, 132, 2–10. [Google Scholar] [CrossRef]
- Jing, W. Preparation of Chitin Whisker/Polylactic Acid Nanofiber Membrane and Its Application. Master’s Thesis, Jiangnan University, Wuxi, China, 2012. [Google Scholar]
- Qin, Z.; Wang, S.; Wang, L.; Yao, J.; Zhu, G.; Guo, B.; Militky, J.; Venkataraman, M.; Zhang, M. Nanofibrous membranes with antibacterial and thermoregulatory functions fabricated by coaxial electrospinning. J. Ind. Eng. Chem. 2022, 113, 373–379. [Google Scholar] [CrossRef]
- Angammana, C.J. A Study of the Effects of Solution and Process Parameters on the Electrospinning Process and Nanofibre. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2011. [Google Scholar]
- He, S.W.; Li, S.S.; Hu, Z.M.; Yu, J.R.; Chen, L.; Zhu, J. Effects of three parameters on the diameter of electrospun poly (ethylene oxide) nanofibers. J. Nanosci. Nanotechnol. 2011, 11, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Qin, X. Effect of solution concentration on jet stretching of electrospinning PVA nanofiber. Int. J. Fluid Mech. Res. 2011, 38, 479–488. [Google Scholar] [CrossRef]
- Liu, L.; Shi, Y.; Jiao, Q.; Wu, Y.; Zhang, Z.; Liu, J. Preparation of polysulfoneamide electrospinning nanofibers. In Proceedings of the 2008 International Conference on Electronic Packaging Technology & High Density Packaging, Shanghai, China, 28–31 July 2008; pp. 1–4. [Google Scholar]
- Mit-uppatham, C.; Nithitanakul, M.; Supaphol, P. Ultrafine electrospun polyamide-6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromol. Chem. Phys. 2004, 205, 2327–2338. [Google Scholar] [CrossRef]
- Tan, S.H.; Inai, R.; Kotaki, M.; Ramakrishna, S. Systematic parameter study for ultra-fine fiber fabrication via electrospinning process. Polymer 2005, 46, 6128–6134. [Google Scholar] [CrossRef]
- Ki, C.S.; Baek, D.H.; Gang, K.D.; Lee, K.H.; Um, I.C.; Park, Y.H. Characterization of gelatin nanofiber prepared from gelatin–formic acid solution. Polymer 2005, 46, 5094–5102. [Google Scholar] [CrossRef]
- Saffarionpour, S. Nanoencapsulation of hydrophobic food flavor ingredients and their cyclodextrin inclusion complexes. Food Bioprocess Technol. 2019, 12, 1157–1173. [Google Scholar] [CrossRef]
Solution | PLA (%, w/w) | Viscosity (Pa·s) | Diameter Distribution (nm) | Average Diameter (nm) |
---|---|---|---|---|
PLA | 8 | 0.253 | 240–450 | 335 |
PLA | 10 | 0.361 | 190–360 | 260 |
PLA | 12 | 0.432 | 240–470 | 380 |
Microorganism | Film | Inhibition Zone Diameter (mm) |
---|---|---|
S. aureus | PLA | 1.0 |
PLA/2% WO | 2.0 | |
PLA/4% WO | 3.5 | |
E. coli | PLA | 2.0 |
PLA/2% WO | 3.5 | |
PLA/4% WO | 4.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, X.; Guo, X.; Duo, Y.; Qian, X. Preparation and Characterization of a One-Step Electrospun Poly(Lactic Acid)/Wormwood Oil Antibacterial Nanofiber Membrane. Polymers 2023, 15, 3585. https://doi.org/10.3390/polym15173585
Tang X, Guo X, Duo Y, Qian X. Preparation and Characterization of a One-Step Electrospun Poly(Lactic Acid)/Wormwood Oil Antibacterial Nanofiber Membrane. Polymers. 2023; 15(17):3585. https://doi.org/10.3390/polym15173585
Chicago/Turabian StyleTang, Xiaoyan, Xun Guo, Yongchao Duo, and Xiaoming Qian. 2023. "Preparation and Characterization of a One-Step Electrospun Poly(Lactic Acid)/Wormwood Oil Antibacterial Nanofiber Membrane" Polymers 15, no. 17: 3585. https://doi.org/10.3390/polym15173585
APA StyleTang, X., Guo, X., Duo, Y., & Qian, X. (2023). Preparation and Characterization of a One-Step Electrospun Poly(Lactic Acid)/Wormwood Oil Antibacterial Nanofiber Membrane. Polymers, 15(17), 3585. https://doi.org/10.3390/polym15173585