Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems
Abstract
:1. Introduction
2. Methods for Preparation of Polysaccharide Microparticles
3. Starch-Based Microparticulate Drug-Delivery Systems
3.1. Chemical Structure and Production of Starch
3.2. Preparation of Starch Microparticles
3.3. Preparation of Maltodextrin Microparticles
3.4. Preparation of Cyclodextrin Microparticles
4. Cellulose-Based Microparticulate Drug-Delivery Systems
4.1. Chemical Structure and Production of Cellulose
4.2. Preparation of Cellulose Microstructures
4.3. Formulation of Cellulose Drug-loaded Microparticles
Polymer | Preparation Method | Active Substance | Reported Results | Reference |
---|---|---|---|---|
Ethylcellulose | Spray-drying | Rupatadine fumarate | Mean diameter 1.2–4.9 µm; drug encapsulation 42–99%; taste masking of bitter organoleptic properties in vivo in human taste panel. | [174] |
Sodium carboxymethyl cellulose | Spray-drying | Sildenafil citrate | Mean diameter 2–5 µm; aerodynamic properties for pulmonary delivery; Low toxicity on cell viability; higher lung/blood Cmax, AUC, extended half-life | [175] |
Ethylcellulose | Spray-drying | Pirfenidone | Spherical particles with smooth surface; average size of 4 µm; sustained drug release intended for inhalation and targeted delivery to the lungs. | [176] |
Hydroxypropyl methylcellulose | Spray-drying | Levodopa, carbidopa | Drug loading of 19.1%; encapsulation efficiency of 95.7%; sustained in vitro release 80% released drug after 12 h; high blood concentrations in vivo in rats. | [177] |
Cellulose nanocrystals | Emulsification | Curcumin | Core-shell microparticles formulation using interparticle interactions; mean diameter 1–4 µm; increased drug retention in the particles (76.41%). | [178] |
Hydroxypropyl methylcellulose | Emulsification | Curcumin | Mean microparticles diameter 30.2–76.7 μm; encapsulation efficiency 78.8–96.2%; sustained drug release, significant anti-arthritic, and anti-inflammatory activity. | [179] |
Carboxymethylated diethylaminoethyl cellulose | Ionotropic gelation | Drug-free carrier | Microcarriers produced by ionic crosslinking of carboxymethylated soluble multifunctional cellulose; support cellular attachment and proliferation; promising materials for cell therapy and tissue engineering applications. | [180] |
Carboxymethyl cellulose | Extrusion, ionotropic gelation | Esculin | Spherical shape particles; diverse morphology; physically stable in various media; controlled drug delivery with pH-triggered drug release; | [181] |
Ethylcellulose | Emulsification | Metformin | production using oil-in-oil solvent evaporation technique; spherical microspheres with high drug entrapment efficiency and sustained drug release. | [27] |
Ethylcellulose, casein | Freeze-drying | Curcumin | Entrapment efficiency 92.4%; average size 1.47 μm; prolonged drug release; antibacterial activity, i.e., loss of membrane integrity due to ROS production. | [182] |
Ethylcellulose, polyethylene glycol | Emulsification | Metformin | Drug encapsulation efficiency 33–82%; particle size 15–178 μm; sustained drug release at pH 6.8–91% drug released in 12 h with Fickian diffusion mechanism. | [25] |
HPC, HEC and CMC | Ionotropic gelation | Bovine serum albumin | High protein encapsulation efficiency; sustained drug release in acidic medium and high cumulative release in simulated intestinal fluid medium (86.17%). | [183] |
Bacterial cellulose, collagen | Inverse suspension regeneration | Bovine serum albumin | Porous microspheres beneficial to the proliferation of MC3T3 E1-cells; drug-release kinetics described by the first-order release model. | [184] |
Ethylcellulose | Coacervation | Glipizide | Microparticle yield 76%; particle size 50–450 µm; entrapment efficiency 89.8%; 50% reduction in plasma glucose level compared to conventional dosage forms. | [185] |
Ethylcellulose | Emulsification | Nifedipine | Production yield 56–94%; average particle size 223–446 µm; initial burst release, followed by sustained release up to 12 h. | [186] |
5. Challenges and Future Perspectives for Polysaccharide Microparticle Formulation
Patent Code | Patent Content | Year | Reference |
---|---|---|---|
WO2023145417A1 | An adjuvant and vaccine composition containing an adjuvant and a complex including microparticles of a biodegradable polymer and cyclodextrin. | 2023 | [191] |
CN115678222A | Biodegradable polymeric microparticles consisting of cellulose nanoparticles or hydroxyapatite nanoparticles and methods of making and using them. | 2023 | [192] |
US20220315671A1 | Product of crystalline starch nano-microparticles, procedures and gel for various applications. | 2022 | [193] |
GB2615103A | A method of forming a composition comprising a probiotic microencapsulated in a denatured plant protein and maltodextrin matrix. | 2022 | [194] |
WO2022129661A1 | Amphoteracin B formulations for inhalation based on collapsed microparticles containing carbohydrates γ-cyclodextrin and mannose. | 2022 | [195] |
WO2023286049A1 | Protein containing bio-active compositions comprising cellulose microparticle carriers | 2022 | [196] |
US20220213298A1 | Porous cellulose microparticles and methods of manufacture thereof. | 2022 | [197] |
US20220313617A1 | Biotherapy for viral infections using biopolymer-based micro/nanogels based on chitosan and hydroxyethyl cellulose. | 2022 | [198] |
AU2021103734A4 | A method for synthesizing repaglinide-loaded floating microparticles based on ethyl cellulose and sodium alginate. | 2021 | [199] |
WO2022200636A1 | Pharmaceutical formulations and methods for the production of microparticles comprising oil, water, inulin fiber, and maltodextrin or cyclodextrin. | 2021 | [200] |
CN110613700A | Omeprazole microparticle sustained-release pharmaceutical composition using starch and preparation method thereof. | 2019 | [201] |
MX2016005434A | Crude starch microparticles as an adjuvant in vaccines, generating protective immune response against Mycobacterium tuberculosis infection. | 2016 | [202] |
CN106039389A | Starch porous microparticle for hemostasis with a wide application prospect and stable preparation technology. | 2016 | [203] |
EA201600005A1 | Anti-tumor formulation based on recombinant Interferon alpha-2b in the form of microparticles for parenteral administration. | 2015 | [204] |
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviation
CD | Cyclodextrin |
CDI | Carbonyldiimidazole |
CMC | Carboxymethyl cellulose |
DE | Dextrose equivalent |
DP | Degree of polymerization |
DPGDA | Dipropylene glycol diacrylate |
DSM | Degradable starch microspheres |
EC | Ethylcellulose |
EE | Entrapment efficiency |
FTIR | Fourier-transform infrared |
HLB | Hydrophilic-lipophilic balance |
HPC | Hydroxypropyl cellulose |
HPMC | Hydroxypropyl methylcellulose |
MC | Methylcellulose |
MD | Maltodextrin |
O/O | Oil-in-oil |
O/W | Oil-in-water |
STMP | Sodium trimetaphosphate |
STPP | Sodium tripolyphosphate |
W/O | Water-in-oil |
W/W | Water-in-water |
References
- Basinska, T.; Gadzinowski, M.; Mickiewicz, D.; Slomkowski, S. Functionalized Particles Designed for Targeted Delivery. Polymers 2021, 13, 2022. [Google Scholar] [CrossRef] [PubMed]
- Łętocha, A.; Miastkowska, M.; Sikora, E. Preparation and Characteristics of Alginate Microparticles for Food, Pharmaceutical and Cosmetic Applications. Polymers 2022, 14, 3834. [Google Scholar] [CrossRef] [PubMed]
- Sousa, V.I.; Parente, J.F.; Marques, J.F.; Forte, M.A.; Tavares, C.J. Microencapsulation of Essential Oils: A Review. Polymers 2022, 14, 1730. [Google Scholar] [CrossRef]
- Paccione, N.; Rahmani, M.; Barcia, E.; Negro, S. Antiparkinsonian Agents in Investigational Polymeric Micro- and Nano-Systems. Pharmaceutics 2023, 15, 13. [Google Scholar] [CrossRef]
- Ogay, V.; Mun, E.A.; Kudaibergen, G.; Baidarbekov, M.; Kassymbek, K.; Zharkinbekov, Z.; Saparov, A. Progress and Prospects of Polymer-Based Drug Delivery Systems for Bone Tissue Regeneration. Polymers 2020, 12, 2881. [Google Scholar] [CrossRef]
- Katsarov, P.; Shindova, M.; Lukova, P.; Belcheva, A.; Delattre, C.; Pilicheva, B. Polysaccharide-Based Micro- and Nanosized Drug Delivery Systems for Potential Application in the Pediatric Dentistry. Polymers 2021, 13, 3342. [Google Scholar] [CrossRef]
- Sherstneva, A.A.; Demina, T.S.; Monteiro, A.P.F.; Akopova, T.A.; Grandfils, C.; Ilangala, A.B. Biodegradable Microparticles for Regenerative Medicine: A State of the Art and Trends to Clinical Application. Polymers 2022, 14, 1314. [Google Scholar] [CrossRef]
- Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, Microspheres, and Microcapsules for Advanced Drug Delivery. Sci. Pharm. 2019, 87, 20. [Google Scholar] [CrossRef]
- Holliday, W.; Berdrick, M.; Kiritsis, G.C. Sustained Relief Analgesic Compositions. Patent US3524910, 18 August 1970. Available online: https://patents.google.com/patent/US3524910A/en (accessed on 29 July 2023).
- Roderick, P.J.; Wilkes, H.C.; Meade, T.W. The gastrointestinal toxicity of aspirin: An overview of randomised controlled trials. Br. J. Clin. Pharmacol. 1993, 35, 219–226. [Google Scholar] [CrossRef]
- Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym. 2019, 221, 94–112. [Google Scholar] [CrossRef]
- Abedini, F.; Ebrahimi, M.; Roozbehani, A.H.; Domb, A.J.; Hosseinkhani, H. Overview on natural hydrophilic polysaccharide polymers in drug delivery. Polym. Adv. Technol. 2018, 29, 2564–2573. [Google Scholar] [CrossRef]
- Baldrick, P. The safety of chitosan as a pharmaceutical excipient. Regul. Toxicol. Pharmacol. 2010, 56, 290–299. [Google Scholar] [CrossRef] [PubMed]
- Rai, P.; Mehrotra, S.; Priya, S.; Gnansounou, E.; Sharma, S.K. Recent advances in the sustainable design and applications of biodegradable polymers. Bioresour. Technol. 2021, 325, 124739. [Google Scholar] [CrossRef] [PubMed]
- RameshKumar, S.; Shaiju, P.; O’Connor, K.E. Bio-based and biodegradable polymers-State-of-the-art, challenges and emerging trends. Curr. Opin. Green Sustain. Chem. 2020, 21, 75–81. [Google Scholar] [CrossRef]
- BeMiller, J.N. (Ed.) 4-Polysaccharides: Occurrence, Structures, and Chemistry. In Carbohydrate Chemistry for Food Scientists, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 75–101. [Google Scholar]
- Yadav, H.; Karthikeyan, C. Natural polysaccharides: Structural features and properties. In Polysaccharide Carriers for Drug Delivery; Woodhead Publishing: Sawston, UK, 2019; pp. 1–17. [Google Scholar]
- Bayer, I.S. Controlled Drug Release from Nanoengineered Polysaccharides. Pharmaceutics 2023, 15, 1364. [Google Scholar] [CrossRef]
- Freiberg, S.; Zhu, X.X. Polymer microspheres for controlled drug release. Int. J. Pharm 2004, 282, 1–18. [Google Scholar] [CrossRef]
- Varde, N.K.; Pack, D.W. Microspheres for controlled release drug delivery. Expert Opin. Biol. Ther. 2004, 4, 35–51. [Google Scholar] [CrossRef]
- Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev. 2016, 116, 2602–2663. [Google Scholar] [CrossRef]
- Maderuelo, C.; Zarzuelo, A.; Lanao, J.M. Critical factors in the release of drugs from sustained release hydrophilic matrices. J Contr. Release 2011, 154, 2–19. [Google Scholar] [CrossRef]
- Procopio, A.; Lagreca, E.; Jamaledin, R.; La Manna, S.; Corrado, B.; Di Natale, C.; Onesto, V. Recent Fabrication Methods to Produce Polymer-Based Drug Delivery Matrices (Experimental and In Silico Approaches). Pharmaceutics 2022, 14, 872. [Google Scholar] [CrossRef]
- Li, M.; Rouaud, O.; Poncelet, D. Microencapsulation by solvent evaporation: State of the art for process engineering approaches. Int. J. Pharm. 2008, 363, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Raza, H.; Javeria, S.; Rashid, Z. Sustained released Metformin microparticles for better management of type II diabetes mellitus: In-vitro studies. Mater. Res. Express 2020, 7, 015343. [Google Scholar] [CrossRef]
- Li, B.Z.; Wang, L.J.; Li, D.; Bhandari, B.; Li, S.J.; Lan, Y.; Chen, X.D.; Mao, Z.H. Fabrication of starch-based microparticles by an emulsification-crosslinking method. J. Food Eng. 2009, 92, 250–254. [Google Scholar] [CrossRef]
- Patil, J.S.; Pawar, Y.D. Preparation of Metformin Biodegradable Polymeric Microparticles by O/O Emulsion Solvent Evaporation: A 32 Full Factorial Design Approach. Lett. Drug Des. Discov. 2023, 20, 1775–1783. [Google Scholar] [CrossRef]
- Vladisavljević, G.T.; Williams, R.A. Recent developments in manufacturing emulsions and particulate products using membranes. Adv. Colloid Interface Sci. 2005, 113, 1–20. [Google Scholar] [CrossRef]
- Wang, Y.; Selomulya, C. Spray drying strategy for encapsulation of bioactive peptide powders for food applications. Adv. Powder Technol. 2020, 31, 409–415. [Google Scholar] [CrossRef]
- Sarabandi, K.; Gharehbeglou, P.; Jafari, S.M. Spray-drying encapsulation of protein hydrolysates and bioactive peptides: Opportunities and challenges. Dry Technol. 2020, 38, 577–595. [Google Scholar] [CrossRef]
- Ziaee, A.; Albadarin, A.B.; Padrela, L.; Femmer, T.; O’Reilly, E.; Walker, G. Spray drying of pharmaceuticals and biopharmaceuticals: Critical parameters and experimental process optimization approaches. Eur. J. Pharm. Sci. 2019, 127, 300–318. [Google Scholar] [CrossRef]
- Poozesh, S.; Bilgili, E. Scale-up of pharmaceutical spray drying using scale-up rules: A review. Int. J. Pharm. 2019, 562, 271–292. [Google Scholar] [CrossRef]
- Wanning, S.; Süverkrüp, R.; Lamprecht, A. Pharmaceutical spray freeze drying. Int. J. Pharm. 2015, 488, 136–153. [Google Scholar] [CrossRef]
- Ab’lah, N.; Yusuf, C.Y.L.; Rojsitthisak, P.; Wong, T.W. Reinvention of starch for oral drug delivery system design. Int. J. Biol. Macromol. 2023, 241, 124506. [Google Scholar] [CrossRef] [PubMed]
- Joye, I.J.; McClements, D.J. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. COCIS 2014, 19, 417–427. [Google Scholar] [CrossRef]
- Lukova, P.; Katsarov, P. Contemporary Aspects of Designing Marine Polysaccharide Microparticles as Drug Carriers for Biomedical Application. Pharmaceutics 2023, 15, 2126. [Google Scholar] [CrossRef] [PubMed]
- García-Guzmán, L.; Cabrera-Barjas, G.; Soria-Hernández, C.G.; Castaño, J.; Guadarrama-Lezama, A.Y.; Rodríguez Llamazares, S. Progress in Starch-Based Materials for Food Packaging Applications. Polysaccharides 2022, 3, 136–177. [Google Scholar] [CrossRef]
- Tester, R.F.; Karkalas, J.; Qi, X. Starch—Composition, fine structure and architecture. J. Cereal Sci. 2004, 39, 151–165. [Google Scholar] [CrossRef]
- Imberty, A.; Buléon, A.; Tran, V.; Péerez, S. Recent advances in knowledge of starch structure. Starch-Stärke 1991, 43, 375–384. [Google Scholar] [CrossRef]
- Goesaert, H.; Bijttebier, A.; Delcour, J.A. Hydrolysis of amylopectin by amylolytic enzymes: Level of inner chain attack as an important analytical differentiation criterion. Carbohydr. Res. 2010, 345, 397–401. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Maldonado, H.; Paredes-López, O.; Biliaderis, C.G. Amylolytic enzymes and products derived from starch: A re-641 view. Crit. Rev. Food Sci. 1995, 35, 373–403. [Google Scholar] [CrossRef]
- Avérous, L.; Halley, P.J. Starch polymers: From the field to industrial products. In Starch Polymers; Halley, P.J., Avérous, L., Eds.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2014; pp. 3–10. [Google Scholar] [CrossRef]
- Ratnayake, W.S.; Jackson, D.S. STARCH| Sources and processing. In Encyclopedia of Food Sciences and Nutrition; Caballero, B., Ed.; Elsevier Science Ltd.: Amsterdam, The Netherlands, 2003; pp. 5567–5572. [Google Scholar] [CrossRef]
- Minakawa, A.F.; Faria-Tischer, P.C.; Mali, S. Simple ultrasound method to obtain starch micro-and nanoparticles from cassava, corn and yam starches. Food Chem. 2019, 283, 11–18. [Google Scholar] [CrossRef]
- Campos, E.; Branquinho, J.; Carreira, A.S.; Carvalho, A.; Coimbra, P.; Ferreira, P.; Gil, M.H. Designing polymeric microparticles for biomedical and industrial applications. Eur. Polym. J. 2013, 49, 2005–2021. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Y.; Sun, W.; Meng, Z.; Shi, Q.; Zhu, X.; Gan, H.; Gu, R.; Wu, Z.; Dou, G. Calcium ion–exchange cross-linked porous starch microparticles with improved hemostatic properties. Int. J. Biol. Macromol. 2019, 134, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Sondari, D.; Suwarda, R.; Pratiwi, F.R.; Muawanah, A.; Pramasari, D.A.; Ahmad, A. Preparation of Starch Phosphate Microparticle Derived from Cassava Starch. IOP Conf. Ser. Earth Environ. Sci. 2022, 1024, 012039. [Google Scholar] [CrossRef]
- Obireddy, S.R.; Lai, W.F. Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Deliv. 2021, 28, 1562–1568. [Google Scholar] [CrossRef] [PubMed]
- Rydell, N.; Stertman, L.; Sjöholm, I. Starch microparticles as vaccine adjuvant. Expert Opin. Drug Deliv. 2005, 2, 807–828. [Google Scholar] [CrossRef]
- Heritage, P.L.; Loomes, L.M.; Jianxiong, J.; Brook, M.A.; Underdown, B.J.; McDermott, M.R. Novel polymer-grafted starch microparticles for mucosal delivery of vaccines. Immunology 1996, 88, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.; Li, N.; Zhong, Q. Enhancing bioaccessibility of resveratrol by loading in natural porous starch microparticles. Int. J. Biol. Macromol. 2022, 194, 982–992. [Google Scholar] [CrossRef]
- Taguchi, T. Liver tumor targeting of drugs: Spherex, a vascular occlusive agent. Gan to Kagaku ryoho. Cancer Chemother. 1995, 22, 969–976. [Google Scholar]
- Carr, B.I.; Zajko, A.; Bron, K.; Orons, P.; Sammon, J.; Baron, R. Phase II study of Spherex (degradable starch microspheres) injected into the hepatic artery in conjunction with doxorubicin and cisplatin in the treatment of advanced-stage hepatocellular carcinoma: Interim analysis. Semin. Oncol. 1997, 24, S6–S97. [Google Scholar]
- Wasser, K.; Giebel, F.; Fischbach, R.; Tesch, H.; Landwehr, P. Transarterial chemoembolization of liver metastases of colorectal carcinoma using degradable starch microspheres (Spherex): Personal investigations and review of the literature. Der Radiologe 2005, 45, 633–643. [Google Scholar] [CrossRef]
- Gibbs, F.; Kermasha, S.; Alli, I.; Catherine, N.; Mulligan, B. Encapsulation in the food industry: A review. Int. J. Food Sci. Nutr. 1999, 50, 213–224. [Google Scholar] [CrossRef]
- Parikh, A.; Agarwal, S.; Raut, K. A review on applications of maltodextrin in pharmaceutical industry. Int. J. Pharm. Bio Sci. 2014, 4, 67–74. [Google Scholar]
- Garnero, C.; Aloisio, C.; Longhi, M. Ibuprofen-maltodextrin interaction: Study of enantiomeric recognition and complex characterization. Pharmacol. Pharm. 2013, 4, 18–30. [Google Scholar] [CrossRef]
- Saavedra-Leos, Z.; Leyva-Porras, C.; Araujo-Díaz, S.B.; Toxqui-Terán, A.; Borrás-Enríquez, A.J. Technological Application of Maltodextrins According to the Degree of Polymerization. Molecules 2015, 20, 21067–21081. [Google Scholar] [CrossRef]
- Udomrati, S.; Ikeda, S.; Gohtani, S. Rheological properties and stability of oil-in-water emulsions containing tapioca maltodextrin in the aqueous phase. J. Food Eng. 2013, 116, 170–175. [Google Scholar] [CrossRef]
- Du, Q.; Tang, J.; Xu, M.; Lyu, F.; Zhang, J.; Qiu, Y.; Liu, J.; Ding, Y. Whey protein and maltodextrin-stabilized oil-in-water emulsions: Effects of dextrose equivalent. Food Chem. 2021, 339, 128094. [Google Scholar] [CrossRef]
- Di Mattia, C.; Paradiso, V.M.; Andrich, L.; Giarnetti, M.; Caponio, F.; Pittia, P. Effect of olive oil phenolic compounds and maltodextrins on the physical properties and oxidative stability of olive oil o/w emulsions. Food Biophys. 2014, 9, 396–405. [Google Scholar] [CrossRef]
- Zhu, J.; Li, X.; Liu, L.; Li, Y.; Qi, B.; Jiang, L. Preparation of spray-dried soybean oil body microcapsules using maltodextrin: Effects of dextrose equivalence. LWT 2022, 154, 112874. [Google Scholar] [CrossRef]
- Xiao, Z.; Xia, J.; Zhao, Q.; Niu, Y.; Zhao, D. Maltodextrin as wall material for microcapsules: A review. Carbohydr. Polym. 2022, 298, 120113. [Google Scholar] [CrossRef]
- Fioramonti, S.A.; Rubiolo, A.C.; Santiago, L.G. Characterisation of freeze-dried flaxseed oil microcapsules obtained by multilayer emulsions. Powder Technol. 2017, 319, 238–244. [Google Scholar] [CrossRef]
- Shepherd, R.; Robertson, A.; Ofman, D. Dairy glycoconjugate emulsifiers: Casein–maltodextrins. Food Hydrocoll. 2000, 14, 281–286. [Google Scholar] [CrossRef]
- Lewandowicz, G.; Prochaska, K.; Grajek, W.; Krzyżaniak, W.; Majchrzak, A.; Ciapa, T. Functional properties of maltodextrins in emulsion systems. Zywnosc. Nauka. Technol. Jakosc 2005, 42, 35–47. Available online: https://journal.pttz.org/wp-content/uploads/2015/02/04_Lewandowicz.pdf (accessed on 29 July 2023).
- Ballesteros, L.F.; Ramirez, M.J.; Orrego, C.E.; Teixeira, J.A.; Mussatto, S.I. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials. Food Chem. 2017, 237, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Zhou, D.; Pan, Y.; Ye, J.; Jia, J.; Ma, J.; Ge, F. Preparation of walnut oil microcapsules employing soybean protein isolate and maltodextrin with enhanced oxidation stability of walnut oil. LWT Food Sci. Technol. 2017, 83, 292–297. [Google Scholar] [CrossRef]
- Kang, Y.R.; Lee, Y.K.; Kim, Y.J.; Chang, Y.H. Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chem. 2019, 272, 337–346. [Google Scholar] [CrossRef]
- Meydani, B.; Vahedifar, A.; Askari, G.; Madadlou, A. Influence of the Maillard reaction on the properties of cold-set whey protein and maltodextrin binary gels. Int. Dairy J. 2019, 90, 79–87. [Google Scholar] [CrossRef]
- Shah, B.; Davidson, P.M.; Zhong, Q. Encapsulation of eugenol using Maillard-type conjugates to form transparent and heat stable nanoscale dispersions. LWT 2012, 49, 139–148. [Google Scholar] [CrossRef]
- Qu, B.; Zhong, Q. Casein-maltodextrin conjugate as an emulsifier for fabrication of structured calcium carbonate particles as dispersible fat globule mimetics. Food Hydrocoll. 2017, 66, 61–70. [Google Scholar] [CrossRef]
- Sun, X.; Wu, X.; Chen, X.; Guo, R.; Kou, Y.; Li, X.; Sheng, Y.; Wu, Y. Casein-maltodextrin Maillard conjugates encapsulation enhances the antioxidative potential of proanthocyanidins: An in vitro and in vivo evaluation. Food Chem. 2021, 346, 128952. [Google Scholar] [CrossRef]
- Shao, P.; Xuan, S.; Wu, W.; Qu, L. Encapsulation efficiency and controlled release of Ganoderma lucidum polysaccharide microcapsules by spray drying using different combinations of wall materials. Int. J. Biol. Macromol. 2019, 125, 962–969. [Google Scholar] [CrossRef]
- Eratte, D.; Dowling, K.; Barrow, C.J.; Adhikari, B. Recent advances in the microencapsulation of omega-3 oil and probiotic bacteria through complex coacervation: A review. Trends Food Sci. Technol. 2018, 71, 121–131. [Google Scholar] [CrossRef]
- Bannikova, A.; Zyainitdinov, D.; Evteev, A.; Drevko, Y.; Evdokimov, I. Microencapsulation of polyphenols and xylooligosaccharides from oat bran in whey protein-maltodextrin complex coacervates: In-vitro evaluation and controlled release. Bioact. Carbohydr. Diet. Fibre 2020, 23, 100236. [Google Scholar] [CrossRef]
- Araujo-Díaz, S.B.; Leyva-Porras, C.; Aguirre-Bañuelos, P.; Álvarez-Salas, C.; Saavedra-Leos, Z. Evaluation of the physical properties and conservation of the antioxidants content, employing inulin and maltodextrin in the spray drying of blueberry juice. Carbohydr. Polym. 2017, 167, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Bazaria, B.; Kumar, P. Optimization of spray drying parameters for beetroot juice powder using response surface methodology (RSM). J. Saudi Soc. Agric. Sci. 2018, 17, 408–415. [Google Scholar] [CrossRef]
- Zhang, L.; Zeng, X.; Fu, N.; Tang, X.; Sun, Y.; Lin, L. Maltodextrin: A consummate carrier for spray-drying of xylooligosaccharides. Food Res. Int. 2018, 106, 383–393. [Google Scholar] [CrossRef] [PubMed]
- Jia, C.; Huang, S.; Liu, R.; You, J.; Xiong, S.; Zhang, B.; Rong, J. Storage stability and in-vitro release behavior of microcapsules incorporating fish oil by spray drying. Colloids Surf. A Physicochem. Eng. Asp. 2021, 628, 127234. [Google Scholar] [CrossRef]
- Pasrija, D.; Ezhilarasi, P.N.; Indrani, D.; Anandharamakrishnan, C. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT Food Sci. Technol. 2015, 64, 289–296. [Google Scholar] [CrossRef]
- Gupta, C.; Chawla, P.; Arora, S.; Tomar, S.K.; Singh, A.K. Iron microencapsulation with blend of gum arabic, maltodextrin and modified starch using modified solvent evaporation method–Milk fortification. Food Hydrocoll. 2015, 43, 622–628. [Google Scholar] [CrossRef]
- Rojas-Moreno, S.; Cárdenas-Bailón, F.; Osorio-Revilla, G.; Gallardo-Velázquez, T.; Proal-Nájera, J. Effects of complex coacervation-spray drying and conventional spray drying on the quality of microencapsulated orange essential oil. J. Food Meas. Charact. 2018, 12, 650–660. [Google Scholar] [CrossRef]
- Vaucher, A.C.D.S.; Dias, P.C.; Coimbra, P.T.; Costa, I.D.S.M.; Marreto, R.N.; Dellamora-Ortiz, G.M.; De Freitas, O.; Ramos, M.F. Microencapsulation of fish oil by casein-pectin complexes and gum arabic microparticles: Oxidative stabilisation. J. Microencapsul. 2019, 36, 459–473. [Google Scholar] [CrossRef]
- Baiocco, D.; Preece, J.A.; Zhang, Z. Microcapsules with a fungal chitosan-gum Arabic-maltodextrin shell to encapsulate health-beneficial peppermint oil. FHFH 2021, 1, 100016. [Google Scholar] [CrossRef]
- Bordón, M.G.; Paredes, A.J.; Camacho, N.M.; Penci, M.C.; González, A.; Palma, S.D.; Ribotta, P.D.; Martinez, M.L. Formulation, spray-drying and physicochemical characterization of functional powders loaded with chia seed oil and prepared by complex coacervation. Powder Technol. 2021, 391, 479–493. [Google Scholar] [CrossRef]
- Jiang, H.; Sheng, Y.; Ngai, T. Pickering emulsions: Versatility of colloidal particles and recent applications. Curr. Opin. Colloid Interface Sci. 2020, 49, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.; Sun, H.; Li, H.; Li, Z.; Zheng, S.; Luo, D.; Ning, Y.; Wang, Y.; Shah, B.R. Preparation and characterization of tea oil powder with high water solubility using Pickering emulsion template and vacuum freeze-drying. LWT 2022, 160, 113330. [Google Scholar] [CrossRef]
- Teo, A.; Lam, Y.; Lee, S.J.; Goh, K.K. Spray drying of whey protein stabilized nanoemulsions containing different wall materials–maltodextrin or trehalose. LWT 2021, 136, 110344. [Google Scholar] [CrossRef]
- Rasheed, A. Cyclodextrins as Drug Carrier Molecule: A Review. Sci. Pharm. 2008, 76, 567–598. [Google Scholar] [CrossRef]
- Zafar, N.; Fessi, H.; Elaissari, A. Cyclodextrin containing biodegradable particles: From preparation to drug delivery applications. Int. J. Pharm. 2014, 461, 351–366. [Google Scholar] [CrossRef]
- Loftsson, T.; Duchene, D. Cyclodextrins and their pharmaceutical applications. Int. J. Pharm. 2007, 329, 1–11. [Google Scholar] [CrossRef]
- Ueda, H. Physicochemical properties and complex formation abilities of large-ring cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2002, 44, 53–56. [Google Scholar] [CrossRef]
- Loftsson, T.; Brewster, M.E. Pharmaceutical applications of cyclodextrins: Basic science and product development. J. Pharm. Pharmacol. 2010, 62, 1607–1621. [Google Scholar] [CrossRef]
- Xiao, Z.; Liu, Y.; Niu, Y.; Kou, X. Cyclodextrin supermolecules as excellent stabilizers for Pickering nanoemulsions. Colloids Surf. A Physicochem. Eng. 2020, 588, 124367. [Google Scholar] [CrossRef]
- Bhandari, B.R.; D’Arc, B.R.; Padukka, I. Encapsulation of lemon oil by paste method using β-cyclodextrin: Encapsulation efficiency and profile of oil volatiles. J. Agric. Food Chem. 1999, 47, 5194–5197. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.; Craveiro, A.; Machado, M.; Raffin, F.; Moura, T.; Novák, C.; Éhen, Z. Preparation and characterization of Mentha x villosa Hudson oil–β-cyclodextrin complex. J. Therm. Anal. Calorim. 2007, 88, 363–371. [Google Scholar] [CrossRef]
- Ayala-Zavala, J.F.; González-Aguilar, G.A. Optimizing the use of garlic oil as antimicrobial agent on fresh-cut tomato through a controlled release system. J. Food Sci. 2010, 75, M398–M405. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, N.; Sanchez-Contreras, A.; Canto, A.; Cauich-Rodriguez, J.V.; Vargas-Coronado, R.; Calvo-Irabien, L.M. Effect of cyclodextrins and Mexican oregano (Lippia graveolens Kunth) chemotypes on the microencapsulation of essential oil. Ind. Crops Prod. 2018, 121, 114–123. [Google Scholar] [CrossRef]
- Yang, Z.; Huang, L.; Yao, X.; Ji, H. Host-guest complexes of estragole with β-cyclodextrin: An experimental and theoretical investigation. Flavour Fragr. J. 2017, 32, 102–111. [Google Scholar] [CrossRef]
- Shi, L. Bioactivities, isolation and purification methods of polysaccharides from natural products: A review. Int. J. Biol. Macromol. 2016, 92, 37–48. [Google Scholar] [CrossRef]
- Luo, K.; Lee, D.H.; Adra, H.J.; Kim, Y.R. Synthesis of monodisperse starch microparticles through molecular rearrangement of short-chain glucans from natural waxy maize starch. Carbohydr. Polym. 2019, 218, 261–268. [Google Scholar] [CrossRef] [PubMed]
- de Oliveira Cardoso, V.M.; Evangelista, R.C.; Gremião, M.P.D.; Cury, B.S.F. Insights into the impact of cross-linking processes on physicochemical characteristics and mucoadhesive potential of gellan gum/retrograded starch microparticles as a platform for colonic drug release. J. Drug Deliv. Sci. Technol. 2020, 55, 101445. [Google Scholar] [CrossRef]
- Akakuru, O.U.; Louis, H.; Uwaoma, R.; Elemike, E.E.; Akakuru, O.C. Novel highly-swellable and pH-responsive slow release formulations of clotrimazole with chitosan-g-PEG/starch microparticles. React. Funct. Polym. 2019, 135, 32–43. [Google Scholar] [CrossRef]
- Moura, W.S.; Oliveira, E.E.; Haddi, K.; Correa, R.F.; Piau, T.B.; Moura, D.S.; Santos, S.F.; Grisolia, C.K.; Ribeiro, B.M.; Aguiar, R.W.S. Cassava starch-based essential oil microparticles preparations: Functionalities in mosquito control and selectivity against non-target organisms. Ind. Crops Prod. 2021, 162, 113289. [Google Scholar] [CrossRef]
- Ren, N.; Ma, Z.; Li, X.; Hu, X. Preparation of rutin-loaded microparticles by debranched lentil starch-based wall materials: Structure, morphology and in vitro release behavior. Int. J. Biol. Macromol. 2021, 173, 293–306. [Google Scholar] [CrossRef]
- Dos Santos, A.M.; Meneguin, A.B.; Akhter, D.T.; Fletcher, N.; Houston, Z.H.; Bell, C.; Thurecht, K.J.; Gremião, M.P.D. Understanding the role of colon-specific microparticles based on retrograded starch/pectin in the delivery of chitosan nanoparticles along the gastrointestinal tract. Eur. J. Pharm. Biopharm. 2021, 158, 371–378. [Google Scholar] [CrossRef]
- Baltrusch, K.L.; Torres, M.D.; Domínguez, H.; Flórez-Fernández, N. Spray-drying microencapsulation of tea extracts using green starch, alginate or carrageenan as carrier materials. Int. J. Biol. Macromol. 2022, 203, 417–429. [Google Scholar] [CrossRef]
- Kusonwiriyawong, C. Development of spray-dried corn and tapioca starch microparticles for protein delivery. J. Curr. Sci. Technol. 2021, 11, 375–391. [Google Scholar] [CrossRef]
- Adejoro, F.A.; Hassen, A.; Thantsha, M.S. Characterization of starch and gum arabic-maltodextrin microparticles encapsulating acacia tannin extract and evaluation of their potential use in ruminant nutrition. Asian-Australas. J. Anim. Sci. 2019, 32, 977. [Google Scholar] [CrossRef]
- Quadrado, R.F.; Fajardo, A.R. Microparticles based on carboxymethyl starch/chitosan polyelectrolyte complex as vehicles for drug delivery systems. Arab. J. Chem. 2020, 13, 2183–2194. [Google Scholar] [CrossRef]
- Panwar, V.; Sharma, A.; Thomas, J.; Chopra, V.; Kaushik, S.; Kumar, A.; Ghosh, D. In-vitro and In-vivo evaluation of biocompatible and biodegradable calcium-modified carboxymethyl starch as a topical hemostat. Materialia 2019, 7, 100373. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhi, J.; Huang, S.; Zhang, X.; Kim, Y.R.; Xu, Y.; Wang, D.; Luo, K. Fabrication of starch/zein-based microcapsules for encapsulation and delivery of fucoxanthin. Food Chem. 2022, 392, 133282. [Google Scholar] [CrossRef]
- Cortez-Trejo, M.C.; Wall-Medrano, A.; Gaytán-Martínez, M.; Mendoza, S. Microencapsulation of pomegranate seed oil using a succinylated taro starch: Characterization and bioaccessibility study. Food Biosci. 2021, 41, 100929. [Google Scholar] [CrossRef]
- Luo, Y.; Ni, F.; Guo, M.; Liu, J.; Chen, H.; Zhang, S.; LI, Y.; Chen, G.; Wang, G. Quinoa starch microspheres for drug delivery: Preparation and their characteristics. Food Sci. Technol. 2022, 42, e126421. [Google Scholar] [CrossRef]
- Hassan, H.; Gomaa, A.; Subirade, M.; Kheadr, E.; St-Gelais, D.; Fliss, I. Novel design for alginate/resistant starch microcapsules controlling nisin release. Int. J. Biol. Macromol. 2020, 153, 1186–1192. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Molina, A.V.D.L.; Ayala Zavala, J.F.; Bernal Mercado, A.T.; Cruz Valenzuela, M.R.; González-Aguilar, G.A.; Lizardi-Mendoza, J.; Brown-Bojorquez, F.; Silva-Espinoza, B.A. Maltodextrin encapsulation improves thermal and pH stability of green tea extract catechins. J. Food Process. Preserv. 2021, 45, e15729. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Z.; Huang, G.; Yu, H.; Ma, Y.; Zheng, Q.; Yue, P. Roles of maltodextrin and inulin as matrix formers on particle performance of inhalable drug nanocrystal-embedded microparticles. Carbohydr. Polym. 2020, 235, 115937. [Google Scholar] [CrossRef] [PubMed]
- Fu, N.; You, Y.J.; Quek, S.Y.; Wu, W.D.; Chen, X.D. Interplaying effects of wall and core materials on the property and functionality of microparticles for co-encapsulation of vitamin E with coenzyme Q 10. Food Bioprocess Technol. 2020, 13, 705–721. [Google Scholar] [CrossRef]
- De Almeida Costa, N.; Silveira, L.R.; de Paula Amaral, E.; Pereira, G.C.; de Almeida Paula, D.; Vieira, É.N.R.; Martins, E.M.F.; Stringheta, P.C.; Júnior, B.R.D.C.L.; Ramos, A.M. Use of maltodextrin, sweet potato flour, pectin and gelatin as wall material for microencapsulating Lactiplantibacillus plantarum by spray drying: Thermal resistance, in vitro release behavior, storage stability and physicochemical properties. Food Res. Int. 2023, 164, 112367. [Google Scholar] [CrossRef]
- Bernal-Millán, M.D.J.; Gutiérrez-Grijalva, E.P.; Contreras-Angulo, L.; Muy-Rangel, M.D.; López-Martínez, L.X.; Heredia, J.B. Spray-dried microencapsulation of oregano (Lippia graveolens) polyphenols with maltodextrin enhances their stability during in vitro digestion. J. Chem. 2022, 2022, 8740141. [Google Scholar] [CrossRef]
- Pilicheva, B.; Uzunova, Y.; Katsarov, P. Comparative Study on Microencapsulation of Lavender (Lavandula angustifolia Mill.) and Peppermint (Mentha piperita L.) Essential Oils via Spray-Drying Technique. Molecules 2021, 26, 7467. [Google Scholar] [CrossRef]
- Lorenzo-Veiga, B.; Diaz-Rodriguez, P.; Alvarez-Lorenzo, C.; Loftsson, T.; Sigurdsson, H.H. In Vitro and Ex Vivo Evaluation of Nepafenac-Based Cyclodextrin Microparticles for Treatment of Eye Inflammation. Nanomaterials 2020, 10, 709. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Y.; Chen, S.; Cheong, K.L.; Teng, B. Carboxymethyl β-cyclodextrin grafted carboxymethyl chitosan hydrogel-based microparticles for oral insulin delivery. Carbohydr. Polym. 2020, 246, 116617. [Google Scholar] [CrossRef]
- Papakyriakopoulou, P.; Manta, K.; Kostantini, C.; Kikionis, S.; Banella, S.; Ioannou, E.; Christodoulou, E.; Rekkas, D.M.; Dallas, P.; Vertzoni, M.; et al. Nasal powders of quercetin-β-cyclodextrin derivatives complexes with mannitol/lecithin microparticles for Nose-to-Brain delivery: In vitro and ex vivo evaluation. Int. J. Pharm. 2021, 607, 121016. [Google Scholar] [CrossRef]
- Vaghasiya, K.; Ray, E.; Sharma, A.; Singh, R.; Jadhav, K.; Khan, R.; Katare, O.P.; Verma, R.K. Systematic development and optimization of spray-dried Quercetin-HP-β-cyclodextrin microparticles for DPI-based therapy of lung cancer. J. Mater. Sci. 2021, 56, 14700–14716. [Google Scholar] [CrossRef]
- Racaniello, G.F.; Laquintana, V.; Summonte, S.; Lopedota, A.; Cutrignelli, A.; Lopalco, A.; Franco, M.; Bernkop-Schnürch, A.; Denora, N. Spray-dried mucoadhesive microparticles based on S-protected thiolated hydroxypropyl-β-cyclodextrin for budesonide nasal delivery. Int. J. Pharm. 2021, 603, 120728. [Google Scholar] [CrossRef]
- Rosas, M.D.; Piqueras, C.M.; Piva, G.K.; Ramírez-Rigo, M.V.; Cardozo Filho, L.; Bucala, V. Simultaneous formation of inclusion complex and microparticles containing Albendazole and β-Cyclodextrin by supercritical antisolvent co-precipitation. J. CO2 Util. 2021, 47, 101505. [Google Scholar] [CrossRef]
- Rein, S.M.T.; Lwin, W.W.; Tuntarawongsa, S.; Phaechamud, T. Meloxicam-loaded solvent exchange-induced in situ forming beta-cyclodextrin gel and microparticle for periodontal pocket delivery. Mater. Sci. Eng. C 2020, 117, 111275. [Google Scholar] [CrossRef]
- Maqbool, I.; Akhtar, M.; Ahmad, R.; Sadaquat, H.; Noreen, S.; Batool, A.; Khan, S.U. Novel multiparticulate pH triggered delayed release chronotherapeutic drug delivery of celecoxib-β-cyclodextrin inclusion complexes by using Box-Behnken design. Eur. J. Pharm. Sci. 2020, 146, 105254. [Google Scholar] [CrossRef] [PubMed]
- Acharya, S.; Liyanage, S.; Parajuli, P.; Rumi, S.S.; Shamshina, J.L.; Abidi, N. Utilization of Cellulose to Its Full Potential: A Review on Cellulose Dissolution, Regeneration, and Applications. Polymers 2021, 13, 4344. [Google Scholar] [CrossRef]
- Klemm, D.; Heublein, B.; Fink, H.P.; Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 2005, 44, 3358–3393. [Google Scholar] [CrossRef] [PubMed]
- Brigham, C. Biopolymers: Biodegradable alternatives to traditional plastics. In Green Chemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 753–770. [Google Scholar] [CrossRef]
- Vuoti, S.; Laatikainen, E.; Heikkinen, H.; Johansson, L.S.; Saharinen, E.; Retulainen, E. Chemical modification of cellulosic fibers for better convertibility in packaging applications. Carbohydr. Polym. 2013, 96, 549–559. [Google Scholar] [CrossRef]
- Siepmann, J.; Kranz, H.; Bodmeier, R.; Peppas, N.A. HPMC-matrices for controlled drug delivery: A new model combining diffusion, swelling, and dissolution mechanisms and predicting the release kinetics. Pharm. Res. 1999, 16, 1748–1756. [Google Scholar] [CrossRef]
- Kozioł, E.; Skalicka-Woźniak, K. Imperatorin–pharmacological meaning and analytical clues: Profound investigation. Phytochem. Rev. 2016, 15, 627–649. [Google Scholar] [CrossRef]
- Kang, M.K.; Kim, J.C. pH-dependent release from ethylcellulose microparticles containing alginate and calcium carbonate. Colloid Polym. Sci. 2010, 288, 265–270. [Google Scholar] [CrossRef]
- Petzold-Welcke, K.; Kötteritzsch, M.; Heinze, T. 2, 3-O-Methyl cellulose: Studies on synthesis and structure characterization. Cellulose 2010, 17, 449–457. [Google Scholar] [CrossRef]
- Barakat, N.S.; Elbagory, I.M.; Almurshedi, A.S. Formulation, release characteristics and bioavailability study of oral monolithic matrix tablets containing carbamazepine. AAPS PharmSciTech. 2008, 9, 931–938. [Google Scholar] [CrossRef]
- Singh, P.; Medronho, B.; Alves, L.; Da Silva, G.J.; Miguel, M.G.; Lindman, B. Development of carboxymethyl cellulose-chitosan hybrid micro-and macroparticles for encapsulation of probiotic bacteria. Carbohydr. Polym. 2017, 175, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Hon, D.N.S. Cellulose and its derivatives: Structures, reactions, and medical uses. In Polysaccharides in Medicinal Applications; Routledge: Abingdon, UK, 2017; pp. 87–105. ISBN 9780203742815. [Google Scholar]
- Pham, A.T.; Lee, P.I. Probing the mechanisms of drug release from hydroxypropylmethyl cellulose matrices. Pharm. Res. 1994, 11, 1379–1384. [Google Scholar] [CrossRef]
- Baviskar, D.; Sharma, R.; Jain, D. Modulation of drug release by utilizing pH-independent matrix system comprising water soluble drug verapamil hydrochloride. Pak. J. Pharm. Sci. 2013, 26, 137–144. [Google Scholar]
- Skoug, J.W.; Mikelsons, M.V.; Vigneron, C.N.; Stemm, N.L. Qualitative evaluation of the mechanism of release of matrix sustained release dosage forms by measurement of polymer release. J. Control. Release 1993, 27, 227–245. [Google Scholar] [CrossRef]
- Gericke, M.; Trygg, J.; Fardim, P. Functional cellulose beads: Preparation, characterization, and applications. Chem. Rev. 2013, 113, 4812–4836. [Google Scholar] [CrossRef]
- O’Neill, J.J., Jr.; Reichardt, E.P.U. Method of Producing Cellulose Pellets. US Patent 2543928A, 6 March 1951. Available online: https://insight.rpxcorp.com/patent/US2543928A (accessed on 29 July 2023).
- Oliveira, W.D.; Glasser, W.G. Hydrogels from polysaccharides. I. Cellulose beads for chromatographic support. J. Appl. Polym. Sci. 1996, 60, 63–73. [Google Scholar] [CrossRef]
- Trygg, J.; Fardim, P.; Gericke, M.; Mäkilä, E.; Salonen, J. Physicochemical design of the morphology and ultrastructure of cellulose beads. Carbohydr. Polym. 2013, 93, 291–299. [Google Scholar] [CrossRef]
- Wang, H.; Li, B.; Shi, B. Preparation and surface acid-base properties of porous cellulose. BioResources 2008, 3, 3–12. [Google Scholar] [CrossRef]
- Senuma, Y.; Hilborn, J.G. High speed imaging of drop formation from low viscosity liquids and polymer melts in spinning disk atomization. Polym. Eng. Sci. 2002, 42, 969–982. [Google Scholar] [CrossRef]
- Maggioris, D.; Goulas, A.; Alexopoulos, A.H.; Chatzi, E.G.; Kiparissides, C. Prediction of particle size distribution in suspension polymerization reactors: Effect of turbulence nonhomogeneity. Chem. Eng. Sci. 2000, 55, 4611–4627. [Google Scholar] [CrossRef]
- Luo, X.; Liu, S.; Zhou, J.; Zhang, L. In situ synthesis of Fe 3 O 4/cellulose microspheres with magnetic-induced protein delivery. J. Mater. Chem. 2009, 19, 3538–3545. [Google Scholar] [CrossRef]
- Xiong, X.; Zhang, L.; Wang, Y. Polymer fractionation using chromatographic column packed with novel regenerated cellulose beads modified with silane. J. Chromatogr. A 2005, 1063, 71–77. [Google Scholar] [CrossRef] [PubMed]
- Motozato, Y.; Hirayama, C. Preparation and properties of cellulose spherical particles and their ion exchangers. J. Chromatogr. A 1984, 298, 499–507. [Google Scholar] [CrossRef]
- Thümmler, K.; Fischer, S.; Feldner, A.; Weber, V.; Ettenauer, M.; Loth, F.; Falkenhagen, D. Preparation and characterization of cellulose microspheres. Cellulose 2011, 18, 135–142. [Google Scholar] [CrossRef]
- Edlund, O.H.; Andreassen, B.A. Substituted Cellulose in Grain Form and a Method of Producing the Same. Patent US3731816A, 8 May 1973. Available online: https://patents.google.com/patent/US3731816A/en (accessed on 29 July 2023).
- Determann, H.; Wieland, T. Gel Filtration Process. Patent US3597350A, 3 August 1971. Available online: https://patents.google.com/patent/US3597350A/en (accessed on 29 July 2023).
- Peska, J.; Stamberg, J.; Blace, Z. Method of Producing Spheric Cellulosis Particles. Patent SE7505610L, 1 December 1975. Available online: https://patents.google.com/patent/SE7505610L/en (accessed on 29 July 2023).
- Kaster, J.A.; de Oliveira, W.; Glasser, W.G.; Velander, W.H. Optimization of pressure-flow limits, strength, intraparticle transport and dynamic capacity by hydrogel solids content and bead size in cellulose immunosorbents. J. Chromatogr. A 1993, 648, 79–90. [Google Scholar] [CrossRef]
- Tsao, G.T.; Chen, L.F. Poroese Cellulose Beads. Patent DE2717965A1, 26 June 1986. Available online: https://patents.google.com/patent/DE2717965A1/en (accessed on 29 July 2023).
- Pinnow, M.; Fink, H.P.; Fanter, C.; Kunze, J. January. Characterization of highly porous materials from cellulose carbamate. Macromol. Symp. 2008, 262, 129–139. [Google Scholar] [CrossRef]
- Rosenberg, P.; Rom, M.; Janicki, J.; Fardim, P. New Cellulose Beads from Biocelsol Solution. Cellul. Chem. Technol. 2008, 42, 293–305. [Google Scholar]
- Rama, K.; Senapati, P.; Das, M.K. Formulation and in vitro evaluation of ethyl cellulose microspheres containing zidovudine. J. Microencapsul. 2005, 22, 863–876. [Google Scholar] [CrossRef] [PubMed]
- Chella, N.; Yada, K.K.; Vempati, R. Preparation and evaluation of ethyl cellulose microspheres containing diclofenac sodium by novel w/o/o emulsion method. J. Pharm. Sci. Res. 2010, 2, 884. [Google Scholar]
- Nath, B.; Nath, L.K.; Mazumder, B.; Kumar, P.; Sharma, N.; Sahu, B.P. Preparation and characterization of salbutamol sulphate loaded ethyl cellulose microspheres using water-in-oil-oil emulsion technique. IJPR 2010, 9, 97. [Google Scholar]
- Cheu, S.J.; Chen, R.L.; Chen, P.F.; Lin, W.J. In vitro modified release of acyclovir from ethyl cellulose microspheres. J. Microencapsul. 2001, 18, 559–565. [Google Scholar] [CrossRef]
- Khairnar, G.; Mokale, V.; Naik, J. Formulation and development of nateglinide loaded sustained release ethyl cellulose microspheres by O/W solvent emulsification technique. J. Pharm. Investig. 2014, 44, 411–422. [Google Scholar] [CrossRef]
- Chowdary, K.P.R.; Koteswara Rao, N.; Malathi, K. Ethyl cellulose microspheres of glipizide: Characterization, in vitro and in vivo evaluation. Indian J. Pharm. Sci. 2004, 66, 412–416. [Google Scholar]
- Wasay, S.A.; Jan, S.U.; Akhtar, M.; Ahmad, R.; Shah, P.A.; Razaque, G.; Muhammad, S.; Shahwani, N.A.; Younis, M.; Shahwani, G.M.; et al. Meloxicam loaded hydroxypropyl methylcellulose (HPMC) microparticulate: Fabrication, characterization and in vivo pharmacokinetic assessment. Pak. J. Pharm. Sci. 2022, 35, 1251–1260. [Google Scholar]
- Zheng, J.; Wang, B.; Xiang, J.; Yu, Z. Controlled release of curcumin from HPMC (hydroxypropyl methyl cellulose) co-spray-dried materials. Bioinorg. Chem. Appl. 2021, 2021, 7625585. [Google Scholar] [CrossRef]
- Javed, I.; Ranjha, N.M.; Mahmood, K.; Kashif, S.; Rehman, M.; Usman, F. Drug release optimization from microparticles of poly (E-caprolactone) and hydroxypropyl methylcellulose polymeric blends: Formulation and characterization. J. Drug Deliv. Sci. Technol. 2014, 24, 607–612. [Google Scholar] [CrossRef]
- Weiβ, G.; Knoch, A.; Laicher, A.; Stanislaus, F.; Daniels, R. Simple coacervation of hydroxypropyl methylcellulose phthalate (HPMCP) I. Temperature and pH dependency of coacervate formation. Int. J. Pharm. 1995, 124, 87–96. [Google Scholar] [CrossRef]
- Ferreira, D.C.M.; Ferreira, S.O.; de Alvarenga, E.S.; Soares, N.D.F.F.; dos Reis Coimbra, J.S.; de Oliveira, E.B. Polyelectrolyte complexes (PECs) obtained from chitosan and carboxymethylcellulose: A physicochemical and microstructural study. Carbohydr. Polym. Tech. Appl. 2022, 3, 100197. [Google Scholar] [CrossRef]
- Wasilewska, K.; Szekalska, M.; Ciosek-Skibinska, P.; Lenik, J.; Basa, A.; Jacyna, J.; Markuszewski, M.; Winnicka, K. Ethylcellulose in Organic Solution or Aqueous Dispersion Form in Designing Taste-Masked Microparticles by the Spray Drying Technique with a Model Bitter Drug: Rupatadine Fumarate. Polymers 2019, 11, 522. [Google Scholar] [CrossRef]
- Shahin, H.I.; Vinjamuri, B.P.; Mahmoud, A.A.; Shamma, R.N.; Mansour, S.M.; Ammar, H.O.; Ghorab, M.M.; Chougule, M.B.; Chablani, L. Design and evaluation of novel inhalable sildenafil citrate spray-dried microparticles for pulmonary arterial hypertension. J. Control. Release 2019, 302, 126–139. [Google Scholar] [CrossRef] [PubMed]
- Pardeshi, S.; Patil, P.; Rajput, R.; Mujumdar, A.; Naik, J. Preparation and characterization of sustained release pirfenidone loaded microparticles for pulmonary drug delivery: Spray drying approach. Dry. Technol. 2020, 39, 337–347. [Google Scholar] [CrossRef]
- Dankyi, B.O.; Amponsah, S.K.; Allotey-Babington, G.L.; Adams, I.; Goode, N.A.; Nettey, H. Chitosan-coated hydroxypropylmethyl cellulose microparticles of levodopa (and carbidopa): In vitro and rat model kinetic characteristics. Curr. Ther. Res. 2020, 93, 100612. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, A.; Liu, Z.; Mao, L.; Yuan, F.; Gao, Y.; Mackie, A. Structural design of zein-cellulose nanocrystals core–shell microparticles for delivery of curcumin. Food Chem. 2021, 357, 129849. [Google Scholar] [CrossRef]
- Rajpoot, S.R.; Ahmad, K.; Asif, H.M.; Madni, M.A.; Tasleem, M.W.; Zafar, F.; Majeed, H.; Khalid, A.; Hashmi, H.A.S.; Aslam, M.R.; et al. Study of anti-inflammatory and anti-arthritic potential of curcumin-loaded Eudragit L100 and hydroxy propyl methyl cellulose (HPMC) microparticles. Polym. Bull 2023, 2023, 1–16. [Google Scholar] [CrossRef]
- Kalmer, R.R.; Mohammadi, M.; Karimi, A.; Najafpour, G.; Haghighatnia, Y. Fabrication and evaluation of carboxymethylated diethylaminoethyl cellulose microcarriers as support for cellular applications. Carbohydr. Polym. 2019, 226, 115284. [Google Scholar] [CrossRef]
- Tsirigotis-Maniecka, M.; Szyk-Warszyńska, L.; Lamch, Ł.; Weżgowiec, J.; Warszyński, P.; Wilk, K.A. Benefits of pH-responsive polyelectrolyte coatings for carboxymethyl cellulose-based microparticles in the controlled release of esculin. Mater. Sci. Eng. C 2021, 118, 111397. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, M.; Devahastin, S.; Liu, K. Fabrication of curcumin encapsulated in casein-ethyl cellulose complexes and its antibacterial activity when applied in combination with blue LED irradiation. Food Control 2022, 134, 108702. [Google Scholar] [CrossRef]
- Guerrero, R.; Heng, P.W.; Tumolva, T.P. Preparation of crosslinked alginate-cellulose derivative microparticles for protein delivery. Key Eng. Mater. 2022, 931, 69–75. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, X.C.; Wang, J.J. Drugs adsorption and release behavior of collagen/bacterial cellulose porous microspheres. Int. J. Biol. Macromol. 2019, 140, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Sharma, M.; Choudhury, P.K. Formulation, in-vitro & in-vivo evaluation of Ethyl cellulose microspheres of Glipizide. J. Drug Deliv. Ther. 2019, 9, 311–315. [Google Scholar]
- Al-ani, R.R.; AL-Saman, H.N.K. Formulation, Development and Characterization of Microspheres of Calcium Channel Blocker. J. Pharm. Negat. Results 2022, 13, 820–825. [Google Scholar] [CrossRef]
- Xia, H.; Li, J.; Man, J.; Man, L.; Zhang, S.; Li, J. Recent progress in preparation of functional microparticles based on microfluidic technique. Mater. Today Commun. 2021, 29, 102740. [Google Scholar] [CrossRef]
- Pilicheva, B.; Katsarov, P.; Kassarova, M. Flowability evaluation of dry powder inhalation formulations intended for nasal delivery of Betahistine Dihydrochloride. Sikk Manipal Univ. Med. J. 2014, 2, 77–90. [Google Scholar]
- Gahrooee, T.R.; Moud, A.A.; Danesh, M.; Hatzikiriakos, S.G. Rheological characterization of CNC-CTAB network below and above critical micelle concentration (CMC). Carbohydr. Polym. 2021, 1, 117552. [Google Scholar] [CrossRef]
- Kantak, M.N.; Bharate, S.S. Analysis of clinical trials on biomaterial and therapeutic applications of chitosan: A review. Carbohydr. Polym. 2022, 278, 118999. [Google Scholar] [CrossRef]
- Shunji, H. Adjuvant Composition and Vaccine Composition. Patent WO2023145417A1, 10 January 2023. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2023145417A1&KC=A1&FT=D (accessed on 17 August 2023).
- Vasilio, A.; Farrugia, V. Biodegradable Polymer Microparticles and Methods of Making and Using the Same. Patent CN115678222A, 3 February 2023. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=CN&NR=115678222A&KC=A&FT=D (accessed on 17 August 2023).
- Goyanes, S.N.; Rubiolo, G.H.; D’Accoroso, N.B.; Famá, L.M.; Fabiana, P.; Seligra, G. Product of Crystalline Starch Nano-Microparticles, Procedures and Gel for Various Applications. Patent US20220315671A1, 6 April 2022. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2022315671A1&KC=A1&FT=D (accessed on 17 August 2023).
- Sinead, B.; Maja, S. A Method of Forming a Composition Comprising a Probiotic Micro-Encapsulated in a Denatured Plant Protein Matrix. Patent GB2615103A, 27 January 2022. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=GB&NR=2615103A&KC=A&FT=D (accessed on 17 August 2023).
- Lopez, D.; Duran, E.; Papantonakis, M.; Fernandez, F.; Healy, A.; Marchand, S.; Dea Ayuela, M. Amphoteracin B Formulations for Inhalation Based on Collapsed Microparti-Cles Containing Carbohydrates and Amino Acids. Patent WO2022129661A1, 23 June 2022. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2022129661A1&KC=A1&FT=D (accessed on 17 August 2023).
- Simenhaus, Z. Protein Containing Bio-Active Compositions Comprising Cellulose Microparticle Carriers. Patent WO2023286049A1, 7 July 2022. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2023286049A1&KC=A1&FT=D (accessed on 17 August 2023).
- Andrews, M.; Morse, T.; Rak, M.; Hu, Z.; Bateman, M. Porous Cellulose Microparticles and Methods of Manufacture Thereof. Patent US20220213298A1, 7 July 2022. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2022213298A1&KC=A1&FT=D (accessed on 17 August 2023).
- Nair, M.; Raymond, A.; Vashist, A. Biotherapy for Viral Infections Using Biopolymer Based Micro/Nanogels. Patent US20220313617A1, 6 October 2022. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=US&NR=2022313617A1&KC=A1&FT=D (accessed on 17 August 2023).
- Singh, A.; Singh, R. A method for Synthesizing Repaglinide Loaded Floating Microparticles. Patent AU2021103734A4, 30 June 2021. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=AU&NR=2021103734A4&KC=A4&FT=D (accessed on 17 August 2023).
- Sinead, B. Pharmaceutical Formulations, and Methods for the Production Thereof. Patent WO2022200636A1, 26 March 2021. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=WO&NR=2022200636A1&KC=A1&FT=D (accessed on 17 August 2023).
- Songfana, H. Omeprazole Sustained-Release Pharmaceutical Composition and Preparation Method Thereof. Patent CN110613700, 31 October 2019. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=CN&NR=110613700A&KC=A&FT=D (accessed on 17 August 2023).
- Romina, M.; Silvia, A.; Sergio, S.; Daniele, A.; Rogelio, H. Crude Starch Microparticles as an Adjuvant in Vaccines. Patent MX2016005434A, 27 April 2016. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=MX&NR=2016005434A&KC=A&FT=D (accessed on 17 August 2023).
- Yan, L.; Yuan, M.; Fang, M. Starch Porous Microparticle for Hemostasis. Patent CN106039389A, 5 August 2016. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=CN&NR=106039389A&KC=A&FT=D (accessed on 17 August 2023).
- Iurkshtovich, T.; Golub, N.; Iurkshovich, N.; Biochkovskii, P. Anti-Tumor Formulation Based on Recombinant Interferon Alpha-2b in the Form of Microparticles for Parenteral Administration. Patent EA201600005A1, 24 November 2015. Available online: https://worldwide.espacenet.com/publicationDetails/biblio?CC=EA&NR=201600005A1&KC=A1&FT=D (accessed on 17 August 2023).
Properties | Cyclodextrin Form | ||
---|---|---|---|
α-CD | β-CD | γ-CD | |
Number of glucopyranose units | 6 | 7 | 8 |
Molecular mass of anhydrous form (Da) | 972.84 | 1134.98 | 1297.12 |
Solubility in water at 25 °C (mg/mL) | 129.5 ± 0.7 | 18.4 ± 0.2 | 249 ± 0.2 |
Cone height (nm) | 0.78 | 0.78 | 0.78 |
Inner diameter of the cone (nm) | 0.50 | 0.62 | 0.80 |
Outer diameter of the cone (nm) | 1.46 | 1.54 | 1.75 |
Polymer | Preparation Method | Active Substance | Reported Results | Reference |
---|---|---|---|---|
2-hydroxyethyl starch | Sonication method | Ketoprofen, Ofloxacin | Drug encapsulation efficiency 40–54%; sustained drug release at pH 1.2, 5.4, and 6.8; high efficiency against E. coli and Bacillus cereus. | [48] |
Freeze-dried potato starch | Freeze-drying | Resveratrol | Starch microparticles, providing limited photo and thermal drug degradation during storage. | [51] |
Maize starch | Molecular self-assembling | Dye model molecules | Monodispersed microparticles with size 0.2–5.0 µm; production yield over 70%; drug delivery to the intestines. | [102] |
Crosslinked retrograded starch | Ionotropic gelation | Ketoprofen | Spherical microparticles with high yield (>78%) and encapsulation efficiency (72%). Sustained colonic drug delivery and good mucoadhesive properties. | [103] |
Crosslinked starch | Emulsification, crosslinking | Clotrimazole | Sustained drug-release profile—34.31% clotrimazole released for 60 min, following zero-order kinetics and non-Fickian diffusion. | [104] |
Cassava starch | Freeze-drying | S. guianensis essential oil | Increased stability of the essential oil; prolonged larvicidal activity; low toxicity of the microparticles on zebrafish embryos. | [105] |
Debranched lentil starch | Complex coacervation | Rutin | Modified drug release from the microparticles; starch with higher molecular weight was beneficial for slower release of rutin. | [106] |
Retrograded starch | Ionotropic gelation | 5-fluorouracil | Targeted release of drug-loaded chitosan nanoparticles in the colon, tested in vivo on mice after oral administration. | [107] |
Starch | Spray-drying | Camelia sinensis extract | Spray-dried microparticles with production yield 55–58%, encapsulation efficiency 60–93% and drug loading 65–84%; high antioxidant activity. | [108] |
Corn and tapioca starch | Spray-drying | Bovine serum albumin | Spray-dried microparticles with protein loading 1–5% and entrapment efficiency 94–125%. | [109] |
Starch, maltodextrin | Freeze-drying | Tannin extracts | Drug encapsulation efficiency 27–65%; drug loading 15–30%; in vitro burst release pattern in acetate buffer. | [110] |
Carboxymethyl starch | Complex coacervation | Bovine serum albumin | Microparticles with oval-shape morphology and rough and porous surfaces; controlled release with limited burst effect, following zero-order kinetics. | [111] |
Carboxymethyl starch | Ionotropic gelation, freeze-drying | Drug-free microparticles | Improved hydrophilic properties; substantially improved fluid absorption and swelling properties; improved clotting efficiency and hemostatic effect. | [112] |
Starch/zein | Molecular self-assembling | Fucoxanthin | Starch-based carrier effectively protected fucoxanthin against photodegradation and oxidation; in vitro-controlled drug release. | [113] |
Taro succinylated starch | Spray-drying | Pomegranate seed oil | Encapsulation efficiency of 1.09 ± 0.41%; highest amount of pomegranate seed oil was released under intestinal conditions. | [114] |
Unhydrolyzed quinoa starch | Emulsification | Drug-free microparticles | Spherical, ellipsoidal in shape microparticles with the specific surface area of 1.676 m2/g; uniform size distribution with mean particle size of 28.5 μm. | [115] |
Hi-maize resistant starch | Ionotropic gelation | Nisin | Drug protection and controlled release; effective inhibition of the growth of C. tyrobutyricum. | [116] |
Maltodextrin | Spray-drying | Green tea extract catechins | Mean particle size of 26 μm; entrapment efficiency of 63%; improved thermal and pH stability of epigallocatechin gallate and gallocatechin gallate. | [117] |
Maltodextrin, Inulin | Spray-drying | Flavonoid model drug | Microparticles showed excellent redispersibility and aerodynamic performance, suitable for inhalation administration. | [118] |
Maltodextrin, whey protein | Spray-drying | α-Tocopherol, CoQ10 | Distorted particle shape; high retention of the core material (89.6–97.4%) and antioxidant activity during storage for 35 days. | [119] |
Maltodextrin, sweet potato starch | Spray-drying | Lactiplantibacillus plantarum (probiotics) | Materials used promoted greater resistance to Lactiplantibacillus plantarum; probiotic showed counts above 8.0 log CFU/g in the gastrointestinal tract. | [120] |
Maltodextrin | Spray-drying | Polyphenols from Lippia graveolens | Microcapsules with spherical shape and particle size between 2 and 12 μm; high drug stability (85%); high antioxidant activity. | [121] |
Maltodextrin, Arabic gum | Spray-drying | Lavender oil, Peppermint oil | Microcapsules with high yield 71–84%, mean diameter 2.41–5.99 µm, and total oil content of up to 10.80%. | [122] |
γ-CD/hydroxypropyl-β-CD | Complexation | Nepafenac | Increased drug levels in the posterior eye segment after topical administration; non-irritating and non-toxic; high permeation through bovine sclera. | [123] |
Carboxymethyl β-CD | Coacervation | Insulin | Increased drug stability in gastric environment; paracellular transport across Caco-2 cell; long-acting and stable hypoglycemic effect. | [124] |
Methyl-β-CD, hydroxypropyl-β-CD | Freeze-drying Spray-drying | Quercetin | Nasal microparticles for nose-to-brain delivery; rapid in vitro dissolution and permeation; enhanced ex vivo transport across rabbit nasal mucosa. | [125] |
Hydroxypropyl- β-CD | Spray-drying | Quercetin | Aerodynamic characteristic for delivery it in the alveolar region; anti-proliferative efficacy towards A549-adenocarcinomic-alveolar epithelial cells. | [126] |
Thiolated hydroxypropyl-β-CD | Spray-drying | Budesonide | Nasal drug delivery; average diameter of 3.24 µm; prolonged mucosal residence time in vitro on freshly excised porcine nasal mucosa. | [127] |
β-CD | Supercritical antisolvent co-precipitation | Albendazole | Particle mean diameter 0.45–1.4 μm; increased drug dissolution rate attributed to a synergic effect between the microparticle components. | [128] |
β-CD | Emulsification | Meloxicam | Microparticles for periodontal pocket delivery; extended drug release up to 7 days with Fickian diffusion | [129] |
β-CD | Emulsification | Celecoxib | Particle size 50–238 µm; entrapment efficiency 68–92%. Initial delayed release in stomach followed by fast release at colonic pH. | [130] |
Polymer | Solvent | Disperse Medium | Technique | Solidification | Size (µm) | Reference |
---|---|---|---|---|---|---|
Cellulose | NaOH/urea solution | Oil | Dispersing | HCl precipitation | 10 | [152] |
Cellulose | NaOH/thiourea solution | Oil | Dispersing | HCl/CaCl2 precipitation | 100 | [153] |
Cellulose acetate | CH2Cl2 | Water | Dispersing | Solvent evaporation | 100 | [154] |
Cellulose acetate | Ethyl acetate—methanol | Water | Dispersing | Solvent evaporation | 1–10 | [155] |
Cell. acetate butyrate | CH2Cl2 | Water | Dispersing | Acetic acid precipitation | 100 | [156] |
Cellulose xanthate | NaOH solution | Benzene | Dispersing | Acetic acid precipitation | 100 | [157] |
Cellulose xanthate | NaOH solution | Chlorobenzene | Dispersing | Temperature 90 °C | 10–300 | [158] |
Cellulose | DMA/LiCl | - | Dripping | Alcohol precipitation | 500 | [159] |
Cellulose acetate | Acetone/DMSO | - | Dripping | NaOH precipitation | 900 | [160] |
Cellulose carbamate | NaOH solution | - | Jet cutting | H2SO4 precipitation | 500 | [161] |
Cellulose | NaOH solution | - | Rotating | H2SO4 precipitation | 500 | [162] |
Cellulose | NaOH/urea solution | - | Rotating | HCl precipitation | 300 | [149] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lukova, P.; Katsarov, P.; Pilicheva, B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers 2023, 15, 3615. https://doi.org/10.3390/polym15173615
Lukova P, Katsarov P, Pilicheva B. Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers. 2023; 15(17):3615. https://doi.org/10.3390/polym15173615
Chicago/Turabian StyleLukova, Paolina, Plamen Katsarov, and Bissera Pilicheva. 2023. "Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems" Polymers 15, no. 17: 3615. https://doi.org/10.3390/polym15173615
APA StyleLukova, P., Katsarov, P., & Pilicheva, B. (2023). Application of Starch, Cellulose, and Their Derivatives in the Development of Microparticle Drug-Delivery Systems. Polymers, 15(17), 3615. https://doi.org/10.3390/polym15173615