Dimensional Methods Used in the Additive Manufacturing Process
Abstract
:1. Introduction
- Binder jetting, involving the powder bed and inkjet head;
- Directed energy deposition using laser metal deposition (LMD);
- Material extrusion using FFF;
- Material jetting using multi-jet modeling (MJM);
- Powder bed fusion using selective laser sintering (SLS), direct metal laser sintering (DMLS), and electron beam melting (EBM);
- Sheet lamination, involving laminated object manufacturing (LOM) and ultrasonic consolidation;
- Vat photo-polymerization using digital light processing (DLP) and the stereo-lithography apparatus (SLA) [24].
- The direct application of Buckingham’s theorem;
- The application of partial differential equations to the fundamental differential relations of the analyzed phenomenon; using a suitable grouping, the initial variables become dimensionless quantities;
- The transformation of complete, but the simplest, equation(s) related to the phenomenon into dimensionless forms, finally yielding the desired groups.
- Obtaining the desired set of dimensionless variables is rather chaotic, arbitrary, and strongly dependent on the experience and ingenuity of the involved specialist.
- The specialist involved in the ML deduction must possess solid knowledge, both in the field of the analyzed phenomenon and higher mathematics.
- The complete ML is rarely (or occasionally) obtained, mainly due to the limited number of mathematical relations involved that describe the phenomena.
- CDA is not an easy method to master for regular engineers who are involved in prototype–model correlation analysis.
- The specialist involved can be a regular engineer, without a profound knowledge of the field of the analyzed phenomena. The specialist only needs to review the involved variables, together with their dimensions, which have (or can present) a certain influence on the analyzed phenomena.
- Using the unitary protocol, all insignificant/irrelevant variables are automatically eliminated.
- The approach allows for providing a complete set of the dimensionless variables in all cases. Consequently, the complete ML is available, which the aforementioned methods/approaches can only produce in particular cases.
- The obtained ML is very flexible, allowing for easy deduction of several useful simplified case studies, which can be associated with particular approaches to the phenomena.
- MDA assures a priori choosing/setting of variables that are directly related to conceived experimental investigations with the model; these variables are hereafter referred to as independent variables.
- The set of independent variables defines the most suitable model that can be associated with a given prototype, thus obtaining the most simple, safe, repeatable, and low-cost testing conditions for the given model in experimental investigations. These variables are freely chosen on an a priori basis for both the prototype and the model.
- The remaining variables of the prototype, hereafter referred to as dependent variables, can only be chosen on an a priori basis. For the model, the dependent variables can be obtained strictly by applying a given (suitable) element of the ML.
- A few of the prototype’s dependent variables are included that cannot be obtained more easily at low cost or by using accessible experimental measurements.
- Consequently, these aforementioned prototype variables must be obtained by applying certain elements of the ML. In fact, their deduction with the help of the ML represents the major goal of the proposed dimensional analysis.
- In addition, when applying MDA, the geometrical analogy between the prototype and the model is compulsory, e.g., the shape of the cross-section in the model can be different from that of the prototype.
- For example, by choosing the material as an independent variable, one can choose different materials for the prototype and the model.
2. The Involvement of Dimensional Methods in Additive Manufacturing
2.1. The Dimensional Analysis Conceptual Modeling (DACM) Framework
2.2. Data-Driven Approaches to Dimensionless Quantities Based on the Experimental Results
2.3. Dimensional Approaches to Metal Deposition and Metal-Infused Thermoplastics Using AM
3. Engineering Applications for MDA
- a
- The possible influencing variables of the analyzed phenomenon were chosen for the magnitude of the prototype’s vertical displacement at its free end.
- These variables are as follows:
- -
- The beam dimensions of , as well as the area defined by the ribs;
- -
- The applied force;
- -
- The , Young’s modulus;
- -
- The calculation for the useful volume of the beam, which is related to the filling degree.
- Therefore, we analyzed the following:
- -
- The second-order moment of inertia, instead of the given cross-sectional dimensions;
- -
- The involvement of the stiffness module, if necessary, along with the density or specific gravity .
- b
- The definition of matrix A, including the exponents of the involved dimensions of the independent variables, were calculated. Following the method detailed in Section 2, these variables can be freely chosen a priori for both the prototype and the model. This matrix must be invertible, i.e., .
- c
- The exponents of the remaining variables formed matrix B. These variables are the so-called dependent variables, which can only be freely chosen a priori for the prototype. This category also included the desired vertical displacement of the prototype, which we assumed would be difficult to obtain using direct experimentation on the prototype. Consequently, it was determined using one element of the ML.
- d
- The set of matrices designated B-A was completed with the matrices respectively, to achieve , which, together with matrices A and B, constitute the dimensional set in the form shown in Table 1.
- e
4. Conclusions
- It should be emphasized that the deduced MLs cannot represent all physical relationships in the truest sense; they can only provide useful correlations between the involved scale factors of the variables. This helps us to obtain definite correlations between the relative behavior of the prototype and model.
- As previously illustrated, MDA offers great flexibility when selecting a suitable (best-fit) model since it can be both manufactured and tested under optimal conditions. This allows for inexpensive preparation, experimental testing, the need for fewer qualified persons, etc.
- We only tested the efficiency of MDA for specimen optimization. However, this approach, using the dimensional analysis conceptual modeling (DACM) framework developed by Coatanéa [157,158,159,160,161,162,163,164,165,166,167], can also be extended and successfully implemented in different areas of additive manufacturing.
- The MLs we deduced are also fully applicable to metals.
- Our future goal is to design and validate suitable MLs for combined metal–polymer components, as well as for components with different internal structures.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Moreno Nieto, D.; Moreno Sánchez, D. Design for Additive Manufacturing: Tool Review and a Case Study. Appl. Sci. 2021, 11, 1571. [Google Scholar] [CrossRef]
- Brackett, D.; Ashcroft, I.; Hague, R. Topology optimization for additive manufacturing. In Proceedings of the 21st Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference, SFF, Austin, TX, USA, 8–10 August 2010; Volume 2010, pp. 348–362. [Google Scholar]
- Liu, J.; Cheng, Z.; Ma, Y. Product design-optimization integration via associative optimization feature modeling. Adv. Eng. Inform. 2016, 30, 713–727. [Google Scholar] [CrossRef]
- Galfi, B.P.; Szava, I.; Sova, D.; Vlase, S. Thermal Scaling of Transient Heat Transfer in a Round Cladded Rod with Modern Dimensional Analysis. Mathematics 2021, 9, 1875. [Google Scholar] [CrossRef]
- Anderson, D.M. Design for Manufacturability & Concurrent Engineering: How to Design for Low Cost, Design in High Quality, Design for Lean Manufacture, and Design Quickly for Fast Production; CIM Press: Dundalk, Ireland, 2004. [Google Scholar]
- Aw, J.; Parikh, N.; Zhang, X.; Moore, J.; Geubelle, P.; Sottos, N. Additive manufacturing of thermosetting polymers using frontal polymerization. Abstracts Of Papers of The American Chemical Society. In Proceedings of the 257th National Meeting of the American-Chemical-Society (ACS), Orlando, FL, USA, 31 March–4 April 2019; Volume 257. [Google Scholar]
- Boyard, N.; Rivette, M.; Christmann, O.; Richir, S. A design methodology for parts using additive manufacturing. In High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping, Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, Leiria, Portugal, 1–5 October 2013; Routledge: Oxfordshire, UK, 2013. [Google Scholar]
- Butt, J.; Bhaskar, R. Top of Form Bottom of Form Investigating the Effects of Annealing on the Mechanical Properties of FFF-Printed Thermoplastics. J. Manuf. Mater. Process. 2020, 4, 38. [Google Scholar] [CrossRef]
- Dinar, M.; Rosen, D.W. A Design for Additive Manufacturing Ontology. In Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Charlotte, NC, USA, 21–24 August 2016. [Google Scholar]
- Du Plessis, A.; Yadroitsev, I.; Yadroitsava, I.; Le Roux, S.G. X-ray microcomputed tomography in additive manufacturing: A review of the current technology and applications. 3D Print. Addit. Manuf. 2018, 5, 227–247. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies; Springer: Berlin/Heidelberg, Germany, 2010; pp. 17–40. [Google Scholar]
- Hatchuel, A.; Weil, B. A New Approach of Innovative Design: An Introduction to CK Theory. Proceedings of The ICED 03, the 14th International Conference on Engineering Design, Stockholm, Sweden, 18–21 August 2003. [Google Scholar]
- Hirtz, J.; Stone, R.B.; Mcadams, D.A.; Szykman, S.; Wood, K.L. A functional basis for engineering design: Reconciling and evolving previous efforts. Res. Eng. Des. 2002, 13, 65–82. [Google Scholar] [CrossRef]
- Jasiuk, I.; Abueidda, D.W.; Kozuch, C.; Pang, S.Y.; Su, F.Y.; McKittrick, J. An Overview on Additive Manufacturing of Polymers. JOM 2018, 70, 275–283. [Google Scholar] [CrossRef]
- Dey, A.; Roan Eagle, I.N.; Yodo, N. A Review on Filament Materials for Fused Filament Fabrication. J. Manuf. Mater. Process. 2021, 5, 69. [Google Scholar] [CrossRef]
- Sathies, T.; Senthil, P.; Anoop, M. A review on advancements in applications of fused deposition modelling process. Rapid Prototyp. J. 2020, 26, 669–687. [Google Scholar]
- Dey, A.; Yodo, N. A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. J. Manuf. Mater. Process. 2019, 3, 64. [Google Scholar] [CrossRef]
- Foresti, R.; Rossi, S.; Selleri, S. Bio composite materials: Nano functionalization of 4D bio engineered scaffold. In Proceedings of the 2019 IEEE International Conference on BioPhotonics (BioPhotonics), Taipei, Taiwan, 15–18 September 2019; pp. 1–2. [Google Scholar]
- Szava, I.R.; Sova, D.; Peter, D.; Elesztos, P.; Szava, I.; Vlase, S. Experimental Validation of Model Heat Transfer in Rectangular Hole Beams Using Modern Dimensional Analysis. Mathematics 2022, 10, 409. [Google Scholar] [CrossRef]
- Attaran, M. The rise of 3-D printing: The advantages of additive manufacturing over traditional manufacturing. Bus. Horiz. 2017, 60, 677–688. [Google Scholar] [CrossRef]
- Ford, S.; Despeisse, M. Additive manufacturing and sustainability: An exploratory study of the advantages and challenges. J. Clean. Prod. 2016, 137, 1573–1587. [Google Scholar] [CrossRef]
- Lewandowski, J.J.; Seifi, M. Metal Additive Manufacturing: A Review of Mechanical Properties. Annu. Rev. Mater. Res. 2016, 46, 151–186. [Google Scholar] [CrossRef]
- ASTM International F2792-12a; Standard Terminology for Additive Manufacturing Technologies. ASTM International: West Conshohocken, PA, USA, 2012. Available online: https://www.astm.org/Standards/F2792.htm (accessed on 28 June 2021).
- Véronneau, S.; Torrington, G.; Hlavka, J. 3D Printing: Downstream Production Transforming the Supply Chain; RAND Corporation: Santa Monica, CA, USA, 2017. [Google Scholar]
- Fu, X.; Zhang, X.; Huang, Z. Axial crushing of Nylon and Al/Nylon hybrid tubes by FDM 3D printing. Compos. Struct. 2021, 256, 113055. [Google Scholar] [CrossRef]
- Yodo, N.; Dey, A. Multi-Objective Optimization for FDM Process Parameters with Evolutionary Algorithms. In Fused Deposition Modeling Based 3D Printing; Springer: Cham, Switzerland, 2021; pp. 419–444. [Google Scholar]
- Popescu, D.; Zapciu, A.; Amza, C.; Baciu, F.; Marinescu, R. FDM process parameters influence over the mechanical properties of polymer specimens: A review. Polym. Test. 2018, 69, 157–166. [Google Scholar] [CrossRef]
- Dey, A.; Yodo, N.; Khoda, B. Optimizing Process Parameters under Uncertainty in Fused Deposition Modeling. In Proceedings of the 2019 IIE Annual Conference, Orlando, FL, USA, 18–21 May 2019; Institute of Industrial and Systems Engineers (IISE): Peachtree Corners, GA, USA, 2019. [Google Scholar]
- Pieralli, S.; Spies, B.C.; Hromadnik, V.; Nicic, R.; Beuer, F.; Wesemann, C. How Accurate Is Oral Implant Installation Using Surgical Guides Printed from a Degradable and Steam-Sterilized Biopolymer? J. Clin. Med. 2020, 9, 2322. [Google Scholar] [CrossRef]
- Momeni, F.; Hassani, N.; Liu, X.; Hasani, S. A review of 4D printing. Mater. Des. 2017, 122, 42–79. [Google Scholar] [CrossRef]
- Tibbits, S. 4D Printing: Multi-Material Shape Change. Arch. Des. 2014, 84, 116–121. [Google Scholar] [CrossRef]
- Chu, H.; Yang, W.; Sun, L.; Cai, S.; Yang, R.; Liang, W.; Yu, H.; Liu, L. 4D Printing: A Review on Recent Progresses. Micromachines 2020, 11, 796. [Google Scholar] [CrossRef]
- Bai, L.; Gong, C.; Chen, X.; Sun, Y.; Zhang, J.; Cai, L.; Zhu, S.; Xie, S.Q. Additive Manufacturing of Customized Metallic Orthopedic Implants: Materials, Structures, and Surface Modifications. Metals 2019, 9, 1004. [Google Scholar] [CrossRef]
- Bellini, A.; Bertoldi, M. Liquefier Dynamics in Fused; ASME: New York, NY, USA, 2017; Volume 126. [Google Scholar]
- Béraud, N.; Vignat, F.; Villeneuve, F.; Dendievel, R. New trajectories in Electron Beam Melting manufacturing to reduce curling effect. Procedia CIRP 2014, 17, 738–743. [Google Scholar] [CrossRef]
- Boyle, B.M.; Xiong, P.T.; Mensch, T.E.; Werder, T.J.; Miyake, G.M. 3D Printing Using Powder Melt Extrusion. Addit. Manuf. 2019, 29, 100811. [Google Scholar] [CrossRef] [PubMed]
- Cherry, J.A.; Davies, H.M.; Mehmood, S.; Lavery, N.P.; Brown, S.G.R.; Sienz, J. Investigation into the effect of process parameters on microstructural and physical properties of 316l stainless steel parts by selective laser melting. Int. J. Adv. Manuf. Technol. 2015, 76, 869–879. [Google Scholar] [CrossRef]
- Dall’ava, L.; Hothi, H.; Henckel, J.; Di Laura, A.; Bergiers, S.; Shearing, P.; Hart, A. Dimensional Analysis of 3D-Printed Acetabular Cups for Hip Arthroplasty Using X-Ray Microcomputed Tomography. Rapid Prototyp. J. 2020, 26, 567–576. [Google Scholar] [CrossRef]
- Du Plessis, A. Effects of process parameters on porosity in laser powder bed fusion revealed by X-ray tomography. Addit. Manuf. 2019, 30, 100871. [Google Scholar] [CrossRef]
- Fabbro, R.; Dal, M.; Peyre, P.; Coste, F.; Schneider, M.; Gunenthiram, V. Analysis and possible estimation of keyhole depths evolution, using laser operating parameters and material properties. J. Laser Appl. 2018, 30, 032410. [Google Scholar] [CrossRef]
- Francois, M.; Sun, A.; King, W.; Henson, N.; Tourret, D.; Bronkhorst, C.; Carlson, N.; Newman, C.; Haut, T.; Bakosi, J.; et al. Modeling of additive manufacturing processes for metals: Challenges and opportunities. Curr. Opin. Solid State Mater. Sci. 2017, 21, 198–206. [Google Scholar] [CrossRef]
- Gan, Z.T.; Kafka, O.L.; Parab, N.J.; Zhao, C.; Lichao Fang, L.H.; Heinonen, O.; Tao Sun, T.; Liu, W.K. Universal scaling laws of keyhole stability and porosity in 3D printing of metals. Nat. Commun. 2021, 12, 2379. [Google Scholar] [CrossRef]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feed-forward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Johnson, G.A.; French, J.J. Evaluation of Infill Effect on Mechanical Properties of Consumer. In 3D Printing Materials; Tourneau University: Longview, TX, USA, 2017. [Google Scholar]
- Karbhari, V.; Wilkins, D. A dimensional analysis approach to notch sensitivity and fracture of composites with applications to design. Eng. Fract. Mech. 1992, 42, 139–150. [Google Scholar] [CrossRef]
- Khan, S.F.; Zakaria, H.; Chong, Y.L.; Saad, M.A.M.; Basaruddin, K. Effect of infill on tensile and flexural strength of 3D printed PLA parts. In Proceedings of the International Conference on Advanced Manufacturing and Industry Applications, Sarawak, Malaysia, 15–17 August 2018. [Google Scholar]
- Klahn, C.; Singer, D.; Meboldt, M. Design Guidelines for Additive Manufactured Snap-Fit Joints. Procedia CIRP 2016, 50, 264–269. [Google Scholar] [CrossRef]
- Kurth, J. Material increase manufacturing by rapid prototyping techniques. CIRP Ann. Technol. 1991, 40, 603–614. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mulhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef]
- Mackay, M.E.; Swain, Z.R.; Banbury, C.R. The performance of the hot end in a plasticating 3D printer. J. Rheol. 2017, 61, 229. [Google Scholar] [CrossRef]
- Mertkan, I.A.; Tezel, T.; Kovan, V. Surface and Dimensional Quality of Thermoplastics Manufactured by Additive Manufacturing-based Hybrid Manufacturing. Res. Sq. 2022, 9, 678. [Google Scholar] [CrossRef]
- Micali, L.M. Characterisation of Mechanical Properties of 3D Printed Continuous Carbon Fibre Reinforced Composites. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2018. [Google Scholar]
- Kasperovich, G.; Haubrich, J.; Gussone, J.; Requena, G. Correlation between porosity and processing parameters in tial6v4 produced by selective laser melting. Mater. Des. 2016, 105, 160–170. [Google Scholar] [CrossRef]
- Krutis, V.; Novosad, P.; Zadera, A.; Kana, V. Requirements for Hybrid Technology Enabling the Production of High-Precision Thin-Wall Castings. Materials 2022, 15, 3805. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Jano, F.; Javed, A.; Teng, C.; Ginn, J.; Mano, M. Influence of laser processing parameters on porosity in inconel 718 during additive manufacturing. Int. J. Adv. Manuf. Technol. 2019, 103, 1497–1507. [Google Scholar] [CrossRef]
- Kumar, V.P.; Jebaraj, A.V. Influence of Double Aging Heat Treatment on Phase Transformation and Dimensional Accuracy of Inconel 718 Alloy made Through Laser-Based Additive Manufacturing. Trans. Indian Inst. Met. 2021, 74, 3103–3117. [Google Scholar] [CrossRef]
- Leicht, A.; Rashidi, M.; Klement, U.; Hryha, E. Effect of process parameters on the microstructure, tensile strength and productivity of 316l parts produced by laser powder bed fusion. Mater. Charact. 2020, 159, 110016. [Google Scholar] [CrossRef]
- Miyagi, M.; Wang, J. Keyhole dynamics and morphology visualized by insitu X-ray imaging in laser melting of austenitic stainless steel. Elsevier. J. Mater. Process. Technol. 2020, 282, 116673. [Google Scholar] [CrossRef]
- Mondal, S.; Gwynn, D.; Ray, A.; Basak, A. Investigation of Melt pool Geometry Control in Additive Manufacturing Using Hybrid Modelling. Metals 2020, 10, 683. [Google Scholar] [CrossRef]
- Nikzad, M.; Masood, S.H.; Sbarski, I.; Groth, A. A Study of Melt Flow Analysis of an ABS-Iron Composite in Fused Deposition Modelling Process. Tsinghua Sci. Technol. 2009, 14, 29–37. [Google Scholar]
- Okoth, G.H.; Ndeda, R.; Raghupatruni, P.; Olakanmi, E.O. Simulation and Topology Optimization of a Vehicle Door Hinge for Additive Manufacturing. In Proceedings of the 2022 Sustainable Research and Innovation Conference, JKUAT Main Campus, Kenya, 5–6 October 2022; pp. 129–133. [Google Scholar]
- Osswald, T.A.; Jack, D.; Thompson, M.S. Polymer composites: Additive manufacturing of composites. Polym. Compos. 2022, 43, 3496–3497. [Google Scholar] [CrossRef]
- Paesano, A. Polymers for Additive Manufacturing: Present and Future along with their future properties and process requirements. Sampe J. 2014, 50, 34–43. [Google Scholar]
- Pahl, G.; Beitz, W. Engineering Design: A Systematic Approach; Springer Science & Business Media: London, UK, 2013. [Google Scholar]
- Parandoush, P.; Lin, D. A review on additive manufacturing of polymer-fibre composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
- Park, S.; Fu, K. Polymer-based filament feedstock for additive manufacturing. Compos. Sci. Technol. 2021, 213, 108876. [Google Scholar] [CrossRef]
- Patel, R.R.; Thompson, D.S.; Riveros, G.A.; Hodo, W.D.; Peters, J.F.; Acosta, F.J. Dimensional analysis of structural response in complex biological structures. Math. Comput. Simul. 2020, 172, 305–320. [Google Scholar] [CrossRef]
- Paynter, H.M. Analysis and Design of Engineering Systems; MIT Press: Cambridge, MA, USA, 2014; p. 1961. [Google Scholar]
- Pham, D.T.; Gault, R. A_comparison_of_rapid_prototyping_techno.pdf. Int. J. Mach. Tool Manuf. 1998, 38, 1257–1287. [Google Scholar] [CrossRef]
- Ponche, R.; Hascoet, J.Y.; Kerbrat, O.; Mognol, P. A new global approach to design for additive manufacturing. Virtual Phys. Prototyp. 2012, 7, 93–105. [Google Scholar] [CrossRef]
- Ponche, R.; Kerbrat, O.; Mognol, P.; Hascoet, J.Y. A novel methodology of design for Additive Manufacturing applied to Additive Laser Manufacturing process. Robot. Comput. Integr. Manuf. 2014, 30, 389–398. [Google Scholar] [CrossRef]
- Rezaie, R.; Badrossamay, M.; Ghaie, A.; Moosavi, H. Topology optimization for fused deposition modelling process. Procedia Soc. Behav. Sci. 2013, 6, 521–526. [Google Scholar]
- Simmons, J.C.; Chen, X.; Azizi, A.; Daeumer, M.A.; Zavalij, P.Y.; Zhou, G.; Schiffres, S.N. Influence of processing and microstructure on the local and bulk thermal conductivity of selective laser melted 316l stainless steel. Addit. Manuf. 2020, 32, 100996. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y. Process-Structure-Properties in Polymer Additive Manufacturing. Polymers 2021, 13, 1098. [Google Scholar] [CrossRef]
- Sing, S.L.; Yeong, W.Y. Recent Progress in Research of Additive Manufacturing for Polymers. Polymers 2022, 14, 2267. [Google Scholar] [CrossRef]
- Sinkora, E. New Polymer Applications in Additive Manufacturing. Manuf. Eng. 2020, 164, 56–66. [Google Scholar]
- Sun, Q.; Rizvi, G.; Bellehumeur, C.; Gu, P. Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 2013, 14, 72–80. [Google Scholar] [CrossRef]
- Suteja, T.J.; Soesanti, A. Mechanical Properties of 3D Printed Polylactic Acid Product for Various Infill Design Parameters, International Conference on Science and Technology 2019. J. Phys. Conf. Ser. 2020, 1569, 042010. [Google Scholar] [CrossRef]
- Tan, L.J.Y.; Zhu, W.; Zhou, K. Recent Progress on Polymer Materials for Additive Manufacturing. Adv. Funct. Mater. 2020, 30, 2003062. [Google Scholar] [CrossRef]
- Tang, S.; Yang, L.; Fan, Z.; Jiang, W.; Liu, X. A Review of Additive Manufacturing Technology and Its Application to Foundry in China, China Foundry, Special Review; Springer: Berlin/Heidelberg, Germany, 2021; Volume 18, pp. 249–264. [Google Scholar] [CrossRef]
- Thompson, M.K.; Moroni, G.; Vaneker, T.; Fadel, G.; Campbell, R.; Gibson, I.; Bernard, A.; Schulz, J.; Graf, P.; Ahuja, B.; et al. CIRP Annals—Manufacturing Technology Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. Manuf. Technol. 2016, 65, 737–760. [Google Scholar] [CrossRef]
- Tomiyama, T. General Design Theory and Its Application to Design Process; University of Tokyo: Tokyo, Japan, 1980. [Google Scholar]
- Tounsi, R.; Vignat, F. New concept of support structures in Electron Beam Melting manufacturing to reduce geometric defects. In 15e Colloque National AIP-Priméca; Sciencesconf: Avignon, France, 2017; pp. 1–6. [Google Scholar]
- Tura, A.D.; Lemu, H.G.; Mamo, H.B. Experimental Investigation and Prediction of Mechanical Properties in a Fused Deposition Modelling Process. Crystals 2022, 12, 844. [Google Scholar] [CrossRef]
- Vayre, B.; Vignat, F.; Villeneuve, F. Designing for Additive Manufacturing. Procedia CIRP 2012, 3, 632–637. [Google Scholar] [CrossRef]
- Yan, C.; Hao, L.; Hussein, A.; Raymont, D. Evaluations of cellular lattice structures manufactured using selective laser melting. Int. J. Mach. Tools Manuf. 2012, 62, 32–38. [Google Scholar] [CrossRef]
- Yan, K.B.; Lu, S.S.; Wang, P.; Ni, W.T.; Yao, S.G.; Chen, Z.W.; Zhao, S.E. Crashworthiness investigation of conical tubes using dimensional analysis method. Int. J. Crashworthinessy 2022, 3, 182. [Google Scholar] [CrossRef]
- Yang, S.; Zhao, Y.F. Additive manufacturing-enabled design theory and methodology: A critical review. Int. J. Adv. Manuf. Technol. 2015, 80, 327–342. [Google Scholar] [CrossRef]
- Yaragatti, N.; Patnaik, A. A review on additive manufacturing of polymers composites. Materials Today-Proceedings. In Proceedings of the International Conference on Advances in Materials Processing and Manufacturing Applications (ICADMA), Jaipur, India, 5–6 December 2020; Volume 44, pp. 4150–4157. [Google Scholar] [CrossRef]
- Yardmci, A. Process Analysis and Development for Fused Deposition. Ph.D. Thesis, University of Illinois at Chicago, Chicago, IL, USA, 1999. [Google Scholar]
- Yarwindran, M.; Azwani Sa’aban, N.; Ibrahim, M.; Raveverma, P. Thermoplastic Elastomer Infill Pattern Impact on Mechanical Properties 3D Printed Customized Orthotic Insol. ARPN J. Eng. Appl. Sci. 2016, 11, 10. [Google Scholar]
- Yarwindran, M.; Azwani Sa’aban, N.; Ibrahim, M.; Raveverma, P. The feasibility study on fabrication customized orthotic insole using fused deposition modelling (FDM). In Proceedings of the 7th International Conference on Mechanical and Manufacturing Engineering, Sustainable Energy Towards Global Synergy, Jogjakarta, Indonesia, 1–3 August 2016. [Google Scholar] [CrossRef]
- Ye, J.; Khairallah, S.A.; Rubenchik, A.M.; Crumb, M.F.; Guss, G.; Belak, J.; Matthews, M.J. Energy coupling mechanisms and scaling behaviour associated with laser powder bed fusion additive manufacturing. Adv. Eng. Mater. 2019, 21, 1900185. [Google Scholar] [CrossRef]
- Zhao, C.; Parab, N.D.; Li, X.; Fezzaa, K.; Tan, W.; Rollett, A.D.; Sun, T. Critical instability at moving keyhole tip generates porosity in laser melting. Science 2020, 370, 1080–1086. [Google Scholar] [CrossRef]
- Walia, K.; Khan, A.; Breedon, P. Polymer-Based Additive Manufacturing: Process Optimisation for Low-Cost Industrial Robotics Manufacture. Polymers 2021, 13, 2809. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, M. Dimensionless analysis on selective laser melting to predict porosity and track morphology. J. Mater. Process. Technol. 2019, 273, 116238. [Google Scholar] [CrossRef]
- Wu, H.; Fahy, W.P.; Kim, S.; Kim, H.; Zhao, N.; Pilato, L.; Kafi, A.; Bateman, S.; Koo, J.H. Recent developments in polymers/polymer nano-composites for additive Manufacturing. Prog. Mater. Sci. 2020, 111, 100638. [Google Scholar] [CrossRef]
- Additive Manufacturing Standardization Collaborative. New Guide for Design for Additive Manufacturing; ASTM International: West Conshohocken, PA, USA, 2016. [Google Scholar]
- Wohler Diagram. Available online: https://wohlersassociates.com/state-of-the-industry-reports.html (accessed on 26 July 2023).
- Creality, Cura4.7—Software and Machine Description, 2018, Dassault Systemes; Solidworks: Waltham, MA, USA, 2020.
- Trend for 3D Printing in Manufacturing. Available online: https://www.manufacturingtomorrow.com/article/2020/09/trends-for-3d-printing-in-manufacturing/15810/02.11.2020 (accessed on 26 July 2023).
- Baker, W.; Dodge, F.T.; Westine, P.S. Similarity Methods in Engineering Dynamics; Elsevier: Amsterdam, The Netherlands, 1991. [Google Scholar]
- Barenblatt, G.I. Scaling, Self-Similarity, and Intermediate Asymptotics; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Barenblatt, G.I. Scaling; Cambridge University Press: Cambridge, UK, 2003; Volume 34. [Google Scholar]
- Barr, D.I.H. Consolidation of Basics of Dimensional Analysis. J. Eng. Mech. ASCE 1984, 110, 1357–1376. [Google Scholar] [CrossRef]
- Bhaskar, R.; Nigam, A. Qualitative Physics using Dimensional Analysis. Artif. Intell. 1990, 45, 73–111. [Google Scholar] [CrossRef]
- Bridgman, P.W. Dimensional Analysis. In Encyclopaedia Britannica; Encyclopaedia Britannica: Chicago, IL, USA, 1969; pp. 439–449. [Google Scholar]
- Butterfield, R. Dimensional analysis revisited. Proc. Instn. Mech. Engrs. 2001, 215, 1365–1375. [Google Scholar] [CrossRef]
- Buckingham, E. On Physically Similar Systems: Illustrations of the use of dimensional equations. Phys. Rev. 1914, 4, 345. [Google Scholar] [CrossRef]
- Calvetti, D.; Somersalo, E. Dimensional analysis and scaling. In The Princeton Companion to Applied Mathematics; Princeton University Press: Princeton, NJ, USA, 2015; pp. 90–93. [Google Scholar]
- Canagaratna, S.G. Is dimensional analysis the best we have to offer? J. Chem. Educ. 1993, 70, 40–43. [Google Scholar] [CrossRef]
- Carinena, J.F.; Santander, M. Dimensional Analysis. Adv. Electron. Electron Phys. 1988, 72, 181–258. [Google Scholar] [CrossRef]
- Carlson, D.E. Some New Results in Dimensional Analysis. Arch. Ration. Mech. Anal. 1978, 68, 191–210. [Google Scholar] [CrossRef]
- Chen, T.; Xgboost, C.G. A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Chen, W.K. Algebraic Theory of Dimensional Analysis. J. Frankl. Inst. 1971, 292, 403–409. [Google Scholar] [CrossRef]
- Constantine, P.G.; del Rosario, Z.; Iaccarino, G. Data-driven dimensional analysis: Algorithms for unique and relevant dimensionless groups. arXiv 2017, arXiv:1708.04303. [Google Scholar]
- Constantine, P.G.; del Rosario, Z.; Iaccarino, G. Many physical laws are ridge functions. arXiv 2016, arXiv:1605. [Google Scholar]
- Coyle, R.G.; Ballicolay, B. Concepts and Software for Dimensional Analysis in Modelling. IEEE Trans. Syst. Man Cybern. 1984, 14, 478–487. [Google Scholar] [CrossRef]
- Dijkshoorn, A.; Schouten, M.; Stramigioli, S.; Krijnen, G. Modelling of Anisotropic Electrical Conduction in Layered Structures 3D-Printed with Fused Deposition Modelling. Sensors 2021, 21, 3710. [Google Scholar] [CrossRef] [PubMed]
- El Moumen, A.; Tarfaoui, M.; Lafdi, K. Additive manufacturing of polymer composites: Processing and modelling Approaches. Compos. Eng. 2019, 171, 166–182. [Google Scholar] [CrossRef]
- Fourier, J. Theorie Analytique de la Chaleur; Firmin Didot: Paris, France, 1822. (In French) [Google Scholar]
- Gibbings, J.C. Dimensional Analysis. J. Phys. A-Math. Gen. 1980, 13, 75–89. [Google Scholar] [CrossRef]
- Gibbings, J.C. A Logic of Dimensional Analysis. J. Phys. A-Math. Gen. 1982, 15, 1991–2002. [Google Scholar] [CrossRef]
- Karnopp, D.C.; Margolis, D.L.; Rosenberg, R.C. System Dynamics: Modelling, Simulation, and Control of Mechatronic Systems; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Kline, S.J. Similitude and Approximation Theory; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Kunes, J. Dimensionless Physical Quantities in Science and Engineering; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Lambert, S.; Bourrier, F.; Ceron-Mayo, A.R.; Dugelas, F.; Piton, G. Small-Scale Modelling of Flexible Barriers. I: Mechanical Similitude of the Structure. J. Hydraul. Eng. 2023, 149, 04022043. [Google Scholar] [CrossRef]
- Langhaar, H.L. Dimensional Analysis and Theory of Models; John Wiley & Sons: Hoboken, NJ, USA, 1951. [Google Scholar]
- Lim, C.W.J.; Zhang, Y.; Huang, S.; Chan, W.L. A dimensionless analysis to select directed energy deposition process parameters for proper clad formation. Int. J. Adv. Manuf. Technol. 2022, 125, 947–963. [Google Scholar] [CrossRef]
- Martins, R.D.A. The origin of dimensional analysis. J. Frankl. Inst. 1981, 311, 331–337. [Google Scholar] [CrossRef]
- Mendez, P.F.; Ordóñez, F. Scaling Laws from Statistical Data and Dimensional Analysis. J. Appl. Mech. 2004, 72, 648–657. [Google Scholar] [CrossRef]
- Mostafa, O.; Elbaz, Y.; Alotaibi, E.; Dabous, S.A.; Mantha, B.R.K. Investigating the Scaling Effect of 3D-Printed Synthetic Hollow Section Beams. In Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), Dubai, United Arab Emirates, 21–24 February 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Osborne, D.K. On dimensional invariance. Qual. Quant. 1978, 12, 75–89. [Google Scholar] [CrossRef]
- Pankhurst, R.C. Dimensional Analysis and Scale Factor; Chapman & Hall Ltd.: London, UK, 1964. [Google Scholar]
- Polyzos, E.; Katalagarianakis, A.; Polyzos, D.; Van Hemelrijck, D.; Pyl, L. A multi-scale analytical methodology for the prediction of mechanical properties of 3D-printed materials with continuous fibres. Addit. Manuf. 2020, 36, 101394. [Google Scholar] [CrossRef]
- Remillard, W.J. Applying Dimensional Analysis. Am. J. Phys. 1983, 51, 137–140. [Google Scholar] [CrossRef]
- Rivet, I.; Dialami, N.; Cervera, M.; Chiumenti, M.; Reyes, G.; Perez, M.A. Experimental, Computational, and Dimensional Analysis of the Mechanical Performance of Fused Filament Fabrication Parts. Polymers 2021, 13, 1766. [Google Scholar] [CrossRef]
- Romberg, G. Contribution to Dimensional Analysis. Ing. Arch. 1985, 55, 401–412. [Google Scholar] [CrossRef]
- Rubenchik, A.M.; King, W.E.; Wu, S.S. Scaling laws for the additive manufacturing. J. Mater. Process. Technol. 2018, 257, 234–243. [Google Scholar] [CrossRef]
- Schmidt, M.; Lipson, H. Distilling free-form natural laws from experimental data. Science 2009, 324, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Schnittger, J.R. Dimensional Analysis in Design. J. Vib. Acoust. Stress Reliab. Des. Trans. ASME 1988, 110, 401–407. [Google Scholar] [CrossRef]
- Szekeres, P. Mathematical Foundations of Dimensional Analysis and the Question of Fundamental Units. Int. J. Theor. Phys. 1978, 17, 957–974. [Google Scholar] [CrossRef]
- Tan, Q.M. Dimensional Analysis: With Case Studies in Mechanics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Xie, X.; Liu, W.K.; Gan, Z. Data-driven Discovery of Dimensionless Numbers and Scaling Laws from Experimental Measurements, Preprint. arXiv 2021, arXiv:2111.03583v1. [Google Scholar]
- Yardimci, A.; Hattori, T.; Guceri, I.; Danforth, S. Thermal analysis of fused deposition. In Proceedings of the Solid Freeform Fabrication Conference, Austin, TX, USA, 11-13 August 1997; pp. 689–698. [Google Scholar]
- Zhang, P.; Mao, Y.Q.; Shu, X. Mechanics Modelling of Additive Manufactured Polymers. In Polymer-Based Additive Manufacturing: Biomedical Applications; Springer: Berlin/Heidelberg, Germany, 2019; pp. 51–71. [Google Scholar] [CrossRef]
- Witherell, P.; Feng, S.; Simpson, T.W.; John, D.B.S.; Michaleris, P.; Liu, Z.-K.; Chen, L.-Q.; Martukanitz, R. Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models. J. Manuf. Sci. Eng. 2014, 136, 061025. [Google Scholar] [CrossRef]
- Szirtes, T. The Fine Art of Modelling, SPAR. J. Eng. Technol. 1992, 1, 37. [Google Scholar]
- Szirtes, T. Applied Dimensional Analysis and Modelling; McGraw-Hill: Toronto, ON, Canada, 1998. [Google Scholar]
- Asztalos, Z. Modern Dimensional Analysis Implemented in Spare Parts’ Analysis Obtained by Rapid Prototyping, Diploma Work; Transylvania University of Brasov: Brașov, Romania, 2021. [Google Scholar]
- Asztalos, Z.; Száva, I.; Vlase, S.; Száva, R.I. Modern Dimensional Analysis Involved in Polymers Additive Manufacturing Optimization. Polymers 2022, 14, 3995. [Google Scholar] [CrossRef] [PubMed]
- Aliheidari, N.; Ameli, A. Composites and Nano-composites: Thermoplastic Polymers for Additive Manufacturing. In Encyclopedia of Polymer Applications, VOLS I-III; Routledge: Oxfordshire, UK, 2019; pp. 486–500. [Google Scholar]
- Adam, G.A.O.; Zimmer, D. CIRP Journal of Manufacturing Science and Technology Design for Additive Manufacturing—Element transitions and aggregated structures. CIRP J. Manuf. Sci. Technol. 2014, 7, 20–28. [Google Scholar] [CrossRef]
- Dickson, A.N.; Ross, K.-A.; Dowling, D.P. Additive manufacturing of woven carbon fibre polymer composites. Compos. Struct. 2018, 206, 637–643. [Google Scholar] [CrossRef]
- Hofer, R.; Hinrichs, K. Additives for the Manufacture and Processing of Polymers. In Polymers—Opportunities and Risks II: Sustainability, Product Design and Processing; Handbook of Environmental Chemistry Series; Springer: Berlin/Heidelberg, Germany, 2010; Volume 12, pp. 97–145. [Google Scholar] [CrossRef]
- Coatanéa, E. Conceptual Modelling of Life Cycle Design. Ph.D. Thesis, Univeristy of Aalto, Espoo, Finland, 2005. [Google Scholar]
- Coatanéa, E.; Roca, R.; Mokhtarian, H.; Mokammel, F.; Ikkala, K. A Conceptual Modelling and Simulation Framework for System Design. Comput. Sci. Eng. 2016, 18, 42–52. [Google Scholar] [CrossRef]
- Coatanea, E. Conceptual Design of Life Cycle Design: A Modelling and Evaluation Method Based on Analogies and Dimensionless Numbers. Ph.D. Thesis, Helsinki University of Technology, Helsinki, Finland, 2005. [Google Scholar]
- Coatanéa, E.; Yannou, B.; Boughnim, N.; Makkonen, P.E.; Lajunen, A.; Saarelainen, T.; Bertoluci, G. Combining Analysis of Different Performances through the Use of Dimensional Analysis, International Conference on Engineering Design; Cite Des Sciences Et De L’industrie: Paris, France, 2007; pp. 402–415. [Google Scholar]
- Coatanéa, E. Dimensional Analysis Conceptual Modelling (DACM): A Comprehensive Framework for Specifying, Validating, and Analyzing System Models from a Model-Based System Engineering Perspective; (Contract SOW 4.5, 4); US Department of Defence, NAWCTSD Office: Washington, DC, USA, 2015.
- Turzo, G.; Szava, I.R.; Galfi, B.P.; Szava, I.; Vlase, S.; Hota, H. Temperature distribution of the straight bar, fixed into a heated plane surface. Fire Mater. 2018, 42, 202–212. [Google Scholar] [CrossRef]
- Mokhtarian, H.; Coatanéa, E.; Paris, H.; Ritola, T.; Ellman, A.; Vihinen, J.; Koskinenm, K.; Ikkala, K. A network based modelling approach using the dimensional analysis conceptual modelling (DACM) framework for additive manufacturing technologies. In Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC16), Charlotte, NC, USA, 21–24 August 2016; ASME: Charlotte, NC, USA, 2016. [Google Scholar]
- Mokammel, F.; Coatanéa, E.; Paris, H. Function modelling combined with physics-based reasoning for assessing design options and supporting innovative ideation. Artif. Intell. Eng. Des. Anal. Manuf. 2017, 31, 476–500. [Google Scholar] [CrossRef]
- Mokammel, F.; Coatanéa, E.; Christophe, F.; Nonsiri, S.; Elman, A. Analysis and Graph Representation of Requirements Models Using Computational Linguistics Methods; John Wiley & Sons: Hoboken, NJ, USA, 2018. [Google Scholar]
- Mokhtarian, H.; Coatanéa, E.; Paris, H.; Mbow, M.M.; Pourroy, F.; Merin, P.R.; Vihinen, J.; Ellman, A. A Conceptual Design and Modelling Framework for Integrated Additive Manufacturing. ASME J. Mech. Des. 2018, 140, 081101. [Google Scholar] [CrossRef]
- Wu, D.; Coatanea, E.; Wang, G.G. Dimension Reduction and Decomposition Using Causal Graph and Qualitative Analysis for Aircraft Concept Design Optimization. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Cleveland, OH, USA, 6–9 August 2017; Volume 58134, p. V02BT03A035. [Google Scholar]
- Williams, C.B.; Mistree, F.; Rosen, D.W. A Functional Classification Framework for the Conceptual Design of Additive Manufacturing Technologies. J. Mech. Des. 2011, 133, 121002. [Google Scholar] [CrossRef]
- Altshuller, G.S. The Innovation Algorithm: TRIZ, Systematic Innovation and Technical Creativity; Technical Innovation Center, Inc.: Worcester, MA, USA, 1999. [Google Scholar]
- Barber, D. Bayesian Reasons and Machine Learning; Cambridge University Press: Cambridge, UK, 2012. [Google Scholar]
- Bellehumeur, C.; Li, L.; Sun, Q.; Gu, P. Modelling of Bond Formation Between Polymer Filaments in the Fused Deposition Modelling Process. Manuf. Process. J. 2004, 6, 170–178. [Google Scholar] [CrossRef]
- Brunton, S.L.; Proctor, J.L.; Kutz, J.N. Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. USA 2016, 113, 3932–3937. [Google Scholar] [CrossRef]
- Jerez-Mesa, R.; Travieso-Rodriguez, J.A.; Corbella, X.; Busqué, R.; Gomez-Gras, G. FE analysis of the thermal behavior of a RepRap 3D printer liquefie. Mechatronics 2016, 36, 119–126. [Google Scholar] [CrossRef]
- Taehyun, S. Introduction to Physical System Modelling Using Bond Graphs; University of Michigan-Dearborn: Dearborn, MI, USA, 2002. [Google Scholar]
- Zwicky, F. The Morphological Approach to Discovery, Invention, Research and Construction. In New Methods of Thought and Procedure; Springer: New York, NY, USA, 1967; pp. 273–297. [Google Scholar]
- Primo, T.; Calabrese, M.; del Prete, A.; Anglani, A. Additive manufacturing integration with topology optimization methodology for innovative product design. Int. J. Adv. Manuf. Technol. 2017, 93, 467–479. [Google Scholar] [CrossRef]
- Szava, R.I.; Szava, I.; Vlase, S.; Modrea, A. Determination of Young’s Moduli of the Phases of Composite Materials Reinforced with Longitudinal Fibers, by Global Measurements. Symmetry 2020, 12, 1607. [Google Scholar] [CrossRef]
- Foresti, R.; Ghezzi, B.; Vettori, M.; Bergonzi, L.; Attolino, S.; Rossi, S.; Tarabella, G.; Vurro, D.; von Zeppelin, D.; Iannotta, S.; et al. 3D Printed Masks for Powders and Viruses Safety Protection Using Food Grade Polymers: Empirical Tests. Polymers 2021, 13, 617. [Google Scholar] [CrossRef] [PubMed]
B | A |
D | C |
Dimensions | B | A | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
v | F | L | a* | b* | c* | A1 | Vutil | E | Iz | |
m | 1 | 0 | 1 | 1 | 1 | 1 | 2 | 3 | −2 | 4 |
N | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
π1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | −0.25 |
π2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | −0.5 |
π3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −0.25 |
π4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | −0.25 |
π5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −0.25 |
π6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −0.25 |
π7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −0.5 |
π8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | −0.75 |
Dimensions | B | A | |||||||
---|---|---|---|---|---|---|---|---|---|
v | a* | b* | c* | A1 | F | Vutil | L | E*Iz | |
m | 1 | 1 | 1 | 1 | 2 | 0 | 3 | 1 | 2 |
N | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
π1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −1 | 0 |
π2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | −1 | 0 |
π3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −1 | 0 |
π4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | 0 |
π5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −2 | 0 |
π6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | −1 |
π7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −3 | 0 |
Dimensions | B | A | |||||||
---|---|---|---|---|---|---|---|---|---|
v | a* | b* | c* | A1 | F | L | Vutil | E*Iz | |
m | 1 | 1 | 1 | 1 | 2 | 0 | 1 | 3 | 2 |
N | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 |
π1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | −0.33333 | 0 |
π2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | −0.33333 | 0 |
π3 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | −0.33333 | 0 |
π4 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | −0.33333 | 0 |
π5 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | −0.66667 | 0 |
π6 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0.666667 | −1 |
π7 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −0.33333 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Száva, I.; Vlase, S.; Scutaru, M.L.; Asztalos, Z.; Gálfi, B.-P.; Șoica, A.; Șoica, S. Dimensional Methods Used in the Additive Manufacturing Process. Polymers 2023, 15, 3694. https://doi.org/10.3390/polym15183694
Száva I, Vlase S, Scutaru ML, Asztalos Z, Gálfi B-P, Șoica A, Șoica S. Dimensional Methods Used in the Additive Manufacturing Process. Polymers. 2023; 15(18):3694. https://doi.org/10.3390/polym15183694
Chicago/Turabian StyleSzáva, Ioan, Sorin Vlase, Maria Luminița Scutaru, Zsolt Asztalos, Botond-Pál Gálfi, Adrian Șoica, and Simona Șoica. 2023. "Dimensional Methods Used in the Additive Manufacturing Process" Polymers 15, no. 18: 3694. https://doi.org/10.3390/polym15183694
APA StyleSzáva, I., Vlase, S., Scutaru, M. L., Asztalos, Z., Gálfi, B. -P., Șoica, A., & Șoica, S. (2023). Dimensional Methods Used in the Additive Manufacturing Process. Polymers, 15(18), 3694. https://doi.org/10.3390/polym15183694