Development and Characterization of a Molecularly Imprinted Polymer for the Selective Removal of Brilliant Green Textile Dye from River and Textile Industry Effluents
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Aqueous Samples
2.2. Molecular Modeling
2.3. Synthesis of Molecularly Imprinted Polymer (MIP) and Non-Molecularly Imprinted Polymer (NIP)
2.4. Samples Characterization
2.5. Adsorption Assays
2.6. Kinetic Studies
2.7. Isothermic Studies
2.8. Influence of the pH and Polymer Mass in the Adsorption Process
2.9. Selectivity Studies
2.10. Recovery Assays
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mirjalili, M.; Nazarpoor, K.; Karimi, L. Eco-friendly dyeing of wool using natural dye from weld as co-partner with synthetic dye. J. Clean. Prod. 2011, 19, 1045–1051. [Google Scholar] [CrossRef]
- Susarla, S.; Mulliken, J.; Kaban, L.; Manson, P.; Dodson, T. The colourful history of malachite green: From ancient Egypt to modern surgery. Int. J. Oral. Maxillofac. Surg. 2017, 46, 401–403. [Google Scholar] [CrossRef] [PubMed]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: A review. Sci. Total. Environ. 2020, 717, 137222. [Google Scholar] [CrossRef]
- Richardson, S.D.; Kimura, S.Y. Emerging environmental contaminants: Challenges facing our next generation and potential engineering solutions. Environ. Technol. Innov. 2017, 8, 40–56. [Google Scholar] [CrossRef]
- Yaseen, D.A.; Scholz, M. Textile dye wastewater characteristics and constituents of synthetic effluents: A critical review. Int. J. Environ. Sci. Technol. 2019, 16, 1193–1226. [Google Scholar] [CrossRef]
- Ayed, L.; Chaieb, K.; Cheref, A.; Bakhrouf, A. Biodegradation and decolorization of triphenylmethane dyes by Staphylococcus epidermidis. Desalination 2010, 260, 137–146. [Google Scholar] [CrossRef]
- Azmi, W.; Sani, R.K.; Banerjee, U.C. Biodegradation of triphenylmethane dyes. Enzym. Microb. Technol. 1998, 22, 185–191. [Google Scholar] [CrossRef]
- Damirchi, S.; Maliheh, A.-K.K.; Heidari, T.; Es’Haghi, Z.; Chamsaz, M. A comparison between digital camera and spectrophotometer for sensitive and selective kinetic determination of brilliant green in wastewaters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 206, 232–239. [Google Scholar] [CrossRef]
- Balabanova, M.; Popova, L.; Tchipeva, R. Dyes in dermatology. Clin. Dermatol. 2003, 21, 2–6. [Google Scholar] [CrossRef]
- Chelidze, K.; Lipner, S.R. Brilliant Green staining of the fingernails. Cutis 2020, 105, 317–318. [Google Scholar] [CrossRef]
- Mishra, S.; Maiti, A. The efficacy of bacterial species to decolourise reactive azo, anthroquinone and triphenylmethane dyes from wastewater: A review. Environ. Sci. Pollut. Res. 2018, 25, 8286–8314. [Google Scholar] [CrossRef]
- Soumia, F.; Petrier, C. Effect of potassium monopersulfate (oxone) and operating parameters on sonochemical degradation of cationic dye in an aqueous solution. Ultrason. Sonochem. 2016, 32, 343–347. [Google Scholar] [CrossRef]
- Migliorini, F.; Steter, J.; Rocha, R.; Lanza, M.; Baldan, M.; Ferreira, N. Efficiency study and mechanistic aspects in the Brilliant Green dye degradation using BDD/Ti electrodes. Diam. Relat. Mater. 2016, 65, 5–12. [Google Scholar] [CrossRef]
- Pathania, D.; Sharma, S.; Singh, P. Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab. J. Chem. 2017, 10, S1445–S1451. [Google Scholar] [CrossRef]
- Gupta, V.K. Suhas, Application of low-cost adsorbents for dye removal—A review. J. Environ. Manag. 2009, 90, 2313–2342. [Google Scholar] [CrossRef] [PubMed]
- Garamon, S.E. Sequestration of hazardous Brilliant Green dye from aqueous solution using low-cost agro-wastes: Activated carbonprepared from rice and barley husks. Res. Crop. 2019, 20, 886–889. [Google Scholar] [CrossRef]
- Pavan, F.A.; Lima, E.C.; Dias, S.L.; Mazzocato, A.C. Methylene blue biosorption from aqueous solutions by yellow passion fruit waste. J. Hazard. Mater. 2008, 150, 703–712. [Google Scholar] [CrossRef]
- Garg, V.; Gupta, R.; Yadav, A.B.; Kumar, R. Dye removal from aqueous solution by adsorption on treated sawdust. Bioresour. Technol. 2003, 89, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Coşkun, Y.İ.; Aksuner, N.; Yanik, J. Sandpaper wastes as adsorbent for the removal of Brilliant Green and malachite green dye. Acta Chim. Slov. 2019, 66, 402–413. [Google Scholar] [CrossRef]
- Nassar, N.N. Kinetics, Mechanistic, Equilibrium, and Thermodynamic Studies on the Adsorption of Acid Red Dye from Wastewater by γ-Fe2O3 Nanoadsorbents. Sep. Sci. Technol. 2010, 45, 1092–1103. [Google Scholar] [CrossRef]
- Özcan, A.S.; Erdem, B. Adsorption of Acid. Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids Surfaces A Physicochem. Eng. Asp. 2005, 266, 73–81. [Google Scholar] [CrossRef]
- Nandi, B.; Goswami, A.; Purkait, M. Adsorption characteristics of brilliant green dye on kaolin. J. Hazard. Mater. 2009, 161, 387–395. [Google Scholar] [CrossRef]
- Kaur, S.; Sharma, S.; Umar, A.; Singh, S.; Mehta, S.; Kansal, S.K. Solar light driven enhanced photocatalytic degradation of brilliant green dye based on ZnS quantum dots. Superlattices Microstruct. 2017, 103, 365–375. [Google Scholar] [CrossRef]
- Fiaz, R.; Hafeez, M.; Mahmood, R. Removal of brilliant green (BG) from aqueous solution by using low cost biomass Salix alba leaves (SAL): Thermodynamic and kinetic studies. J. Water Reuse Desalin. 2020, 10, 70–81. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, Q.; Ou, L. Isotherm, and Thermodynamic Studies of the Adsorption of Methyl Orange from Aqueous Solution by Chitosan/Alumina Composite. J. Chem. Eng. Data 2012, 57, 412–419. [Google Scholar] [CrossRef]
- Ragab, A.; Ahmed, I.; Bader, D. The removal of Brilliant Green dye from aqueous solution using nano hydroxyapatite/chitosan composite as a sorbent. Molecules 2019, 24, 847. [Google Scholar] [CrossRef]
- Wackerlig, J.; Lieberzeit, P. Molecularly imprinted polymer nanoparticles in chemical sensing—Synthesis, characterisation and application. Sens. Actuators B Chem. 2015, 207, 144–157. [Google Scholar] [CrossRef]
- Couto, R.A.; Mounssef, B.; Carvalho, F.; Rodrigues, C.M.; Braga, A.A.; Aldous, L.; Gonçalves, L.M.; Quinaz, M.B. Methylone screening with electropolymerized molecularly imprinted polymer on screen-printed electrodes. Sens. Actuators B Chem. 2020, 316, 128133. [Google Scholar] [CrossRef]
- Couto, R.A.S.; Costa, S.S.; Mounssef, B.; Pacheco, J.G.; Fernandes, E.; Carvalho, F.; Rodrigues, C.M.P.; Delerue-Matos, C.; Braga, A.A.C.; Moreira Gonçalves, L.M.; et al. Electrochemical sensing of ecstasy with electropolymerized molecularly imprinted poly(o-phenylenediamine) polymer on the surface of disposable screen-printed carbon electrodes. Sens. Actuators B Chem. 2019, 290, 378–386. [Google Scholar] [CrossRef]
- Pacheco, J.G.; Rebelo, P.; Cagide, F.; Gonçalves, L.M.; Borges, F.; Rodrigues, J.A.; Delerue-Matos, C. Electrochemical sensing of the thyroid hormone thyronamine (T0AM) via molecular imprinted polymers (MIPs). Talanta 2019, 194, 689–696. [Google Scholar] [CrossRef]
- Gonçalves, L.M. Electropolymerized molecularly imprinted polymers: Perceptions based on recent literature for soon-to-be world-class scientists. Curr. Opin. Electrochem. 2021, 25, 100640. [Google Scholar] [CrossRef]
- Pupin, R.R.; Foguel, M.V.; Gonçalves, L.M.; Sotomayor, M.D.P.T. Magnetic molecularly imprinted polymers obtained by photopolymerization for selective recognition of penicillin G. J. Appl. Polym. Sci. 2020, 137, 48496. [Google Scholar] [CrossRef]
- Mohajeri, S.A.; Karimi, G.; Aghamohammadian, J.; Khansari, M.R. Clozapine recognition via molecularly imprinted polymers; bulk polymerization versus precipitation method. J. Appl. Polym. Sci. 2011, 121, 3590–3595. [Google Scholar] [CrossRef]
- Haginaka, J. Molecularly imprinted polymers as affinity-based separation media for sample preparation. J. Sep. Sci. 2009, 32, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Ertürk, G.; Mattiasson, B. Molecular imprinting techniques used for the preparation of biosensors. Sensors 2017, 17, 288. [Google Scholar] [CrossRef]
- Baeza-Fonte, A.N.; Garcés-Lobo, I.; Luaces-Alberto, M.D.; Gonçalves, L.M.; Sotomayor, M.D.P.T.; Valdés-González, A.C. Determination of cephalosporins by UHPLC-DAD using molecularly imprinted polymers. J. Chromatogr. Sci. 2018, 56, 187–193. [Google Scholar] [CrossRef] [PubMed]
- Bitas, D.; Samanidou, V. Molecularly imprinted polymers as extracting media for the chromatographic determination of antibiotics in milk. Molecules 2018, 23, 316. [Google Scholar] [CrossRef]
- Yi, L.-X.; Fang, R.; Chen, G.-H. Molecularly imprinted solid-phase extraction in the analysis of agrochemicals. J. Chromatogr. Sci. 2013, 51, 608–618. [Google Scholar] [CrossRef] [PubMed]
- Islas, G.; Ibarra, I.S.; Hernandez, P.; Miranda, J.M.; Cepeda, A. Dispersive Solid Phase Extraction for the Analysis of Veterinary Drugs Applied to Food Samples: A Review. Int. J. Anal. Chem. 2017, 2017, 8215271. Available online: https://www.hindawi.com/journals/ijac/2017/8215271/ (accessed on 14 June 2021). [CrossRef] [PubMed]
- Khan, S.; Wong, A.; Zanoni, M.V.B.; Sotomayor, M.D.P.T. Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental simples. Mater. Sci. Eng. C 2019, 103, 109825. [Google Scholar] [CrossRef]
- Pizan-Aquino, C.; Wong, A.; Avilés-Félix, L.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. Evaluation of the performance of selective M-MIP to tetracycline using electrochemical and HPLC-UV method. Mater. Chem. Phys. 2020, 245, 122777. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0254058420301565 (accessed on 12 July 2022). [CrossRef]
- Adauto, A.; Khan, S.; da Silva, M.A.; Neto, J.A.G.; Picasso, G.; Sotomayor, M.D.P.T. Synthesis, characterization and application of a novel ion hybrid imprinted polymer to adsorb Cd(II) in different simples. Environ. Res. 2020, 187, 109669. [Google Scholar] [CrossRef]
- Golker, K.; Karlsson, B.C.G.; Rosengren, A.M.; Nicholls, I.A. A functional monomer is not enough: Principal component analysis of the influence of template complexation in pre-polymerization mixtures on imprinted polymer recognition and morphology. Int. J. Mol. Sci. 2014, 15, 20572–20584. [Google Scholar] [CrossRef]
- Karim, K.; Breton, F.; Rouillon, R.; Piletska, E.V.; Guerreiro, A.; Chianella, I.; Piletsky, S.A. How to find effective functional monomers for effective molecularly imprinted polymers? Adv. Drug Deliv. Rev. 2005, 57, 1795–1808. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, I.A.; Andersson, H.S.; Charlton, C.; Henschel, H.; Karlsson, B.C.; Karlsson, J.G.; O’Mahony, J.; Rosengren, A.M.; Rosengren, K.J.; Wikman, S. Theoretical and computational strategies for rational molecularly imprinted polymer design. Biosens. Bioelectron. 2009, 25, 543–552. [Google Scholar] [CrossRef]
- Barros, L.A.; Custodio, R.; Rath, S. Design of a New Molecularly Imprinted Polymer Selective for Hydrochlorothiazide Based on Theoretical Predictions Using Gibbs Free Energy. J. Braz. Chem. Soc. 2016, 27, 2300–2311. [Google Scholar] [CrossRef]
- Udomsap, D.; Brisset, H.; Culioli, G.; Dollet, P.; Laatikainen, K.; Siren, H.; Branger, C. Electrochemical molecularly imprinted polymers as material for pollutant detection, Mater. Today Commun. 2018, 17, 458–465. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Liu, X.-X.; Li, D.-M.; Li, S.-X. Molecularly imprinted dispersive solid-phase extraction coupled with high-performance liquid chromatography for the determination of pyraclostrobin in ginseng. Chem. Pap. 2020, 74, 1717–1727. [Google Scholar] [CrossRef]
- Mortari, B.; Khan, S.; Wong, A.; Dutra, R.A.F.; Sotomayor, M.D.P.T. Next generation of optodes coupling plastic antibody with optical fibers for selective quantification of Acid Green 16. Sens. Actuators B Chem. 2019, 305, 127553. [Google Scholar] [CrossRef]
- Foguel, M.V.; Pedro, N.T.B.; Wong, A.; Khan, S.; Zanoni, M.V.B.; Sotomayor, M.D.P.T. Synthesis and evaluation of a molecularly imprinted polymer for selective adsorption and quantification of Acid Green 16 textile dye in water simples. Talanta 2017, 170, 244–251. [Google Scholar] [CrossRef]
- Ruiz-Córdova, G.A.; Khan, S.; Gonçalves, L.M.; Pividori, M.I.; Picasso, G.; Sotomayor, M.D.P.T. Electrochemical sensing using magnetic molecularly imprinted polymer particles previously captured by a magneto-sensor. Talanta 2018, 181, 19–23. [Google Scholar] [CrossRef]
- Quinto, M.L.; Khan, S.; Picasso, G.; Sotomayor, M.D.P.T. Synthesis, characterization, and evaluation of a selective molecularly imprinted polymer for quantification of the textile dye acid violet 19 in real water simples. J. Hazard. Mater. 2020, 384, 121374. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, P.J.; Vieira, J.S.; Gonçalves, L.M.; Pacheco, J.G.; Guido, L.F.; Barros, A.A. Isolation of phenolic compounds from hop extracts using polyvinylpolypyrrolidone: Characterization by high-performance liquid chromatography–diode array detection–electrospray tandem mass spectrometry. J. Chromatogr. A 2010, 1217, 3258–3268. [Google Scholar] [CrossRef]
- Abu-Alsoud, G.F.; Hawboldt, K.A.; Bottaro, C.S. Comparison of four adsorption isotherm models for characterizing molecular recognition of individual phenolic compounds in porous tailor-made molecularly imprinted polymer films. ACS Appl. Mater. Interfaces 2020, 12, 11998–12009. [Google Scholar] [CrossRef] [PubMed]
- Baggiani, C.; Giraudi, G.; Giovannoli, C.; Tozzi, C.; Anfossi, L. Adsorption isotherms of a molecular imprinted polymer prepared in the presence of a polymerisable template. Anal. Chim. Acta 2004, 504, 43–52. [Google Scholar] [CrossRef]
- Umpleby, R.J.; Baxter, S.C.; Chen, Y.; Shah, R.N.; Shimizu, K.D. Characterization of Molecularly Imprinted Polymers with the Langmuir–Freundlich Isotherm. Anal. Chem. 2001, 73, 4584–4591. [Google Scholar] [CrossRef]
- Corton, E.; García-Calzón, J.; Díaz-García, M. Kinetics and binding properties of cloramphenicol imprinted polymers. J. Non. Cryst. Solids 2007, 353, 974–980. [Google Scholar] [CrossRef]
- Khan, S.; Hussain, S.; Wong, A.; Foguel, M.V.; Gonçalves, L.M.; Gurgo, M.I.P.; Sotomayor, M.D.P.T. Synthesis and characterization of magnetic-molecularly imprinted polymers for the HPLC-UV analysis of ametryn. React. Funct. Polym. 2018, 122, 175–182. [Google Scholar] [CrossRef]
- Marestoni, L.D.; Wong, A.; Feliciano, G.T.; Marchi, M.R.R.; Tarley, C.R.T.; Sotomayor, M.D.P.T. Semi-Empirical Quantum Chemistry Method for Pre-Polymerization Rational Design of Ciprofloxacin Imprinted Polymer and Adsorption Studies. J. Braz. Chem. Soc. 2015, 27, 109–118. [Google Scholar] [CrossRef]
- Wendler, K.; Thar, J.; Zahn, S.; Kirchner, B. Estimating the hydrogen bond energy. J. Phys. Chem. A 2010, 114, 9529–9536. [Google Scholar] [CrossRef]
- Yarman, A.; Kurbanoglu, S.; Zebger, I.; Scheller, F.W. Simple and robust: The claims of protein sensing by molecularly imprinted polymers. Sens. Actuators B Chem. 2020, 330, 129369. [Google Scholar] [CrossRef]
- Ukkund, S.J.; Puthiyillam, P.; Alshehri, H.M.; Goodarzi, M.; Taqui, S.N.; Anqi, A.E.; Safaei, M.R.; Ali, M.A.; Syed, U.T.; Mir, R.A.; et al. Adsorption method for the remediation of brilliant green dye using halloysite nanotube: Isotherm, kinetic and modeling studies. Appl. Sci. 2021, 11, 88. [Google Scholar] [CrossRef]
- Chieng, H.I.; Priyantha, N.; Lim, L.B.L. Effective adsorption of toxic brilliant green from aqueous solution using peat of Brunei Darussalam: Isotherms, thermodynamics, kinetics and regeneration studies. RSC Adv. 2015, 5, 34603–34615. [Google Scholar] [CrossRef]
- Asman, S.; Mohamad, S.; Sarih, N.M. Exploiting β-Cyclodextrin in Molecular Imprinting for Achieving Recognition of Benzylparaben in Aqueous Media. Int. J. Mol. Sci. 2015, 16, 3656–3676. [Google Scholar] [CrossRef]
- Yanti; Nurhayati, T.; Royani, I.; Widayani, K. Synthesis and characterization of MAA-based molecularly-imprinted polymer (MIP) with D-glucose template. J. Phys. Conf. Ser. 2016, 739, 012143. [Google Scholar] [CrossRef]
- Abbas, M. Removal of brilliant green (BG) by activated carbon derived from medlar nucleus (ACMN)—Kinetic, isotherms and thermodynamic aspects of adsorption. Adsorpt. Sci. Technol. 2020, 38, 464–482. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Munir, M.; Ashfaq, M.; Rashid, N.; Nazar, M.F.; Danish, M.; Han, J.-I. Adsorption of Brilliant Green dye from aqueous solution onto red clay. Chem. Eng. J. 2013, 228, 54–62. [Google Scholar] [CrossRef]
- Mesa, R.L.M.; Villa, J.E.L.; Khan, S.; Peixoto, R.R.A.; Morgano, M.A.; Gonçalves, L.M.; Sotomayor, M.D.P.T.; Picasso, G. Rational design of an ion-imprinted polymer for aqueous methylmercury sorption. Nanomaterials 2020, 10, 2541. [Google Scholar] [CrossRef]
- Zhang, W.; Li, Q.; Cong, J.; Wei, B.; Wang, S. Mechanism analysis of selective adsorption and specific recognition by molecularly imprinted polymers of Ginsenoside Re. Polymers 2018, 10, 216. [Google Scholar] [CrossRef]
Dye | Retention Capacity (%) | (mg g−1) | (L g−1) | IF | S | |||
---|---|---|---|---|---|---|---|---|
MIP | NIP | MIP | NIP | MIP | NIP | |||
BG | 87.7 | 34.7 | 10.6 | 4.18 | 0.219 | 0.0867 | 2.53 | - |
AV19 | 26.12 | 19.8 | 3.82 | 2.89 | 0.0653 | 0.0495 | 1.32 | 1.92 |
AV17 | 8.77 | 2.10 | 1.67 | 1.54 | 0.0219 | 0.0202 | 1.08 | 2.34 |
TZ | 9.90 | 9.25 | 1.32 | 1.24 | 0.0248 | 0.0231 | 1.07 | 2.36 |
AR151 | 17.3 | 23.3 | 1.97 | 2.64 | 0.0433 | 0.0582 | 0.743 | 3.40 |
Samples | (mg L−1) | Recovery (%) | |
---|---|---|---|
Textile industry effluent | 38.6 | 38.7 ± 0.1 | 100.2 ± 0.3 |
48.3 | 48.1 ± 0.1 | 99.6 ± 0.3 | |
57.9 | 58.1 ± 0.1 | 100.3 ± 0.3 | |
Guaçu river | 38.6 | 39.0 ± 0.1 | 101.0 ± 0.3 |
48.3 | 47.9 ± 0.1 | 99.2 ± 0.3 | |
57.9 | 57.8 ± 0.2 | 99.8 ± 0.6 | |
Batalha river | 38.6 | 38.9 ± 0.1 | 100.8 ± 0.3 |
48.3 | 48.3 ± 0.1 | 100.0 ± 0.3 | |
57.9 | 57.9 ± 0.1 | 100.0 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luna Quinto, M.; Khan, S.; Vega-Chacón, J.; Mortari, B.; Wong, A.; Taboada Sotomayor, M.D.P.; Picasso, G. Development and Characterization of a Molecularly Imprinted Polymer for the Selective Removal of Brilliant Green Textile Dye from River and Textile Industry Effluents. Polymers 2023, 15, 3709. https://doi.org/10.3390/polym15183709
Luna Quinto M, Khan S, Vega-Chacón J, Mortari B, Wong A, Taboada Sotomayor MDP, Picasso G. Development and Characterization of a Molecularly Imprinted Polymer for the Selective Removal of Brilliant Green Textile Dye from River and Textile Industry Effluents. Polymers. 2023; 15(18):3709. https://doi.org/10.3390/polym15183709
Chicago/Turabian StyleLuna Quinto, Miguel, Sabir Khan, Jaime Vega-Chacón, Bianca Mortari, Ademar Wong, Maria Del Pilar Taboada Sotomayor, and Gino Picasso. 2023. "Development and Characterization of a Molecularly Imprinted Polymer for the Selective Removal of Brilliant Green Textile Dye from River and Textile Industry Effluents" Polymers 15, no. 18: 3709. https://doi.org/10.3390/polym15183709
APA StyleLuna Quinto, M., Khan, S., Vega-Chacón, J., Mortari, B., Wong, A., Taboada Sotomayor, M. D. P., & Picasso, G. (2023). Development and Characterization of a Molecularly Imprinted Polymer for the Selective Removal of Brilliant Green Textile Dye from River and Textile Industry Effluents. Polymers, 15(18), 3709. https://doi.org/10.3390/polym15183709