Characterization of Polymeric Composites for Hydrogen Tank
Abstract
:1. Introduction
2. Designing of Ring Tensile Specimen
2.1. Configuration of the Tensile Specimens
2.2. Finite Element Analysis
2.3. Tabs Effect
3. Manufacturing of the Test Specimen
3.1. Liquid Thermoplastic Resin-Elium® 591
3.2. The Filament Winding with Liquid Thermoplastic Resin
4. Experiment
4.1. The Split Disk Testing
4.2. Testing Results
5. Conclusions
- The RSP-1 design represents the conventional notched design of a ring tensile specimen. However, the stress distribution within the notched specimen is non-uniform, with a stress concentration occurring in the notched region. This stress concentration leads to in-plane shear stress, causing the specimen to split in the hoop direction much earlier than fiber breakage. As a result, the predicted tensile strength is lower than the actual value.
- The RSP-2 design eliminates the notch and instead incorporates tabs to achieve a uniform stress distribution in the gauge area. Numerical analyses of this design show that there is a uniform stress distribution in the gauge section along the width direction. However, there is some non-uniformity along the thickness direction due to local bending. Despite this, the RSP-2 design is relatively easy to manufacture, and experimental results consistently demonstrate performance approximately 21% better than the traditional notched specimen.
- The RSP-3 design group, consisting of RSP-3-1 and RSP-3-2, eliminates the notch and incorporates a flat gauge section. Tabs are also introduced to prevent stress concentration and direct failure towards the gauge section. Numerical simulations demonstrate that only RSP-3 exhibits a uniform hoop stress distribution throughout the gauge section in all directions, which is crucial for achieving a higher load-bearing capacity. Experimental results support these findings, indicating that the proposed specimen can carry a 30% higher load compared to the conventional notched specimen. However, it is worth noting that this design presents challenges in terms of manufacturing due to the flat gauge section, and the non-uniform thickness distribution at the gauge section needs to be addressed.
- The FSP-1 (Flat plate specimen) has a lower volume fraction compared to the ring specimen. To increase the volume fraction, autoclave pressurizing is required.
- The Carbon-H2550/Elium® 591 composite, produced through filament winding, undergoes characterization and is compared with the conventional Carbon/Epoxy composite. The findings reveal that the strength of the Elium® 591-based composite is comparable to that of the traditional epoxy composite. Moreover, additional attributes such as recyclability make the Elium® 591-based composite a compelling option for hydrogen tank manufacturing.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- ASTM Standard ASTM 2290-12; Standard Test Method for Apparent Hoop Tensile Strength of Plastic or Reinforced. ASTM International: West Conshohocken, PA, USA, 2016; pp. 1–8.
- Kaynak, C.; Erdiller, E.S.; Parnas, L.; Senel, F. Use of split-disk tests for the process parameters of filament wound epoxy composite tubes. Polym. Test. 2005, 24, 648–655. [Google Scholar] [CrossRef]
- Zhao, Y.; Druzhinin, P.; Ivens, J.; Vandepitte, D.; Lomov, S.V. Split-disk test with 3D Digital Image Correlation strain measurement for filament wound composites. Compos. Struct. 2021, 263, 113686. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.-H.; Kim, S.; Choi, J.; Choi, H.-J. Hoop tensile strength of tubular carbon fiber reinforced silicon carbide matrix composites. Ceram. Int. 2018, 44, 17087–17093. [Google Scholar] [CrossRef]
- Abed, G.M.H.; Pinna, C.; Foreman, J.P.; Hayes, S.A.; Correlation, D.I. Characterisation of the Tensile and Fracture Properties of Filament Wound Carbon Fibre Rings. In Proceedings of the ECCM16—16th European Conference on Composite Materials, Seville, Spain, 22–26 June 2014. [Google Scholar]
- Ramesh, G.; Gettu, R.; Bharatkumar, B.H. Modified split disk test for characterization of FRP composites. J. Struct. Eng. 2016, 43, 477–487. [Google Scholar]
- Charan, V.S.; Vardhan, A.V.; Raj, S.; Rao, G.R.; Rao, G.V.; Hussaini, S.M. Experimental characterization of CFRP by NOL ring test. Mater. Today Proc. 2019, 18, 2868–2874. [Google Scholar] [CrossRef]
- Mertiny, P.; Ellyin, F. Influence of the filament winding tension on physical and mechanical properties of reinforced composites. Compos. Part A Appl. Sci. Manuf. 2002, 33, 1615–1622. [Google Scholar] [CrossRef]
- Naseva, S.; Srebrenkoska, V.; Risteska, S.; Stefanovska, M.; Srebrenkoska, S. Mechanical Properties of Filament Wound Pipes: Effects of Winding Angles. Qual. Life 2015, 11, 10–15. [Google Scholar] [CrossRef]
- Laiarinandrasana, L.; Devilliers, C.; Oberti, S.; Gaudichet, E.; Fayolle, B.; Lucatelli, J.M. Ring tests on high density polyethylene: Full investigation assisted by finite element modeling. Int. J. Press. Vessel. Pip. 2011, 88, 1–10. [Google Scholar] [CrossRef]
- Hwang, T.-K.; Park, J.-B.; Kim, H.-G. Evaluation of fiber material properties in filament-wound composite pressure vessels. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1467–1475. [Google Scholar] [CrossRef]
- Kim, Y.; Choi, C.; Kim, C.-G.; Doh, Y.-D. Ring burst test of filament wound composites for environmental resistance. J. Compos. Mater. 2016, 50, 2507–2521. [Google Scholar] [CrossRef]
- Bois, C.; Pilato, A.; Wahl, J.-C.; Perry, N. Proposal for a smart pressurised ring test to study thick composite produced by filament winding. Compos. Part B Eng. 2013, 53, 382–390. [Google Scholar] [CrossRef]
- Pinto, T.H.L.; Gul, W.; Torres, L.A.G.; Cimini, C.A., Jr.; Ha, S.K. Experimental and numerical comparison of impact behavior between thermoplastic and thermoset composite for wind turbine blades. Materials 2021, 14, 6377. [Google Scholar] [CrossRef]
- Available online: https://www.arkema.com/global/en/products/product-finder/product/incubator/elium/elium-resin-for-composite-hydrogen-tanks/%0A (accessed on 3 March 2023).
- ASTM D 3039/D 3039M; Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- Roh, H.S.; Hua, T.Q.; Ahluwalia, R.K. Optimization of carbon fiber usage in Type 4 hydrogen storage tanks for fuel cell automobiles. Int. J. Hydrogen Energy 2013, 38, 12795–12802. [Google Scholar] [CrossRef]
- Alcántar, V.; Aceves, S.M.; Ledesma, E.; Ledesma, S.; Aguilera, E. Optimization of Type 4 composite pressure vessels using genetic algorithms and simulated annealing. Int. J. Hydrogen Energy 2017, 42, 15770–15781. [Google Scholar] [CrossRef]
- Hua, T.Q.; Roh, H.-S.; Ahluwalia, R.K. Performance assessment of 700-bar compressed hydrogen storage for light duty fuel cell vehicles. Int. J. Hydrogen Energy 2017, 42, 25121–25129. [Google Scholar] [CrossRef]
- Mahdavi, H.; Rahimi, G.H.; Farrokhabadi, A. Failure Analysis of (±55°)9 Filament-Wound GRE Pipes Using Explicit Finite Element Method: A Comparison with the Experimental Method. J. Fail. Anal. Prev. 2018, 18, 1526–1533. [Google Scholar] [CrossRef]
- Tsukizoe, T.; Ohmae, N. Friction and wear of advanced composite materials. Fibre Sci. Technol. 1983, 18, 265–286. [Google Scholar] [CrossRef]
- Wan, Y.Z.; Chen, G.C.; Raman, S.; Xin, J.Y.; Li, Q.Y.; Huang, Y.; Wang, Y.L.; Luo, H.L. Friction and wear behavior of three-dimensional braided carbon fiber/epoxy composites under dry sliding conditions. Wear 2006, 260, 933–941. [Google Scholar] [CrossRef]
- Ruggiero, A.; Merola, M.; Carlone, P.; Archodoulaki, V.-M. Tribo-mechanical characterization of reinforced epoxy resin under dry and lubricated contact conditions. Compos. Part B Eng. 2015, 79, 595–603. [Google Scholar] [CrossRef]
- Alves, M.P.; Gul, W.; Cimini Junior, C.A.; Ha, S.K. A Review on Industrial Perspectives and Challenges on Material, Manufacturing, Design and Development of Compressed Hydrogen Storage Tanks for the Transportation Sector. Energies 2022, 15, 5152. [Google Scholar] [CrossRef]
- Arkema. Available online: https://www.arkema.com/france/en/ (accessed on 10 March 2023).
- Hyosung Advanced Materials Corporation. Available online: http://www.hyosungadvancedmaterials.com/resources/front/kr/files/tansome_catalog_2020.pdf (accessed on 10 March 2023).
- Błachut, A.; Wollmann, T.; Panek, M.; Vater, M.; Kaleta, J.; Detyna, J.; Hoschützky, S.; Gude, M. Influence of fiber tension during filament winding on the mechanical properties of composite pressure vessels. Compos. Struct. 2023, 304, 116337. [Google Scholar] [CrossRef]
- Bhudolia, S.K.; Perrotey, P.; Joshi, S.C. Optimizing polymer infusion process for thin ply textile composites with novel matrix system. Materials 2017, 10, 293. [Google Scholar] [CrossRef] [PubMed]
Type | Merits | Demerits |
---|---|---|
RSP-1 |
|
|
RSP-2 |
|
|
RSP-3-1 |
|
|
RSP-3-2 |
|
|
FSP-1 |
|
|
Type | Material | Specimen ID | W (mm) | T (mm) | Area | Failure Load (KN) | Tensile Strength (MPa) | VF (%) |
---|---|---|---|---|---|---|---|---|
RSP-1 | H2550/Epoxy | CEPT1-1 | 9.50 | 1.60 | 30.40 | 64.07 | 2108 | 61 |
CEPT1-2 | 9.50 | 1.60 | 30.40 | 55.02 | 1810 | |||
CEPT1-3 | 9.50 | 1.60 | 30.40 | 55.06 | 1811 | |||
H2550/Elium 591 | CELT1-1 | 9.70 | 1.60 | 31.04 | 62.40 | 2010 | 61 | |
CELT1-2 | 9.70 | 1.60 | 31.04 | 54.32 | 1750 | |||
CELT1-3 | 9.70 | 1.60 | 31.04 | 61.10 | 1968 | |||
RSP-2 | H2550/Epoxy | CEPT2-1 | 10.80 | 1.60 | 34.56 | 81.56 | 2360 | 61 |
CEPT2-2 | 10.10 | 1.60 | 32.32 | 74.70 | 2311 | |||
CEPT2-3 | 10.00 | 1.60 | 32.00 | 72.89 | 2278 | |||
H2550/Elium 591 | CELT2-1 | 10.10 | 1.60 | 32.32 | 70.95 | 2195 | 61 | |
CELT2-2 | 10.15 | 1.60 | 32.48 | 73.74 | 2270 | |||
CELT2-3 | 10.85 | 1.60 | 34.72 | 81.07 | 2335 | |||
RSP-3-1 | H2550/Epoxy | CEPT3-1-1 | 9.83 | 1.60 | 31.46 | 72.47 | 2304 | 61 |
CEPT3-1-2 | 10.45 | 1.60 | 33.44 | 77.21 | 2309 | |||
CEPT3-1-3 | 9.66 | 1.60 | 30.91 | 72.40 | 2342 | |||
CEPT3-1-4 | 9.73 | 1.60 | 31.14 | 74.00 | 2377 | |||
H2550/Elium 591 | CELT3-1-1 | 10.11 | 1.60 | 32.35 | 81.00 | 2504 | 61 | |
CELT3-1-2 | 10.12 | 1.60 | 32.38 | 82.08 | 2535 | |||
CELT3-1-3 | 10.00 | 1.60 | 32.00 | 76.35 | 2386 | |||
CELT3-1-4 | 9.53 | 1.60 | 30.50 | 74.74 | 2451 | |||
RSP-3-2 | H2550/Epoxy | CEPT3-2-1 | 10.58 | 1.60 | 33.86 | 84.88 | 2507 | 61 |
CEPT3-2-2 | 11.25 | 1.60 | 36.00 | 96.20 | 2672 | |||
CEPT3-2-3 | 10.64 | 1.60 | 34.05 | 82.94 | 2436 | |||
FSP-1 | H2550/Epoxy | CEPT4-1 | 15.00 | 1.30 | 19.50 | 39.91 | 2047 | 51 |
CEPT4-2 | 15.00 | 1.30 | 19.50 | 39.49 | 2025 | |||
H2550/Elium 591 | CELT4-1 | 15.00 | 1.30 | 19.50 | 41.98 | 2153 | 51 | |
CELT4-2 | 15.00 | 1.30 | 19.50 | 42.10 | 2159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gul, W.; Xia, Y.E.; Gérard, P.; Ha, S.K. Characterization of Polymeric Composites for Hydrogen Tank. Polymers 2023, 15, 3716. https://doi.org/10.3390/polym15183716
Gul W, Xia YE, Gérard P, Ha SK. Characterization of Polymeric Composites for Hydrogen Tank. Polymers. 2023; 15(18):3716. https://doi.org/10.3390/polym15183716
Chicago/Turabian StyleGul, Waseem, Yu En Xia, Pierre Gérard, and Sung Kyu Ha. 2023. "Characterization of Polymeric Composites for Hydrogen Tank" Polymers 15, no. 18: 3716. https://doi.org/10.3390/polym15183716
APA StyleGul, W., Xia, Y. E., Gérard, P., & Ha, S. K. (2023). Characterization of Polymeric Composites for Hydrogen Tank. Polymers, 15(18), 3716. https://doi.org/10.3390/polym15183716