Phosphorylcholine-Functionalized PEDOT-Gated Organic Electrochemical Transistor Devices for Ultra-Specific and Sensitive C-Reactive Protein Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Devices Fabrication
2.2. Water Contact Angle Measurement
2.3. Electrochemical Characterization
2.4. Electrical Characterization of OECT Devices
2.5. Quartz Crystal Microbalance Measurements (Protein Adsorption and CRP Binding)
2.6. Detection of CRP
3. Results and Discussions
3.1. Design of PC-OECT Device
3.2. Morphological, Electrochemical, and Electrical Properties of PEDOT-PC Gate
3.3. Antifouling and Ca2+-Dependent Specific Interaction of PEDOT-PC Gate Electrode
3.4. Specific and Ultra-Sensitive CRP Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gewurz, H. Biology of C-Reactive Protein and the Acute Phase Response. Hosp. Pract. 1982, 17, 67–81. [Google Scholar] [CrossRef] [PubMed]
- Pepys, M.B.; Hirschfield, G.M.; Tennent, G.A.; Gallimore, J.R.; Kahan, M.C.; Bellotti, V.; Hawkins, P.N.; Myers, R.M.; Smith, M.D.; Polara, A.; et al. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 2006, 440, 1217–1221. [Google Scholar] [CrossRef] [PubMed]
- Clyne, B.; Olshaker, J.S. The C-reactive protein. J. Emerg. Med. 1999, 17, 1019–1025. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Zhou, P.; Zhong, L.; Xu, A.; Tsang, A.C.O.; Chan, P.K.L. Smart Surgical Catheter for C-Reactive Protein Sensing Based on an Imperceptible Organic Transistor. Adv. Sci. 2018, 5, 1701053. [Google Scholar] [CrossRef] [PubMed]
- Dorraki, M.; Fouladzadeh, A.; Salamon, S.J.; Allison, A.; Coventry, B.J.; Abbott, D. On detection of periodicity in C-reactive protein (CRP) levels. Sci. Rep. 2018, 8, 11979. [Google Scholar] [CrossRef] [PubMed]
- Musunuru, K.; Kral, B.G.; Blumenthal, R.S.; Fuster, V.; Campbell, C.Y.; Gluckman, T.J.; A Lange, R.; Topol, E.J.; Willerson, J.T.; Desai, M.Y.; et al. The use of high-sensitivity assays for C-reactive protein in clinical practice. Nat. Clin. Pract. Cardiovasc. Med. 2008, 5, 621–635. [Google Scholar] [CrossRef] [PubMed]
- Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Investig. 2003, 111, 1805–1812. [Google Scholar] [CrossRef]
- Wu, T.-L.; Tsao, K.-C.; Chang, C.P.-Y.; Li, C.-N.; Sun, C.-F.; Wu, J.T. Development of ELISA on microplate for serum C-reactive protein and establishment of age-dependent normal reference range. Clin. Chim. Acta 2002, 322, 163–168. [Google Scholar] [CrossRef]
- Härmä, H.; Toivonen, J.; Soini, J.T.; Hänninen, P.; Parak, W.J. Time-Resolved Fluorescence Immunoassay for C-Reactive Protein Using Colloidal Semiconducting Nanoparticles. Sensors 2011, 11, 11335–11342. [Google Scholar] [CrossRef]
- Huang, L.; Liao, T.; Wang, J.; Ao, L.; Su, W.; Hu, J. Brilliant Pitaya-Type Silica Colloids with Central-Radial and High-Density Quantum Dots Incorporation for Ultrasensitive Fluorescence Immunoassays. Adv. Funct. Mater. 2018, 28, 1705380. [Google Scholar] [CrossRef]
- Justino, C.I.; Freitas, A.C.; Amaral, J.P.; Rocha-Santos, T.A.; Cardoso, S.; Duarte, A.C. Disposable immunosensors for C-reactive protein based on carbon nanotubes field effect transistors. Talanta 2013, 108, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, G.; De Tullio, D.; Magliulo, M.; Mallardi, A.; Intranuovo, F.; Mulla, M.Y.; Favia, P.; Vikholm-Lundin, I.; Torsi, L. Detection Beyond Debye’s Length with an Electrolyte-Gated Organic Field-Effect Transistor. Adv. Mater. 2015, 27, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Magliulo, M.; De Tullio, D.; Vikholm-Lundin, I.; Albers, W.M.; Munter, T.; Manoli, K.; Palazzo, G.; Torsi, L. Label-free C-reactive protein electronic detection with an electrolyte-gated organic field-effect transistor-based immunosensor. Anal. Bioanal. Chem. 2016, 408, 3943–3952. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Shu, Q.; Qing, X.; Wu, J.; Xiao, Q.; Jia, K.; Wang, X.; Wang, D. Boron nitride-mediated semiconductor nanonetwork for an ultralow-power fibrous synaptic transistor and C-reactive protein sensing. J. Mater. Chem. C 2023, 11, 5208–5216. [Google Scholar] [CrossRef]
- Burtscher, B.; Urbina, P.A.M.; Diacci, C.; Borghi, S.; Pinti, M.; Cossarizza, A.; Salvarani, C.; Berggren, M.; Biscarini, F.; Simon, D.T.; et al. Sensing Inflammation Biomarkers with Electrolyte-Gated Organic Electronic Transistors. Adv. Healthc. Mater. 2021, 10, 2100955. [Google Scholar] [CrossRef] [PubMed]
- Rivnay, J.; Inal, S.; Salleo, A.; Owens, R.M.; Berggren, M.; Malliaras, G.G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086. [Google Scholar] [CrossRef]
- Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized Organic Thin Film Transistors for Biosensing. Acc. Chem. Res. 2019, 52, 277–287. [Google Scholar] [CrossRef]
- Lin, P.; Yan, F. Organic Thin-Film Transistors for Chemical and Biological Sensing. Adv. Mater. 2012, 24, 34–51. [Google Scholar] [CrossRef]
- Berggren, M.; Crispin, X.; Fabiano, S.; Jonsson, M.P.; Simon, D.T.; Stavrinidou, E.; Tybrandt, K.; Zozoulenko, I. Ion Electron–Coupled Functionality in Materials and Devices Based on Conjugated Polymers. Adv. Mater. 2019, 31, e1805813. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.; Kim, G.; Yoon, M. Designing Polymeric Mixed Conductors and Their Application to Electrochemical-Transistor-Based Biosensors. Macromol. Biosci. 2020, 20, e2000211. [Google Scholar] [CrossRef]
- Romele, P.; Ghittorelli, M.; Kovács-Vajna, Z.M.; Torricelli, F. Ion buffering and interface charge enable high performance electronics with organic electrochemical transistors. Nat. Commun. 2019, 10, 3044. [Google Scholar] [CrossRef] [PubMed]
- Campana, A.; Cramer, T.; Simon, D.T.; Berggren, M.; Biscarini, F. Electrocardiographic Recording with Conformable Organic Electrochemical Transistor Fabricated on Resorbable Bioscaffold. Adv. Mater. 2014, 26, 3874–3878. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.; Kobayashi, S.; Nagase, M.; Jimbo, Y.; Saito, I.; Inoue, Y.; Yambe, T.; Sekino, M.; Malliaras, G.G.; Yokota, T.; et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 2018, 4, eaau2426. [Google Scholar] [CrossRef] [PubMed]
- Guo, K.; Wustoni, S.; Koklu, A.; Díaz-Galicia, E.; Moser, M.; Hama, A.; Alqahtani, A.A.; Ahmad, A.N.; Alhamlan, F.S.; Shuaib, M.; et al. Rapid single-molecule detection of COVID-19 and MERS antigens via nanobody-functionalized organic electrochemical transistors. Nat. Biomed. Eng. 2021, 5, 666–677. [Google Scholar] [CrossRef] [PubMed]
- Rushton, A.J.; Nteliopoulos, G.; Shaw, J.A.; Coombes, R.C. A Review of Circulating Tumour Cell Enrichment Technologies. Cancers 2021, 13, 970. [Google Scholar] [CrossRef] [PubMed]
- Romeo, A.; Tarabella, G.; D’angelo, P.; Caffarra, C.; Cretella, D.; Alfieri, R.; Petronini, P.G.; Iannotta, S. Drug-induced cellular death dynamics monitored by a highly sensitive organic electrochemical system. Biosens. Bioelectron. 2015, 68, 791–797. [Google Scholar] [CrossRef]
- Ramuz, M.; Hama, A.; Huerta, M.; Rivnay, J.; Leleux, P.; Owens, R.M. Combined Optical and Electronic Sensing of Epithelial Cells Using Planar Organic Transistors. Adv. Mater. 2014, 26, 7083–7090. [Google Scholar] [CrossRef]
- Lin, P.; Yan, F.; Yu, J.; Chan, H.L.W.; Yang, M. The Application of Organic Electrochemical Transistors in Cell-Based Biosensors. Adv. Mater. 2010, 22, 3655–3660. [Google Scholar] [CrossRef]
- Wang, J.; Ye, D.; Meng, Q.; Di, C.; Zhu, D. Advances in Organic Transistor-Based Biosensors. Adv. Mater. Technol. 2020, 5, 2000218. [Google Scholar] [CrossRef]
- Yu, J.; Yang, A.; Wang, N.; Ling, H.; Song, J.; Chen, X.; Lian, Y.; Zhang, Z.; Yan, F.; Gu, M. Highly sensitive detection of caspase-3 activity based on peptide-modified organic electrochemical transistor biosensors. Nanoscale 2021, 13, 2868–2874. [Google Scholar] [CrossRef]
- Qian, S.; Lin, H.-A.; Pan, Q.; Zhang, S.; Zhang, Y.; Geng, Z.; Wu, Q.; He, Y.; Zhu, B. Chemically revised conducting polymers with inflammation resistance for intimate bioelectronic electrocoupling. Bioact. Mater. 2023, 26, 24–51. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Luo, S.-C.; Zhao, H.; Lin, H.-A.; Sekine, J.; Nakao, A.; Chen, C.; Yamashita, Y.; Yu, H.-H. Large enhancement in neurite outgrowth on a cell membrane-mimicking conducting polymer. Nat. Commun. 2014, 5, 4523. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.; Pepys, M.B.; Wood, S.P. The physiological structure of human C-reactive protein and its complex with phosphocholine. Structure 1999, 7, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Kurosawa, S.; Watanabe, J.; Ishihara, K. Evaluation of 2-Methacryloyloxyethyl Phosphorylcholine Polymeric Nanoparticle for Immunoassay of C-Reactive Protein Detection. Anal. Chem. 2004, 76, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-G.; Wei, S.-C.; Chen, Y.; Chen, J.-H.; Luo, S.-C. Critical Study of the Recognition between C-Reactive Protein and Surface-Immobilized Phosphorylcholine by Quartz Crystal Microbalance with Dissipation. Langmuir 2018, 34, 943–951. [Google Scholar] [CrossRef]
- Goda, T.; Ishihara, K.; Miyahara, Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci. 2015, 132, 41766. [Google Scholar] [CrossRef]
- Goda, T.; Toya, M.; Matsumoto, A.; Miyahara, Y. Poly(3,4-ethylenedioxythiophene) Bearing Phosphorylcholine Groups for Metal-Free, Antibody-Free, and Low-Impedance Biosensors Specific for C-Reactive Protein. ACS Appl. Mater. Interfaces 2015, 7, 27440–27448. [Google Scholar] [CrossRef] [PubMed]
- Christopeit, T.; Gossas, T.; Danielson, U.H. Characterization of Ca2+ and phosphocholine interactions with C-reactive protein using a surface plasmon resonance biosensor. Anal. Biochem. 2009, 391, 39–44. [Google Scholar] [CrossRef]
- Tiyapiboonchaiya, C.; Pringle, J.M.; Sun, J.; Byrne, N.; Howlett, P.C.; MacFarlane, D.R.; Forsyth, M. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 2004, 3, 29–32. [Google Scholar] [CrossRef]
- Rebollar, L.; Panzer, M.J. Zwitterionic Copolymer-Supported Ionogel Electrolytes: Impacts of Varying the Zwitterionic Group and Ionic Liquid Identities. ChemElectroChem 2019, 6, 2482–2488. [Google Scholar] [CrossRef]
- Mei, W.; Rothenberger, A.J.; Bostwick, J.E.; Rinehart, J.M.; Hickey, R.J.; Colby, R.H. Zwitterions Raise the Dielectric Constant of Soft Materials. Phys. Rev. Lett. 2021, 127, 228001. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Huang, L.; Li, W.; Gu, S.; Zeng, D.; Zhang, Y.; Sun, Y.; Cheng, H. Shielding the electrostatic attraction by design of zwitterionic single ion conducting polymer electrolyte with high dielectric constant. J. Membr. Sci. 2022, 651, 120452. [Google Scholar] [CrossRef]
- Hafaid, I.; Chebil, S.; Korri-Youssoufi, H.; Bessueille, F.; Errachid, A.; Sassi, Z.; Ali, Z.; Abdelghani, A.; Jaffrezic-Renault, N. Effect of electrical conditions on an impedimetric immunosensor based on a modified conducting polypyrrole. Sens. Actuators B Chem. 2010, 144, 323–331. [Google Scholar] [CrossRef]
- Nessark, F.; Eissa, M.M.; Baraket, A.; Zine, N.; Nessark, B.; Zouaoui, A.; Bausells, J.; Errachid, A. Capacitance Polypyrrole-based Impedimetric Immunosensor for Interleukin-10 Cytokine Detection. Electroanalysis 2020, 32, 1795–1806. [Google Scholar] [CrossRef]
- Ding, Z.; Zhang, Q.; Chen, Y.; Liu, G.; Xin, X.; He, H.; Cai, B.; Wu, J.; Yao, X. PEDOT-PSS coated VS2 nanosheet anodes for high rate and ultrastable lithium-ion batteries. New J. Chem. 2019, 43, 1681–1687. [Google Scholar] [CrossRef]
- Pan, Q.; Wu, Q.; Sun, Q.; Zhou, X.; Cheng, L.; Zhang, S.; Yuan, Y.; Zhang, Z.; Ma, J.; Zhang, Y.; et al. Biomolecule-friendly conducting PEDOT interface for long-term bioelectronic devices. Sens. Actuators B Chem. 2022, 373, 132703. [Google Scholar] [CrossRef]
- Jaffrezic-Renault, N. Label-Free Affinity Biosensors Based on Electrochemical Impedance Spectroscopy. Microelectrode Biosens. 2013, 80, 295–318. [Google Scholar] [CrossRef]
- Bernards, D.A.; Malliaras, G.G. Steady-State and Transient Behavior of Organic Electrochemical Transistors. Adv. Funct. Mater. 2007, 17, 3538–3544. [Google Scholar] [CrossRef]
- Khodagholy, D.; Gurfinkel, M.; Stavrinidou, E.; Leleux, P.; Herve, T.; Sanaur, S.; Malliaras, G.G. High speed and high density organic electrochemical transistor arrays. Appl. Phys. Lett. 2011, 99, 163304. [Google Scholar] [CrossRef]
- Andersen, D.C.; Koch, C.; Jensen, C.H.; Skjødt, K.; Brandt, J.; Teisner, B. High Prevalence of Human Anti-bovine IgG Antibodies as the Major Cause of False Positive Reactions in Two-Site Immunoassays Based on Monoclonal Antibodies. J. Immunoass. Immunochem. 2004, 25, 17–30. [Google Scholar] [CrossRef]
- Willman, J.H.; Martins, T.B.; Jaskowski, T.D.; Hill, H.R.; Litwin, C.M. Heterophile Antibodies to Bovine and Caprine Proteins Causing False-Positive Human Immunodeficiency Virus Type 1 and Other Enzyme-Linked Immunosorbent Assay Results. Clin. Diagn. Lab. Immunol. 1999, 6, 615–616. [Google Scholar] [CrossRef] [PubMed]
- Miura, H.; Kitano, M.; Yoneyama, A.; Kuwahara, A.; Moriyama, K.; Kitajima, S. IgG heterophile antibody causes false positivity for CA19-9, which is overcome with bovine immunoglobulin. Rinsho Byori. Jpn. J. Clin. Pathol. 2005, 53, 1103–1108. [Google Scholar]
- Ambroz, K.L.H.; Zhang, Y.; Schutz-Geschwender, A.; Olive, D.M. Blocking and detection chemistries affect antibody performance on reverse phase protein arrays. Proteomics 2008, 8, 2379–2383. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Isaacs, S.N. Enzyme-linked immunosorbent assay (ELISA) and blocking with bovine serum albumin (BSA)—Not all BSAs are alike. J. Immunol. Methods 2012, 384, 148–151. [Google Scholar] [CrossRef] [PubMed]
- DenHollander, N.; Befus, D. Loss of antigens from immunoblotting membranes. J. Immunol. Methods 1989, 122, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.Y.; Poulin, S.E.; Collins, M.F.; Ledue, T.B.; Ritchie, R.F. Background staining in immunoblot assays reduction of signal caused by cross-reactivity with blocking agents. J. Immunol. Methods 1993, 158, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Craig, W.Y.; E Poulin, S.; Nelson, C.P.; Ritchie, R.F. ELISA of IgG antibody to oxidized low-density lipoprotein: Effects of blocking buffer and method of data expression. Clin. Chem. 1994, 40, 882–888. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Bae, M.; Jo, S.H.; Shin, J.K.; Son, D.H.; Won, C.H.; Jeong, H.M.; Lee, J.H.; Kang, S.W. AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of C-Reactive Protein. Sensors 2015, 15, 18416–18426. [Google Scholar] [CrossRef]
- Petruzzi, L.; Maier, T.; Ertl, P.; Hainberger, R. Quantitative detection of C-reactive protein in human saliva using an electrochemical lateral flow device. Biosens. Bioelectron. X 2022, 10, 100136. [Google Scholar] [CrossRef]
- Kokkinos, C.; Prodromidis, M.; Economou, A.; Petrou, P.; Kakabakos, S. Disposable integrated bismuth citrate-modified screen-printed immunosensor for ultrasensitive quantum dot-based electrochemical assay of C-reactive protein in human serum. Anal. Chim. Acta 2015, 886, 29–36. [Google Scholar] [CrossRef]
- Gupta, R.K.; Periyakaruppan, A.; Meyyappan, M.; Koehne, J.E. Label-free detection of C-reactive protein using a carbon nanofiber based biosensor. Biosens. Bioelectron. 2014, 59, 112–119. [Google Scholar] [CrossRef]
- Yagati, A.K.; Pyun, J.-C.; Min, J.; Cho, S. Label-free and direct detection of C-reactive protein using reduced graphene oxide-nanoparticle hybrid impedimetric sensor. Bioelectrochemistry 2016, 107, 37–44. [Google Scholar] [CrossRef]
Sample | Rs (Ω) | Rf (Ω) | Cf (μF) | Rct (Ω) | CPE | W (Kσ) | χ2 |
---|---|---|---|---|---|---|---|
Gold | 202 ± 3.6 | / | / | 1207 ± 12.5 | 2.1 ± 0.05 μT; 0.790 ± 0.004 Φ | 1.1 ± 0.02 | 0.0005 |
PEDOT-OH | 208 ± 1.6 | 5.94 ± 1.2 | 2.87 ± 0.5 | 18.2 ± 1.3 | 5.3 ± 1.15 μT; 0.514 ± 0.006 Φ | 1.1 ± 0.03 | 0.0005 |
PEDOT-PC | 211 ± 2.2 | 23.7 ± 3.6 | 4.82 ± 0.2 | 2.03 ± 0.6 | 3.6 ± 0.69 μT; 0.783 ± 0.03 Φ | 1.0 ± 0.07 | 0.0006 |
Sensor Type | Functionalized Interface | Sensing Unit | Limit of Detection (LOD) | Detection Range | Linear Range | Strategy to Ensure Specificity | References |
---|---|---|---|---|---|---|---|
OFET | Channel | Antibody | 1 μg/mL | 1 μg/mL–50 μg/mL | 1 μg/mL–50 μg/mL | / | [12] |
FET | Gate Channel (AlGaN/GaN) | Antibody | 10 ng/mL | 10 ng/mL–1000 ng/mL | / | / | [58] |
OFET | Channel | Antibody | 2 pM (0.23 ng/mL) | 4 pM–2 μM (0.46 ng/mL–0.23 mg/mL) | 4 pM–2 μM (0.46 ng/mL–0.23 mg/mL) | pTHMMAA | [13] |
OFET | Gate Channel (DPh-BBTNDT) | Antibody | 100 ng/mL | 100 ng/mL–1 μg/mL | 500 ng/mL–1 μg/mL | BSA block | [4] |
FET | Channel | Antibody | 0.1 ng/mL | 0.1 ng/mL–100 μg/mL | 0.1 ng/mL–100 μg/mL | BSA block | [11] |
OECT | Gate | Antibody | 10 pg/mL | 10 pg/mL–0.2 mg/mL | 10 pg/mL–0.2 mg/mL | BSA block | [14] |
Voltammetric sensor | Electrode | Antibody | 3 ng/mL | 1 ng/mL–10 μg/mL | / | BSA block | [59] |
ASV sensor | Electrode | Antibody | 0.05 ng/mL | 0.2 ng/mL–100 ng/mL | 0.2 ng/mL–100 ng/mL | BSA block | [60] |
Voltammetric and impedance sensor | Electrode | Antibody | 11 ng/mL | 50 ng/mL–5 μg/mL | / | / | [61] |
Impedance sensor | Electrode | Antibody | 60 pg/mL | 1–1000 ng/mL | 1–1000 ng/mL | BSA block | [62] |
OECT | Gate | PEDOT-PC | 10 pg/mL | 10 pg/mL–1 μg/mL | 10 pg/mL–1 μg/mL | Intrinsically antifouling | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, S.; Zhang, S.; Chen, D.; Wang, J.; Wu, W.; Zhang, S.; Geng, Z.; He, Y.; Zhu, B. Phosphorylcholine-Functionalized PEDOT-Gated Organic Electrochemical Transistor Devices for Ultra-Specific and Sensitive C-Reactive Protein Detection. Polymers 2023, 15, 3739. https://doi.org/10.3390/polym15183739
Qian S, Zhang S, Chen D, Wang J, Wu W, Zhang S, Geng Z, He Y, Zhu B. Phosphorylcholine-Functionalized PEDOT-Gated Organic Electrochemical Transistor Devices for Ultra-Specific and Sensitive C-Reactive Protein Detection. Polymers. 2023; 15(18):3739. https://doi.org/10.3390/polym15183739
Chicago/Turabian StyleQian, Sihao, Shouyan Zhang, Danni Chen, Jun Wang, Wei Wu, Shuhua Zhang, Zhi Geng, Yong He, and Bo Zhu. 2023. "Phosphorylcholine-Functionalized PEDOT-Gated Organic Electrochemical Transistor Devices for Ultra-Specific and Sensitive C-Reactive Protein Detection" Polymers 15, no. 18: 3739. https://doi.org/10.3390/polym15183739
APA StyleQian, S., Zhang, S., Chen, D., Wang, J., Wu, W., Zhang, S., Geng, Z., He, Y., & Zhu, B. (2023). Phosphorylcholine-Functionalized PEDOT-Gated Organic Electrochemical Transistor Devices for Ultra-Specific and Sensitive C-Reactive Protein Detection. Polymers, 15(18), 3739. https://doi.org/10.3390/polym15183739