Enhancing the Mechanical Properties and Aging Resistance of 3D-Printed Polyurethane through Polydopamine and Graphene Coating
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication and Surface Modification of 3D-Printed PU Scaffolds
2.2. Scaffold Characterization
2.3. UV Durability Testing
2.4. Statistical Analysis
3. Results and Discussion
3.1. Characterization of PDA-Modified PU Scaffolds
3.2. Mechanical Properties of PDA-Modified PU Scaffolds
3.3. Effect of PDA–Graphene Modification
3.4. Aging Resistance Effects of the PDA–Graphene Modified PU Scaffold
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Yu, Z.; Wu, P. 3D Printing of Ionogels with Complementary Functionalities Enabled by Self-regulating Ink. Adv. Sci. 2023, 10, e2302891. [Google Scholar] [CrossRef]
- Liu, Q.; Zhang, W.; Jiao, R.; Lv, Z.; Lin, X.; Xiao, Y.; Zhang, K. Rational Nanomedicine Design Enhances Clinically Physical Treatment-inspired or Combined Immunotherapy. Adv. Sci. 2022, 9, 2203921. [Google Scholar] [CrossRef] [PubMed]
- Quadros, M.; Momin, M.; Verma, G. Design Strategies and Evolving Role of Biomaterial Assisted Treatment of Osteosarcoma. Biomater. Adv. 2021, 121, 111875. [Google Scholar] [CrossRef]
- Chiu, Y.C.; Lin, Y.H.; Chen, Y.W.; Kuo, T.Y.; Shie, M.Y. Additive Manufacturing of Barium-Doped Calcium Silicate/Poly-ε-Caprolactone Scaffolds to Activate CaSR and AKT Signalling and Osteogenic Differentiation of Mesenchymal Stem Cells. J. Mater. Chem. B 2023, 11, 4666–4676. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, H.; Zhang, Y.; Huangfu, H.; Yang, Y.; Qin, Q.; Zhang, Y.; Zhou, Y. 3D Printed Reduced Graphene Oxide-GelMA Hybrid Hydrogel Scaffolds for Potential Neuralized Bone Regeneration. J. Mater. Chem. B 2023, 11, 1288–1301. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Lin, Y.H.; Lin, T.L.; Lee, K.X.; Yu, M.H.; Shie, M.Y. 3D-Biofabricated Chondrocyte-Laden Decellularized Extracellular Matrix-Contained Gelatin Methacrylate Auxetic Scaffolds under Cyclic Tensile Stimulation for Cartilage Regeneration. Biofabrication 2023, 15, 045007. [Google Scholar] [CrossRef] [PubMed]
- Lin, T.L.; Lin, Y.H.; Lee, A.K.X.; Kuo, T.Y.; Chen, C.Y.; Chen, K.H.; Chou, Y.T.; Chen, Y.W.; Shie, M.Y. The Exosomal Secretomes of Mesenchymal Stem Cells Extracted via 3D-Printed Lithium-Doped Calcium Silicate Scaffolds Promote Osteochondral Regeneration. Mater. Today Bio 2023, 22, 100728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Chen, J.; Feng, Y.; Lin, J.; Li, J.; Wang, Y.; Tan, H. Electroactive Scaffolds of Biodegradable Polyurethane/Polydopamine-Functionalized Graphene Oxide Regulating the Inflammatory Response and Revitalizing the Axonal Growth Cone for Peripheral Nerve Regeneration. J. Mater. Chem. B 2023, 11, 6308–6318. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.C.; Sun, Y.M.; Hsu, S. Development of Double Network Polyurethane–Chitosan Composite Bioinks for Soft Neural Tissue Engineering. J. Mater. Chem. B 2023, 11, 3592. [Google Scholar] [CrossRef]
- Chen, Y.W.; Chen, C.C.; Ng, H.Y.; Lou, C.W.; Chen, Y.S.; Shie, M.Y. Additive Manufacturing of Nerve Decellularized Extracellular Matrix-Contained Polyurethane Conduits for Peripheral Nerve Regeneration. Polymers 2019, 11, 1612. [Google Scholar] [CrossRef]
- Akindoyo, J.O.; Beg, M.D.H.; Ghazali, S.; Islam, M.R.; Jeyaratnam, N.; Yuvaraj, A.R. Polyurethane Types, Synthesis and Applications—A Review. RSC Adv. 2016, 6, 114453–114482. [Google Scholar] [CrossRef]
- Vadillo, J.; Larraza, I.; Calvo-Correas, T.; Martin, L.; Derail, C.; Eceiza, A. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking. Polymers 2022, 14, 4999. [Google Scholar] [CrossRef] [PubMed]
- Qi, G.; Yang, W.; Puglia, D.; Wang, H.; Xu, P.; Dong, W.; Zheng, T.; Ma, P. Hydrophobic, UV Resistant and Dielectric Polyurethane-Nanolignin Composites with Good Reprocessability. Mater. Des. 2020, 196, 109150. [Google Scholar] [CrossRef]
- Shan, X.; Liu, L.; Wu, Y.; Yuan, D.; Wang, J.; Zhang, C.; Wang, J. Aerogel-functionalized Thermoplastic Polyurethane as Waterproof, Breathable Freestanding Films and Coatings for Passive Daytime Radiative Cooling. Adv. Sci. 2022, 9, 2201190. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhou, D.; Yang, L.; Sun, J.; Wu, J. Poly(Dopamine) Coated Graphene Oxide as Multi-Functional Filler in Waterborne Polyurethane. Mater. Res. Express 2018, 6, 015308. [Google Scholar] [CrossRef]
- Wei, K.; Zhang, H.; Qu, J.; Wang, J.; Bai, Y.; Sai, F. Recyclable Shape-Memory Waterborne Polyurethane Films Based on Perylene Bisimide Modified Polycaprolactone Diol. Polymers 2021, 13, 1755. [Google Scholar] [CrossRef]
- Ma, H.; Liu, Y.; Guo, J.; Chai, T.; Suming, J.; Zhou, Y.; Zhong, L.; Deng, J. Synthesis of a Novel Silica Modified Environmentally Friendly Waterborne Polyurethane Matting Coating. Prog. Org. Coat. 2020, 139, 105441. [Google Scholar] [CrossRef]
- Ma, J.; Pan, J.; Yue, J.; Xu, Y.; Bao, J. High Performance of Poly(Dopamine)-Functionalized Graphene Oxide/Poly(Vinyl Alcohol) Nanocomposites. Appl. Surf. Sci. 2018, 427, 428–436. [Google Scholar] [CrossRef]
- Grebenko, A.K.; Krasnikov, D.V.; Bubis, A.V.; Stolyarov, V.S.; Vyalikh, D.V.; Makarova, A.A.; Fedorov, A.; Aitkulova, A.; Alekseeva, A.A.; Gilshtein, E.; et al. High-quality Graphene Using Boudouard Reaction. Adv. Sci. 2022, 9, 2200217. [Google Scholar] [CrossRef]
- Lin, Y.H.; Chuang, T.Y.; Chiang, W.H.; Chen, I.W.P.; Wang, K.; Shie, M.Y.; Chen, Y.W. The Synergistic Effects of Graphene-Contained 3D-Printed Calcium Silicate/Poly-ε-Caprolactone Scaffolds Promote FGFR-Induced Osteogenic/Angiogenic Differentiation of Mesenchymal Stem Cells. Mater. Sci. Eng. C 2019, 104, 109887. [Google Scholar] [CrossRef]
- Barroca, N.; da Silva, D.M.; Pinto, S.C.; Sousa, J.P.M.; Verstappen, K.; Klymov, A.; Fernández-San-Argimiro, F.-J.; Madarieta, I.; Murua, O.; Olalde, B.; et al. Interfacing Reduced Graphene Oxide with an Adipose-Derived Extracellular Matrix as a Regulating Milieu for Neural Tissue Engineering. Biomater. Adv. 2023, 148, 213351. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Gupta, S.; Sampathkumar, T.S.; Verma, R.S. Modified Graphene Oxide Nanoplates Reinforced 3D Printed Multifunctional Scaffold for Bone Tissue Engineering. Biomater. Adv. 2022, 134, 112587. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Yu, Y.; Wu, S.; Wang, C.-H. Conductive Polymer Nanocomposites for Stretchable Electronics: Material Selection, Design, and Applications. ACS Appl. Mater. Interfaces 2021, 13, 43831–43854. [Google Scholar] [CrossRef]
- Sun, M.; Li, J. Graphene Oxide Membranes: Functional Structures, Preparation and Environmental Applications. Nano Today 2018, 20, 121–137. [Google Scholar] [CrossRef]
- Mittal, G.; Rhee, K.Y.; Park, S.J.; Hui, D. Generation of the Pores on Graphene Surface and Their Reinforcement Effects on the Thermal and Mechanical Properties of Chitosan-Based Composites. Compos. Part B Eng. 2017, 114, 348–355. [Google Scholar] [CrossRef]
- Pourhashem, S.; Vaezi, M.R.; Rashidi, A.; Bagherzadeh, M.R. Distinctive Roles of Silane Coupling Agents on the Corrosion Inhibition Performance of Graphene Oxide in Epoxy Coatings. Prog. Org. Coat. 2017, 111, 47–56. [Google Scholar] [CrossRef]
- Kim, S.W.; Kim, T.; Kim, Y.S.; Choi, H.S.; Lim, H.J.; Yang, S.J.; Park, C.R. Surface Modifications for the Effective Dispersion of Carbon Nanotubes in Solvents and Polymers. Carbon 2012, 50, 3–33. [Google Scholar] [CrossRef]
- Li, Q.; Guo, Y.; Ouyang, C.; Yi, S.; Liu, S. Porous Highly Fluorinated Polyimide/Polydopamine Nanocomposite Films with Simultaneously Enhanced Toughness, UV-Shielding and Photostability for Aerospace Applications. Polym. Test. 2023, 118, 107899. [Google Scholar] [CrossRef]
- Tu, M.G.; Lee, A.K.X.; Lin, Y.H.; Huang, T.H.; Ho, C.C.; Shie, M.Y. Caffeic Acid-Coated Nanolayer on Mineral Trioxide Aggregate Potentiates the Host Immune Responses, Angiogenesis, and Odontogenesis. J. Endod. 2020, 46, 1455–1464. [Google Scholar] [CrossRef]
- Talebian, S.; Mendes, B.; Conniot, J.; Farajikhah, S.; Dehghani, F.; Li, Z.; Bitoque, D.; Silva, G.; Naficy, S.; Conde, J.; et al. Biopolymeric Coatings for Local Release of Therapeutics from Biomedical Implants. Adv. Sci. 2023, 10, 2207603. [Google Scholar] [CrossRef]
- Ho, C.C.; Chen, Y.W.; Wang, K.; Lin, Y.H.; Chen, T.C.; Shie, M.Y. Effect of Mussel-Inspired Polydopamine on the Reinforced Properties of 3D Printed β-Tricalcium Phosphate/Polycaprolactone Scaffolds for Bone Regeneration. J. Mater. Chem. B 2023, 11, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Lin, Y.H.; Lee, A.K.X.; Kuo, T.Y.; Tsai, C.H.; Shie, M.Y. Combined Effects of Polydopamine-Assisted Copper Immobilization on 3D-Printed Porous Ti6Al4V Scaffold for Angiogenic and Osteogenic Bone Regeneration. Cells 2022, 11, 2824. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Guo, L.; Feng, L.; Lu, H.; Xu, Y.; Wang, J.; Xiang, B.; Zou, X. Polydopamine Functionalized Graphene Oxide Nanocomposites Reinforced the Corrosion Protection and Adhesion Properties of Waterborne Polyurethane Coatings. Eur. Polym. J. 2019, 120, 109249. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.; Li, Z.; Yang, Y.; Sun, M.; Kong, Z.; Wang, Y.; Bai, H.; Dong, W. Polydopamine Functional Reduced Graphene Oxide for Enhanced Mechanical and Electrical Properties of Waterborne Polyurethane Nanocomposites. J. Coat. Technol. Res. 2018, 15, 1333–1341. [Google Scholar] [CrossRef]
- Yang, L.; Phua, S.L.; Toh, C.L.; Zhang, L.; Ling, H.; Chang, M.; Zhou, D.; Dong, Y.; Lu, X. Polydopamine-Coated Graphene as Multifunctional Nanofillers in Polyurethane. RSC Adv. 2013, 3, 6377–6385. [Google Scholar] [CrossRef]
- Kao, C.T.; Lin, C.C.; Chen, Y.W.; Yeh, C.H.; Fang, H.Y.; Shie, M.Y. Poly(Dopamine) Coating of 3D Printed Poly(Lactic Acid) Scaffolds for Bone Tissue Engineering. Mater. Sci. Eng. C Mater. Biol. Appl. 2015, 56, 165–173. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, Y.; Liu, X.; Wang, X.; Yang, B. Mussel-Inspired Modification of Carbon Fiber via Polyethyleneimine/Polydopamine Co-Deposition for the Improved Interfacial Adhesion. Compos. Sci. Technol. 2017, 151, 164–173. [Google Scholar] [CrossRef]
- Nirmala, R.; Nam, K.T.; Navamathavan, R.; Park, S.-J.; Kim, H.Y. Hydroxyapatite Mineralization on the Calcium Chloride Blended Polyurethane Nanofiber via Biomimetic Method. Nanoscale Res. Lett. 2010, 6, 2. [Google Scholar] [CrossRef]
- Mani, M.P.; Jaganathan, S.K.; Supriyanto, E. Enriched Mechanical Strength and Bone Mineralisation of Electrospun Biomimetic Scaffold Laden with Ylang Ylang Oil and Zinc Nitrate for Bone Tissue Engineering. Polymers 2019, 11, 1323. [Google Scholar] [CrossRef]
- Wang, X.; Pei, Y.; Hou, Y.; Pei, Z. Fabrication of Core-Shell Magnetic Molecularly Imprinted Nanospheres towards Hypericin via Click Polymerization. Polymers 2019, 11, 313. [Google Scholar] [CrossRef]
- Savchak, O.K.; Wang, N.; Ramos-Docampo, M.A.; Andres, P.d.D.; Sebastião, A.M.; Ribeiro, F.F.; Armada-Moreira, A.; Städler, B.; Vaz, S.H. Manganese Dioxide Nanosheet-Containing Reactors as Antioxidant Support for Neuroblastoma Cells. J. Mater. Chem. B 2022, 10, 4672–4683. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.W.; Shen, Y.F.; Ho, C.C.; Yu, J.; Wu, Y.H.A.; Wang, K.; Shih, C.T.; Shie, M.Y. Osteogenic and Angiogenic Potentials of the Cell-Laden Hydrogel/Mussel-Inspired Calcium Silicate Complex Hierarchical Porous Scaffold Fabricated by 3D Bioprinting. Mater. Sci. Eng. C 2018, 91, 679–687. [Google Scholar] [CrossRef] [PubMed]
- Tu, M.G.; Ho, C.C.; Hsu, T.T.; Huang, T.H.; Lin, M.J.; Shie, M.Y. Mineral Trioxide Aggregate with Mussel-Inspired Surface Nanolayers for Stimulating Odontogenic Differentiation of Dental Pulp Cells. J. Endod. 2018, 44, 963–970. [Google Scholar] [CrossRef] [PubMed]
- Song, N.; Pan, H.; Hou, X.; Cui, S.; Shi, L.; Ding, P. Enhancement of Thermal Conductivity in Polyamide-6/Graphene Composites via a “Bridge Effect” of Silicon Carbide Whiskers. RSC Adv. 2017, 7, 46306–46312. [Google Scholar] [CrossRef]
- Yoo, D.; Kim, J.; Kim, J.H. Direct Synthesis of Highly Conductive Poly(3,4-Ethylenedioxythiophene): Poly(4-Styrenesulfonate) (PEDOT: PSS)/Graphene Composites and Their Applications in Energy Harvesting Systems. Nano Res. 2014, 7, 717–730. [Google Scholar] [CrossRef]
- Sun, X.; Yang, J.; Ma, J.; Wang, T.; Zhao, X.; Zhu, D.; Jin, W.; Zhang, K.; Sun, X.; Shen, Y.; et al. Three-Dimensional Bioprinted BMSCs-Laden Highly Adhesive Artificial Periosteum Containing Gelatin-Dopamine and Graphene Oxide Nanosheets Promoting Bone Defect Repair. Biofabrication 2023, 15, 025010. [Google Scholar] [CrossRef]
- Wu, L.; Fan, M.; Qu, M.; Yang, S.; Nie, J.; Tang, P.; Pan, L.; Wang, H.; Bin, Y. Self-Healing and Anti-Freezing Graphene-Hydrogel-Graphene Sandwich Strain Sensor with Ultrahigh Sensitivity. J. Mater. Chem. B 2021, 9, 3088–3096. [Google Scholar] [CrossRef]
- Jena, G.; Philip, J. A Review on Recent Advances in Graphene Oxide-Based Composite Coatings for Anticorrosion Applications. Prog. Org. Coat. 2022, 173, 107208. [Google Scholar] [CrossRef]
- Ghim, D.; Wu, X.; Suazo, M.; Jun, Y.S. Achieving Maximum Recovery of Latent Heat in Photothermally Driven Multi-Layer Stacked Membrane Distillation. Nano Energy 2021, 80, 105444. [Google Scholar] [CrossRef]
- Zhu, X.; Gao, Z.; Li, F.; Miao, G.; Xu, T.; Miao, X.; Song, Y.; Li, X.; Ren, G. Superlyophobic Graphene Oxide/Polydopamine Coating under Liquid System for Liquid/Liquid Separation, Dye Removal, and Anti-Corrosion. Carbon 2022, 190, 329–336. [Google Scholar] [CrossRef]
- Li, Z.; Lei, H.; Kan, A.; Xie, H.; Yu, W. Photothermal Applications Based on Graphene and Its Derivatives: A State-of-the-Art Review. Energy 2021, 216, 119262. [Google Scholar] [CrossRef]
- Li, R.; Xiao, G.; Chen, C.; Chen, C.; Hu, X.; Li, Y.; Yang, Z.; Shang, S.; Wang, M. Self-Assembly Graphene Oxide Membrane Embedded with CPU@PAA@TiO2 for Enhancing the Dyes Separation and Photocatalytic Self-Cleaning Performance. J. Membr. Sci. 2023, 683, 121816. [Google Scholar] [CrossRef]
- Govindaraj, P.; Sokolova, A.; Salim, N.; Juodkazis, S.; Fuss, F.K.; Fox, B.; Hameed, N. Distribution States of Graphene in Polymer Nanocomposites: A Review. Compos. Part B Eng. 2021, 226, 109353. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tung, C.-C.; Lin, Y.-H.; Chen, Y.-W.; Wang, F.-M. Enhancing the Mechanical Properties and Aging Resistance of 3D-Printed Polyurethane through Polydopamine and Graphene Coating. Polymers 2023, 15, 3744. https://doi.org/10.3390/polym15183744
Tung C-C, Lin Y-H, Chen Y-W, Wang F-M. Enhancing the Mechanical Properties and Aging Resistance of 3D-Printed Polyurethane through Polydopamine and Graphene Coating. Polymers. 2023; 15(18):3744. https://doi.org/10.3390/polym15183744
Chicago/Turabian StyleTung, Chien-Chiang, Yen-Hong Lin, Yi-Wen Chen, and Fu-Ming Wang. 2023. "Enhancing the Mechanical Properties and Aging Resistance of 3D-Printed Polyurethane through Polydopamine and Graphene Coating" Polymers 15, no. 18: 3744. https://doi.org/10.3390/polym15183744
APA StyleTung, C. -C., Lin, Y. -H., Chen, Y. -W., & Wang, F. -M. (2023). Enhancing the Mechanical Properties and Aging Resistance of 3D-Printed Polyurethane through Polydopamine and Graphene Coating. Polymers, 15(18), 3744. https://doi.org/10.3390/polym15183744