Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources
Abstract
:1. Introduction
2. Materials and Their Properties
2.1. Starch
2.1.1. Corn Starch
2.1.2. Rice Starch
2.1.3. Tapioca Starch
2.2. Plasticizers
2.2.1. Glycerol
2.2.2. Sorbitol
2.3. Fillers
3. Methodology
3.1. Preparation of Rice Starch
3.2. Characterization Methods
3.2.1. Solubility in Water
3.2.2. Solubility in Alcohol
3.2.3. Moisture Content
3.2.4. Absorption of Water
3.2.5. Biodegradability Test
3.2.6. Tensile Strength
3.2.7. Scanning Electron Microscope (SEM) Analysis
3.2.8. Fourier Transform Infrared Spectroscopy (FTIR)
3.2.9. Thermal Analysis
3.3. Statistical Analysis
4. Results and Discussion
4.1. Solubility in Water
4.2. Solubility in Alcohol
4.3. Moisture Content
4.4. Biodegradability Test
4.5. Absorption of Water
4.6. Tensile Strength
4.7. Scanning Electron Microscope (SEM)
4.8. Fourier Transmission Infrared Spectroscopy (FT–IR)
4.9. Thermal Analysis
5. Conclusions
- The scanning electron microscope image specifications show the compound binding nature and pores permeability for water inclusion. Though the characterizations of these samples are explicit to high and low of varying nature based on aggregating all these values of their results, S4 shows an acceptable proportion as in the best sample, ensuring the optimal signs for product development;
- Functional groups and potential chemical changes brought on by the addition of plasticizers and fillers were identified using the FTIR analysis. All of the bioplastic samples that were analyzed showed the characteristic peaks between 2925 and 3011 cm−1, indicating = C-H stretching, which is caused by the presence of starch;
- Maximum tensile strength of 13.612 MPa was achieved by Sample 6 with sorbitol bioplastic due to molecular interactions and hydrogen bonds. When calcium carbonate was added, the tensile strength decreased. Furthermore, the samples’ ability to resist tensile stress decreased with increasing starch content. In addition, the glycerol-based samples were much more flexible than those containing sorbitol;
- The corn concentration and glycerol help in the easy binding of other compounds and enable strength. Some ratios need to be at a level that is predictive of lower values, even while the sample needs better findings to be used and implemented. Examples of such constraints are a lower degradation rate and a greater water absorptivity level.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khalid, M.Y.; Arif, Z.U.; Ahmed, W.; Arshad, H. Recent Trends in Recycling and Reusing Techniques of Different Plastic Polymers and Their Composite Materials. Sustain. Mater. Technol. 2022, 31, e00382. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Arif, Z.U.; Hossain, M.; Umer, R. Recycling of Wind Turbine Blades through Modern Recycling Technologies: A Road to Zero Waste. Renew. Energy Focus 2023, 44, 373–389. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Sheikh, M.F.; Zolfagharian, A.; Bodaghi, M. Biopolymeric Sustainable Materials and Their Emerging Applications. J. Environ. Chem. Eng. 2022, 10, 108159. [Google Scholar] [CrossRef]
- Abraham, A.; Park, H.; Choi, O.; Sang, B.I. Anaerobic Co-Digestion of Bioplastics as a Sustainable Mode of Waste Management with Improved Energy Production—A Review. Bioresour. Technol. 2021, 322, 124537. [Google Scholar] [CrossRef]
- Ebrahimzade, I.; Ebrahimi-Nik, M.; Rohani, A.; Tedesco, S. Towards Monitoring Biodegradation of Starch-Based Bioplastic in Anaerobic Condition: Finding a Proper Kinetic Model. Bioresour. Technol. 2022, 347, 126661. [Google Scholar] [CrossRef] [PubMed]
- Fredi, G.; Dorigato, A. Recycling of Bioplastic Waste: A Review. Adv. Ind. Eng. Polym. Res. 2021, 4, 159–177. [Google Scholar] [CrossRef]
- Gurunathan, M.K.; Hynes, N.R.J.; Al-Khashman, O.A.; Brykov, M.; Ganesh, N.; Ene, A. Study on the Impact and Water Absorption Performance of Prosopis Juliflora & Glass Fibre Reinforced Epoxy Composite Laminates. Polymers 2022, 14, 2973. [Google Scholar] [CrossRef]
- Sankaranarayanan, R.; Rajesh Jesudoss Hynes, N.; Senthamarai Kannan, P.; Khan, A.; Asiri, A.M. Mechanical Behavior of Self-Healing Polyethylenimine/Polyacrylic Acid Multilevel Polymer Films. In Self-Healing Composite Materials: From Design to Applications; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Kumar, R.; Rajesh Jesudoss Hynes, N.; Senthamaraikannan, P.; Khan, A.; Rangappa, S.M.; Siengchin, S.; Sundara Bharathi, S.R.; Asiri, A.M.; Khan, I. Self-Repairing Fiber Polymer Composites: Mechanisms and Properties. In Self-Healing Composite Materials: From Design to Applications; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Khalid, M.Y.; Al Rashid, A.; Arif, Z.U.; Ahmed, W.; Arshad, H. Recent Advances in Nanocellulose-Based Different Biomaterials: Types, Properties, and Emerging Applications. J. Mater. Res. Technol. 2021, 14, 2601–2623. [Google Scholar] [CrossRef]
- Shafqat, A.; Al-Zaqri, N.; Tahir, A.; Alsalme, A. Synthesis and Characterization of Starch Based Bioplatics Using Varying Plant-Based Ingredients, Plasticizers and Natural Fillers. Saudi J. Biol. Sci. 2021, 28, 1739–1749. [Google Scholar] [CrossRef]
- Alonso-González, M.; Felix, M.; Romero, A. Influence of the Plasticizer on Rice Bran-Based Eco-Friendly Bioplastics Obtained by Injection Moulding. Ind. Crops Prod. 2022, 180, 114767. [Google Scholar] [CrossRef]
- Atiwesh, G.; Mikhael, A.; Parrish, C.C.; Banoub, J.; Le, T.A.T. Environmental Impact of Bioplastic Use: A Review. Heliyon 2021, 7, E07918. [Google Scholar] [CrossRef] [PubMed]
- Alonso-González, M.; Felix, M.; Guerrero, A.; Romero, A. Rice Bran-Based Bioplastics: Effects of the Mixing Temperature on Starch Plastification and Final Properties. Int. J. Biol. Macromol. 2021, 188, 932–940. [Google Scholar] [CrossRef] [PubMed]
- Henning, F.G.; Ito, V.C.; Demiate, I.M.; Lacerda, L.G. Non-Conventional Starches for Biodegradable Films: A Review Focussing on Characterisation and Recent Applications in Food Packaging. Carbohydr. Polym. Technol. Appl. 2022, 4, 100157. [Google Scholar] [CrossRef]
- Alves, J.S.; Dos Reis, K.C.; Menezes, E.G.T.; Pereira, F.V.; Pereira, J. Effect of Cellulose Nanocrystals and Gelatin in Corn Starch Plasticized Films. Carbohydr. Polym. 2015, 115, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Babaremu, K.; Oladijo, O.P.; Akinlabi, E. Biopolymers: A Suitable Replacement for Plastics in Product Packaging. Adv. Ind. Eng. Polym. Res. 2023, in press. [Google Scholar] [CrossRef]
- Fakhoury, F.M.; Maria Martelli, S.; Canhadas Bertan, L.; Yamashita, F.; Innocentini Mei, L.H.; Collares Queiroz, F.P. Edible Films Made from Blends of Manioc Starch and Gelatin—Influence of Different Types of Plasticizer and Different Levels of Macromolecules on Their Properties. LWT 2012, 49, 149–154. [Google Scholar] [CrossRef]
- Shaikh, S.; Yaqoob, M.; Aggarwal, P. An Overview of Biodegradable Packaging in Food Industry. Curr. Res. Food Sci. 2021, 4, 503–520. [Google Scholar] [CrossRef]
- Bishop, G.; Styles, D.; Lens, P.N.L. Environmental Performance Comparison of Bioplastics and Petrochemical Plastics: A Review of Life Cycle Assessment (LCA) Methodological Decisions. Resour. Conserv. Recycl. 2021, 168, 105451. [Google Scholar] [CrossRef]
- Morreale, M.; Scaffaro, R.; Maio, A.; La Mantia, F.P. Effect of Adding Wood Flour to the Physical Properties of a Biodegradable Polymer. Compos. Part. A Appl. Sci. Manuf. 2008, 39, 503–513. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Imran, R.; Arif, Z.U.; Akram, N.; Arshad, H.; Al Rashid, A.; Márquez, F.P.G. Developments in Chemical Treatments, Manufacturing Techniques and Potential Applications of Natural-Fibers-Based Biodegradable Composites. Coatings 2021, 11, 293. [Google Scholar] [CrossRef]
- Jõgi, K.; Bhat, R. Valorization of Food Processing Wastes and By-Products for Bioplastic Production. Sustain. Chem. Pharm. 2020, 18, 100326. [Google Scholar] [CrossRef]
- Pruncu, C.I.; Vladescu, A.; Hynes, N.R.J.; Sankaranarayanan, R. Surface Investigation of Physella Acuta Snail Shell Particle Reinforced Aluminium Matrix Composites. Coatings 2022, 12, 794. [Google Scholar] [CrossRef]
- Amin, M.R.; Chowdhury, M.A.; Kowser, M.A. Characterization and Performance Analysis of Composite Bioplastics Synthesized Using Titanium Dioxide Nanoparticles with Corn Starch. Heliyon 2019, 5, E02009. [Google Scholar] [CrossRef] [PubMed]
- Sankaranarayanan, R.; Hynes, N.R.J.; Li, D.; Chrysanthou, A. Electromagnetic Riveting Technique of Joining Metals to Polymer Composites in Hybrid Multi-Material Aerospace Structures. Trans. Indian Inst. Met. 2021, 74, 2909–2924. [Google Scholar] [CrossRef]
- Gómez-Heincke, D.; Martínez, I.; Stading, M.; Gallegos, C.; Partal, P. Improvement of Mechanical and Water Absorption Properties of Plant Protein Based Bioplastics. Food Hydrocoll. 2017, 73, 21–29. [Google Scholar] [CrossRef]
- Yang, J.; Dong, X.; Wang, J.; Ching, Y.C.; Liu, J.; Chunhui, L.; Baikeli, Y.; Li, Z.; Mohammed Al-Hada, N.; Xu, S. Synthesis and Properties of Bioplastics from Corn Starch and Citric Acid-Epoxidized Soybean Oil Oligomers. J. Mater. Res. Technol. 2022, 20, 373–380. [Google Scholar] [CrossRef]
- Chowdhury, M.A.; Hossain, N.; Badrudduza, M.D.; Rana, M.M. Development and Characterization of Natural Sourced Bioplastic for Food Packaging Applications. Heliyon 2023, 9, E13538. [Google Scholar] [CrossRef]
- Ollé Resa, C.P.; Jagus, R.J.; Gerschenson, L.N. Effect of Natamycin, Nisin and Glycerol on the Physicochemical Properties, Roughness and Hydrophobicity of Tapioca Starch Edible Films. Mater. Sci. Eng. C 2014, 40, 281–287. [Google Scholar] [CrossRef]
- Asrofi, M.; Sapuan, S.M.; Ilyas, R.A.; Ramesh, M. Characteristic of Composite Bioplastics from Tapioca Starch and Sugarcane Bagasse Fiber: Effect of Time Duration of Ultrasonication (Bath-Type). Mater. Today Proc. 2020, 46, 1626–1630. [Google Scholar] [CrossRef]
- Zoungranan, Y.; Lynda, E.; Dobi-Brice, K.K.; Tchirioua, E.; Bakary, C.; Yannick, D.D. Influence of Natural Factors on the Biodegradation of Simple and Composite Bioplastics Based on Cassava Starch and Corn Starch. J. Environ. Chem. Eng. 2020, 8, 104396. [Google Scholar] [CrossRef]
- Méité, N.; Konan, L.K.; Tognonvi, M.T.; Doubi, B.I.H.G.; Gomina, M.; Oyetola, S. Properties of Hydric and Biodegradability of Cassava Starch-Based Bioplastics Reinforced with Thermally Modified Kaolin. Carbohydr. Polym. 2021, 254, 117322. [Google Scholar] [CrossRef] [PubMed]
- Iriani, E.S.; Sunarti, T.C.; Richana, N.; Mangunwidjaja, D.; Hadiyoso, A. Utilization of Corn Hominy as a New Source Material for Thermoplastic Starch Production. Procedia Chem. 2012, 4, 245–253. [Google Scholar] [CrossRef]
- Wang, B.; Gao, W.; Kang, X.; Dong, Y.; Liu, P.; Yan, S.; Yu, B.; Guo, L.; Cui, B.; Abd El-Aty, A.M. Structural Changes in Corn Starch Granules Treated at Different Temperatures. Food Hydrocoll. 2021, 118, 106760. [Google Scholar] [CrossRef]
- Vignesh, N.J.; Velu, P.S.; Hynes, N.R.J. Physicochemical Analysis of Biobased Composites. In Biobased Composites: Processing, Characterization, Properties, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Shanmathy, M.; Mohanta, M.; Thirugnanam, A. Development of Biodegradable Bioplastic Films from Taro Starch Reinforced with Bentonite. Carbohydr. Polym. Technol. Appl. 2021, 2, 100173. [Google Scholar] [CrossRef]
- Behera, L.; Mohanta, M.; Thirugnanam, A. Intensification of Yam-Starch Based Biodegradable Bioplastic Film with Bentonite for Food Packaging Application. Env. Technol. Innov. 2022, 25, 102180. [Google Scholar] [CrossRef]
- Vieira, M.G.A.; Da Silva, M.A.; Dos Santos, L.O.; Beppu, M.M. Natural-Based Plasticizers and Biopolymer Films: A Review. Eur. Polym. J. 2011, 47, 254–263. [Google Scholar] [CrossRef]
- Yusoff, N.H.; Pal, K.; Narayanan, T.; de Souza, F.G. Recent Trends on Bioplastics Synthesis and Characterizations: Polylactic Acid (PLA) Incorporated with Tapioca Starch for Packaging Applications. J. Mol. Struct. 2021, 1232, 129954. [Google Scholar] [CrossRef]
- Razzaq, H.A.A.; Pezzuto, M.; Santagata, G.; Silvestre, C.; Cimmino, S.; Larsen, N.; Duraccio, D. Barley β-Glucan-Protein Based Bioplastic Film with Enhanced Physicochemical Properties for Packaging. Food Hydrocoll. 2016, 58, 276–283. [Google Scholar] [CrossRef]
- Velu, P.S.; Vignesh, N.J.; Hynes, N.R.J. Processing Methods for Manufacture of Biobased Composites. In Biobased Composites: Processing, Characterization, Properties, and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021. [Google Scholar]
- Gonzalez-Gutierrez, J.; Partal, P.; Garcia-Morales, M.; Gallegos, C. Development of Highly-Transparent Protein/Starch-Based Bioplastics. Bioresour. Technol. 2010, 101, 2007–2013. [Google Scholar] [CrossRef]
- Martínez, I.; Partal, P.; García-Morales, M.; Guerrero, A.; Gallegos, C. Development of Protein-Based Bioplastics with Antimicrobial Activity by Thermo-Mechanical Processing. J. Food Eng. 2013, 117, 247–254. [Google Scholar] [CrossRef]
- Kumar, R.; Rajesh Jesudoss Hynes, N.; Saravanakumar, S.S.; Senthamaraikannan, P.; Khan, A.; Asiri, A.M.; Khan, I.; Khan, M.M.A.; Nagarajan, S. Concept of Self-Repair and Efficiency Measurement in Polymer Matrix Composites. In Self-Healing Composite Materials: From Design to Applications; Woodhead Publishing: Sawston, UK, 2019. [Google Scholar]
- Dintcheva, N.T.; La Mantia, F.P. Durability of a Starch-Based Biodegradable Polymer. Polym. Degrad. Stab. 2007, 92, 630–634. [Google Scholar] [CrossRef]
- Rajesh Jesudoss Hynes, N.; Sankaranarayanan, R.; Senthil Kumar, J.; Mavinkere Rangappa, S.; Siengchin, S. Mechanical Behavior of Synthetic/Natural Fibers in Hybrid Composites. In Hybrid Fiber Composites; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Jerome, J.; Rajesh Jesudoss Hynes, N.; Sankaranarayanan, R. Mechanical Behavioural Testing of Fibre Metal Laminate Composites. In Proceedings of the 3RD International Conference on Condensed Matter and Applied Physics (ICC-2019), Bikaner, India, 14–15 October 2019; Volume 2220. [Google Scholar]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Hossain, M.; Shi, H.H.; Tariq, A.; Ramakrishna, S.; Umer, R. Additive manufacturing of sustainable biomaterials for biomedical applications. Asian J. Pharm. Sci. 2023, 18, 100812. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.Y.; Arif, Z.U. Novel Biopolymer-Based Sustainable Composites for Food Packaging Applications: A Narrative Review. Food Packag. Shelf Life 2022, 33, 100892. [Google Scholar] [CrossRef]
- Karan, H.; Funk, C.; Grabert, M.; Oey, M.; Hankamer, B. Green Bioplastics as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Vignesh, N.J.; Rajesh Jesudoss Hynes, N.; ShenbagaVelu, P.; Pravin, R. A Survey on Characterization of Natural Fibers. In Proceedings of the Advances in Basic Science (ICABS 2019), Bahal, India, 7–9 February 2019; Volume 2142. [Google Scholar]
- Wu, C.S. Renewable Resource-Based Composites of Recycled Natural Fibers and Maleated Polylactide Bioplastic: Characterization and Biodegradability. Polym. Degrad. Stab. 2009, 94, 1076–1084. [Google Scholar] [CrossRef]
- Mukesh, A.M.; Rajesh Jesudoss Hynes, N. Corrosion Behaviour of Fibre Metal Laminates and Control by Inhibitors. In Proceedings of the Advances in Basic Science (ICABS 2019), Bahal, India, 7–9 February 2019; Volume 2142. [Google Scholar]
- Glenn, G.M.; Orts, W.; Imam, S.; Chiou, B.S.; Wood, D.F. Starch Plastic Packaging and Agriculture Applications. In Starch Polymers: From Genetic Engineering to Green Applications; Elsevier B.V.: Amsterdam, The Netherlands, 2014; pp. 421–452. ISBN 9780444537300. [Google Scholar]
- Arif, Z.U.; Khalid, M.Y.; Ahmed, W.; Arshad, H.; Ullah, S. Recycling of the Glass/Carbon Fibre Reinforced Polymer Composites: A Step towards the Circular Economy. Polym.-Plast. Technol. Mater. 2022, 61, 761–788. [Google Scholar] [CrossRef]
- Dang, K.M.; Yoksan, R. Thermoplastic Starch Blown Films with Improved Mechanical and Barrier Properties. Int. J. Biol. Macromol. 2021, 188, 290–299. [Google Scholar] [CrossRef]
- Arif, Z.U.; Khalid, M.Y.; Noroozi, R.; Sadeghianmaryan, A.; Jalalvand, M.; Hossain, M. Recent Advances in 3D-Printed Polylactide and Polycaprolactone-Based Biomaterials for Tissue Engineering Applications. Int. J. Biol. Macromol. 2022, 218, 930–968. [Google Scholar] [CrossRef]
- Byun, Y.; Kim, Y.T. Utilization of Bioplastics for Food Packaging Industry. In Innovations in Food Packaging: Second Edition; Elsevier Ltd.: Amsterdam, The Netherlands, 2013; pp. 369–390. ISBN 9780123946010. [Google Scholar]
- Sharma, S.; Luzinov, I. Whey Based Binary Bioplastics. J. Food Eng. 2013, 119, 404–410. [Google Scholar] [CrossRef]
- ASTM D638-03; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2012.
- Chiumarelli, M.; Hubinger, M.D. Evaluation of Edible Films and Coatings Formulated with Cassava Starch, Glycerol, Carnauba Wax and Stearic Acid. Food Hydrocoll. 2014, 38, 20–27. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; You, T.; Wang, K.; Xu, F. Effects of Polymorphs on Dissolution of Cellulose in NaOH/Urea Aqueous Solution. Carbohydr. Polym. 2015, 125, 85–91. [Google Scholar] [CrossRef] [PubMed]
- Mohan, T.P.; Devchand, K.; Kanny, K. Barrier and Biodegradable Properties of Corn Starch-Derived Biopolymer Film Filled with Nanoclay Fillers. J. Plast. Film. Sheeting 2017, 33, 15–26. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, H.J.; Lee, J.W.; Choi, I.G. Biodegradability of Bio-Flour Filled Biodegradable Poly(Butylene Succinate) Bio-Composites in Natural and Compost Soil. Polym. Degrad. Stab. 2006, 91, 1117–1127. [Google Scholar] [CrossRef]
- Darni, Y.; Dewi, F.Y.; Lismeri, L. Modification of Sorghum Starch-Cellulose Bioplastic with Sorghum Stalks Filler. J. Rekayasa Kim. Lingkung. 2017, 12, 22–30. [Google Scholar] [CrossRef]
- Maulida, S.M.; Tarigan, P. Production of Starch Based Bioplastic from Cassava Peel Reinforced with Microcrystalline Celllulose Avicel PH101 Using Sorbitol as Plasticizer. J. Phys. Conf. Ser. 2016, 710, 012012. [Google Scholar] [CrossRef]
- Yin, Y.; Li, J.; Liu, Y.; Li, Z. Starch Crosslinked with Poly(Vinyl Alcohol) by Boric Acid. J. Appl. Polym. Sci. 2005, 96, 1394–1397. [Google Scholar] [CrossRef]
Sample No. | Corn Starch (g) | Rice Starch (g) | Tapioca Starch (g) | Glycerol (mL) | Sorbitol (mL) | Calcium Carbonate (g) |
---|---|---|---|---|---|---|
Sample 1 | 16 | 2 | 12 | 5 | 0 | 0 |
Sample 2 | 8 | 4 | 8 | 5 | 0 | 0 |
Sample 3 | 10 | 4 | 4 | 5 | 0 | 2 |
Sample 4 | 16 | 2 | 8 | 5 | 0 | 4 |
Sample 5 | 16 | 6 | 8 | 0 | 5 | 0 |
Sample 6 | 14 | 2 | 4 | 0 | 5 | 0 |
Sample 7 | 17 | 4 | 8 | 0 | 5 | 1 |
Sample 8 | 12 | 4 | 4 | 2.5 | 2.5 | 0 |
Sample 9 | 16 | 4 | 8 | 2.5 | 2.5 | 2 |
Samples | Solubility in Water | Solubility in Alcohol | Absorption of Water | Moisture Content | Tensile Strength | Biodegradability |
---|---|---|---|---|---|---|
Sample 1 | 0.000 | 0.056 | 0.000 | 0.000 | 0.159 | 0.000 |
Sample 2 | 0.361 | 0.000 | 0.876 | 0.306 | 0.512 | 1.000 |
Sample 3 | 0.656 | 0.851 | 0.723 | 0.455 | 0.215 | 0.986 |
Sample 4 | 0.484 | 0.125 | 0.746 | 0.156 | 0.360 | 0.736 |
Sample 5 | 0.818 | 0.469 | 0.938 | 0.414 | 0.132 | 0.047 |
Sample 6 | 0.401 | 0.447 | 0.166 | 0.651 | 1.000 | 0.716 |
Sample 7 | 0.942 | 0.765 | 1.000 | 0.489 | 0.000 | 0.303 |
Sample 8 | 0.330 | 0.804 | 0.008 | 0.781 | 0.215 | 0.541 |
Sample 9 | 1.000 | 1.000 | 0.661 | 0.609 | 0.122 | 0.104 |
Samples | Solubility in Water | Solubility in Alcohol | Absorption of Water | Moisture Content | Tensile Strength | Biodegradability |
---|---|---|---|---|---|---|
Sample 1 | 1.000 | 0.944 | 1.000 | 1.000 | 0.841 | 1.000 |
Sample 2 | 0.639 | 1.000 | 0.124 | 0.694 | 0.488 | 0.000 |
Sample 3 | 0.344 | 0.149 | 0.277 | 0.545 | 0.785 | 0.014 |
Sample 4 | 0.516 | 0.875 | 0.254 | 0.844 | 0.640 | 0.264 |
Sample 5 | 0.182 | 0.531 | 0.062 | 0.586 | 0.868 | 0.953 |
Sample 6 | 0.599 | 0.553 | 0.834 | 0.349 | 0.000 | 0.284 |
Sample 7 | 0.058 | 0.235 | 0.000 | 0.511 | 1.000 | 0.697 |
Sample 8 | 0.670 | 0.196 | 0.992 | 0.219 | 0.785 | 0.459 |
Sample 9 | 0.000 | 0.000 | 0.339 | 0.391 | 0.878 | 0.896 |
Samples | Solubility in Water | Solubility in Alcohol | Absorption of Water | Moisture Content | Tensile Strength | Biodegradability |
---|---|---|---|---|---|---|
Sample 1 | 1.000 | 0.899 | 1.000 | 1.000 | 0.759 | 1.000 |
Sample 2 | 0.580 | 1.000 | 0.363 | 0.620 | 0.494 | 0.333 |
Sample 3 | 0.433 | 0.370 | 0.409 | 0.524 | 0.700 | 0.336 |
Sample 4 | 0.508 | 0.800 | 0.401 | 0.762 | 0.581 | 0.405 |
Sample 5 | 0.379 | 0.516 | 0.348 | 0.547 | 0.791 | 0.913 |
Sample 6 | 0.555 | 0.528 | 0.750 | 0.434 | 0.333 | 0.411 |
Sample 7 | 0.347 | 0.395 | 0.333 | 0.506 | 1.000 | 0.623 |
Sample 8 | 0.602 | 0.383 | 0.985 | 0.390 | 0.699 | 0.480 |
Sample 9 | 0.333 | 0.333 | 0.431 | 0.451 | 0.804 | 0.827 |
Level | Starch | Glycerol | Sorbitol | Filler |
---|---|---|---|---|
1 | 0.6567 | 0.5792 | 0.7225 | 0.6851 |
2 | 0.5535 | 0.498 | 0.5261 | 0.5338 |
3 | 0.5513 | 0.6844 | 0.5653 | 0.5427 |
Delta | 0.1054 | 0.1864 | 0.1965 | 0.1513 |
Rank | 4 | 2 | 1 | 3 |
Samples | Grade |
---|---|
Sample 1 | 0.943 |
Sample 2 | 0.565 |
Sample 3 | 0.462 |
Sample 4 | 0.576 |
Sample 5 | 0.582 |
Sample 6 | 0.502 |
Sample 7 | 0.534 |
Sample 8 | 0.590 |
Sample 9 | 0.530 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navasingh, R.J.H.; Gurunathan, M.K.; Nikolova, M.P.; Królczyk, J.B. Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers 2023, 15, 3760. https://doi.org/10.3390/polym15183760
Navasingh RJH, Gurunathan MK, Nikolova MP, Królczyk JB. Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers. 2023; 15(18):3760. https://doi.org/10.3390/polym15183760
Chicago/Turabian StyleNavasingh, Rajesh Jesudoss Hynes, Manoj Kumar Gurunathan, Maria P. Nikolova, and Jolanta B. Królczyk. 2023. "Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources" Polymers 15, no. 18: 3760. https://doi.org/10.3390/polym15183760
APA StyleNavasingh, R. J. H., Gurunathan, M. K., Nikolova, M. P., & Królczyk, J. B. (2023). Sustainable Bioplastics for Food Packaging Produced from Renewable Natural Sources. Polymers, 15(18), 3760. https://doi.org/10.3390/polym15183760