Limitations of the Check Calculation for Tooth Deformation of Plastic Gears According to Gear Design Guideline VDI 2736
Abstract
:1. Introduction
1.1. Tooth Deformation of Plastic Gears
1.2. Current Methods and Test Rigs for the Tooth Deformation Measurement during Operation
1.3. Functional Principles of the LKT In Situ Gear Test Rig
2. Materials and Methods
2.1. Materials and Specimens
2.2. Testing Methods
2.2.1. In Situ Gear Test Runs
2.2.2. Dynamomechanical Analysis (DMA)
3. Results and Discussion
3.1. In Situ Gear Test Runs
3.2. Dynamomechanical Analysis (DMA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.K.; Singh, S.; Singh, P.K. Polymer spur gears behaviors under different loading conditions: A review. J. Eng. Tribol. 2017, 232, 210–228. [Google Scholar] [CrossRef]
- Ehrenstein, G.W. Mit Kunststoffen Konstruieren: Eine Einführung; Hanser: Munich, Germany, 2007; ISBN 3446183477. [Google Scholar]
- Feulner, R. Verschleiß Trocken Laufender Kunststoffgetriebe: Kennwertermittlung und Auslegung. Ph.D. Thesis, Friedrich-Alexander Universität Erlangen, Nuremberg, Germany, 2008. [Google Scholar]
- VDI 2736 Part 2; Thermoplastic Gear Wheels—Cylindrical Gears: Calculation of the Load-Carrying Capacity. VDI: Düsseldorf, Germany, 2016.
- Illenberger, C. Zahnflankentragfähigkeit Ölgeschmierter Kunststoffverzahnungen. Ph.D. Thesis, Technische Universität Munich, Munich, Germany, 2022. [Google Scholar]
- VDI 2736 Part 1; Thermoplastic Gear Wheels: Materials, Material Selection, Production Methods, Production Tolerances, Form Design. VDI: Düsseldorf, Germany, 2016.
- Lewis, W. Investigation of the Strength of Gear Teeth. In Proceedings of the Engineers Club of Philadelphia; Palala Press: London, UK, 1893. [Google Scholar]
- Walton, D.; Shi, Y.W. A comparison of ratings for plastic gears. Proc. Inst. Mech. Eng. Part. C Mech. Eng. Sci. 1989, 203, 31–38. [Google Scholar] [CrossRef]
- Van Melick, H.G.H. Tooth-bending effects in plastic spur gears. Gear Technol. 2007, 58–66. [Google Scholar]
- Terashima, K.; Tsukamoto, N.; Nishida, N. Development of plastic gears for power transmission: Design on load-carrying capacity. Bull. JSME 1986, 29, 1326–1329. [Google Scholar] [CrossRef]
- Shah, H.; Hirani, H. Online condition monitoring of spur gears. Int. J. Cond. Monit. 2014, 4, 15–22. [Google Scholar] [CrossRef]
- Martin, G.; Vogel, S.; Schirra, T.; Vorwerk-Handing, G.; Kirchner, E. Methodical Evaluation of Sensor Positions for Condition Monitoring of Gears 2018. In Proceedings of the DS 91: NordDesign 2018, Linköping, Sweden, 14–17 August 2018. [Google Scholar]
- Yao, Y.; Wang, H.; Li, S.; Liu, Z.; Gui, G.; Dan, Y.; Hu, J. End-to-end convolutional neural network model for gear fault diagnosis based on sound signals. Appl. Sci. 2018, 9, 1584. [Google Scholar] [CrossRef]
- Loutas, T.H.; Sotiriades, G.; Klaizoglou, I.; Kostopoulos, V. Condition monitoring of a single-stage gearbox with artificially induced gear cracks utilizing on-line vibration and acoustic emission measurements. Appl. Acoust. 2009, 70, 1148–1159. [Google Scholar] [CrossRef]
- Figlus, T.; Stanczyk, M. Diagnosis of the wear of gears in the gearbox using the wavelet packet transform. Metalurgija 2014, 53, 673–676. [Google Scholar]
- Hu, C.; Smith, W.A.; Randall, R.B.; Peng, Z. Development of a gear vibration indicator and its application in gear wear monitoring. Mech. Syst. Signal Process. 2016, 76–77, 319–336. [Google Scholar] [CrossRef]
- Resendiz-Ochoa, E.; Saucedo-Dorantes, J.; Benitez-Rangel, J.; Osornio-Rios, R.; Morales-Hernandez, L. Novel Methodology for Condition Monitoring of Gear Wear Using Supervised Learning and Infrared Thermography. Appl. Sci. 2019, 10, 506. [Google Scholar] [CrossRef]
- Sosa, M.; Björklund, S.; Sellgren, U.; Olofsson, U. In situ surface characterization of running-in of involute gears. Wear 2015, 340–341, 41–46. [Google Scholar]
- Yousef, S.S.; Burns, D.J.; McKinlay, W. Techniques for assessing the running temperature and fatigue strength of thermoplastic gears. Mech. Mach. Theory 1973, 8, 175–185. [Google Scholar] [CrossRef]
- Hooke, C.J.; Mao, K.; Breeds, A.R.; Kukureka, S.N. Measurement and Prediction of the Surface Temperature in Polymer Gears and Its Relationship to Gear Wear. J. Tribol. 1993, 115, 119–124. [Google Scholar] [CrossRef]
- Černe, B.; Petkovšek, M. High-speed camera-based optical measurement methods for in-mesh tooth deflection analysis of thermoplastic spur gears. Mater. Des. 2022, 223, 111184. [Google Scholar] [CrossRef]
- Herzog, C.; Drummer, D. Test Rig for the In Situ Measurement of the Elastic Tooth Deflection of Plastic Gears. Polymers 2023, 15, 1732. [Google Scholar] [CrossRef]
- Herzog, C.; Wolf, M.; Drummer, D. In Situ Measured Tooth Flank Wear of Plastic Gears under Spectrum Loading. Polymers 2022, 14, 5239. [Google Scholar] [CrossRef]
- Herzog, C.; Wolf, M.; Schubert, D.; Drummer, D. In situ investigation of the influence of varying load conditions on tooth deformation and wear of polymer gears. Forsch. Ingenieurwes 2022, 86, 545–555. [Google Scholar] [CrossRef]
- DIN 867; Bezugsprofile für Evolventenverzahnungen an Stirnrädern (Zylinderrädern) für den Allgemeinen Maschinenbau und den Schwermaschinenbau. Beuth Verlag GmbH: Berlin, Germany, 1986.
- BASF SE. CAMPUS Data Sheet PBT Ultradur® B 4520, Frankfurt. 2022. Available online: https://www.campusplastics.com/material/pdf/180906/UltradurB4520?sLg=de (accessed on 2 February 2023).
- DIN EN ISO 3167; Kunststoffe—Vielzweckprobekörper. Deutsches Institut für Normung e.V.: Berlin, Germany, 2014.
Pairing According to DIN 867 | Steel Pinion | Plastic Gear | Steel Gear |
---|---|---|---|
Material | Hardened 100Cr6 | PBT Ultradur B4520 | Hardened 16MnCr5 |
Module | 1 mm | ||
Pressure angle | 20° | ||
Number of teeth | 17 | 39 | |
Gear width | 8 mm | 6 mm | |
Profile shift | 0.2045 mm | −0.3135 mm | |
Pitch circle diameter d2 | 17 mm | 39 mm | |
Tip diameter da | 19.409 mm | 40.373 mm |
Processing Parameter | Parameter Setting |
---|---|
Screw diameter | 18 mm |
Mass temperature | 260 °C |
Mold temperature | 60 °C |
Injection/Holding/Cooling/Cycle time | 2.2 s/6 s/25 s/42.8 s |
Holding pressure | 600 bar |
Cylinder temperature profile (Nozzle → indentation) | 260 °C/250 °C/240 °C/230 °C/90 °C |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Herzog, C.; Drummer, D. Limitations of the Check Calculation for Tooth Deformation of Plastic Gears According to Gear Design Guideline VDI 2736. Polymers 2023, 15, 3809. https://doi.org/10.3390/polym15183809
Herzog C, Drummer D. Limitations of the Check Calculation for Tooth Deformation of Plastic Gears According to Gear Design Guideline VDI 2736. Polymers. 2023; 15(18):3809. https://doi.org/10.3390/polym15183809
Chicago/Turabian StyleHerzog, Christoph, and Dietmar Drummer. 2023. "Limitations of the Check Calculation for Tooth Deformation of Plastic Gears According to Gear Design Guideline VDI 2736" Polymers 15, no. 18: 3809. https://doi.org/10.3390/polym15183809
APA StyleHerzog, C., & Drummer, D. (2023). Limitations of the Check Calculation for Tooth Deformation of Plastic Gears According to Gear Design Guideline VDI 2736. Polymers, 15(18), 3809. https://doi.org/10.3390/polym15183809