Improving the Anti-washout Property of Acrylate Grouting Material by Bentonite: Its Characterization, Improving Mechanism, and Practical Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Mixing and Testing Procedures
2.2.1. Apparent Viscosity
2.2.2. Bleeding Rate
2.2.3. Setting Time
2.2.4. Retention Rate of Slurry
2.2.5. Expansion Characteristic
2.2.6. Impermeability
2.2.7. Compressive Strength Test
2.2.8. Tensile Strength
2.2.9. Microstructure Analysis
3. Results and Discussion
3.1. Workability
3.1.1. Apparent Viscosity
3.1.2. Bleeding
3.1.3. Setting Time
3.1.4. Retention Rate of Slurry
3.2. Expansion Characteristic
3.3. Impermeability
3.4. Mechanical Strength
3.4.1. Compressive Strength
3.4.2. Tensile Strength
3.5. Microstructural Characteristics
3.5.1. XRD Analyses
3.5.2. IR Analyses
3.5.3. SEM Analyses
3.6. Modification Mechanism of Lithium Bentonite on Acrylate Slurry
4. Engineering Application
5. Conclusions
- (1)
- LiB-AC grout has the advantages of adjustable setting time (10.5 to 395.6 s), minimal bleeding (0.1%), high viscosity (65 mPa·s) and expansibility (350%), robust dynamic water anti-dispersion performance (24 times that of pure AC slurry), high mechanical strength (compressive strength is 0.386 MPa, tensile strength is 0.088 MPa), impermeability (2.23 × 10−8 m/s), and non-toxic attributes.
- (2)
- The lithium bentonite was beneficial to the setting time, bleeding, viscosity, slurry retention rate, impermeability, and mechanical strength of the acrylate grout. However, it diminished the expansibility of the acrylate grout. At the optimal acrylate content (20%), the mechanical strength and impermeability of the LiB-AC grout were the highest.
- (3)
- The better performance on washout resistance of LiB-AC grout is from the modification of acrylate by bentonite, which leads to the formation of an interwoven spatial network structure of the LiB-AC grouting material. Besides, the smaller lithium-ion radius of lithium bentonite contributes to the enhanced stability of the network structure.
- (4)
- The LiB-AC grout succeeded in leakage prevention in a shield metro tunnel segment grouting project in a water-rich sandy pebble stratum. On-site application of the LiB-AC grout showed that it had a better anti-washout performance compared with cement-water glass and pure AC grout.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ibrahim, A.; Meguid, M.A. CFD-DEM simulation of sand erosion into defective gravity pipes under constant groundwater table. Tunn. Undergr. Space Technol. 2023, 131, 104823. [Google Scholar] [CrossRef]
- Lu, D.; Li, X.; Du, X.; Lin, Q.; Gong, Q. Numerical simulation and analysis on the mechanical responses of the urban existing subway tunnel during the rising groundwater. Tunn. Undergr. Space Technol. 2020, 98, 103297. [Google Scholar] [CrossRef]
- Colombo, L.; Gattinoni, P.; Scesi, L. Stochastic modelling of groundwater flow for hazard assessment along the underground infrastructures in Milan (northern Italy). Tunn. Undergr. Space Technol. 2018, 79, 110–120. [Google Scholar] [CrossRef]
- Li, X.; Wang, M.; Zheng, D.; Fang, H.; Wang, F.; Wan, J. Study on the failure mechanism between polyurethane grouting material and concrete considering the effect of moisture by digital image correlation. J. Build. Eng. 2023, 67, 105948. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, G.; Liu, Y. Effects of cementitious grout components on rheological properties. Constr. Build. Mater. 2019, 227, 116654. [Google Scholar] [CrossRef]
- Liu, X.; Wang, F.; Huang, J.; Wang, S.; Zhang, Z.; Nawnit, K. Grout diffusion in silty fine sand stratum with high groundwater level for tunnel construction. Tunn. Undergr. Space Technol. 2019, 93, 103051. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, Z.; Zhao, Y.; Zeng, C.; Zhang, P. Experimental Investigation on the Diffusion Law of Polymer Slurry Grouted in Sand. Polymers 2022, 14, 3635. [Google Scholar] [CrossRef]
- Chhun, K.-T.; Lee, S.-H.; Keo, S.-A.; Yune, C.-Y. Effect of Acrylate-Cement Grout on the Unconfined Compressive Strength of Silty Sand. Ksce J. Civ. Eng. 2019, 23, 2495–2502. [Google Scholar] [CrossRef]
- Zhang, C.; Shuai, B.; Zhang, X.; Hu, X.; Zhang, H.; Jia, Y.; Yang, Z.; Guan, X. Polyurethane/Red Mud Composites with Flexibility, Stretchability, and Flame Retardancy for Grouting. Polymers 2018, 10, 906. [Google Scholar] [CrossRef]
- Niu, F.; Cai, Y.; Liao, H.; Li, J.; Tang, K.; Wang, Q.; Wang, Z.; Liu, D.; Liu, T.; Liu, C.; et al. Unfavorable Geology and Mitigation Measures for Water Inrush Hazard during Subsea Tunnel Construction: A Global Review. Water 2022, 14, 1592. [Google Scholar] [CrossRef]
- He, S.; Lai, J.; Wang, L.; Wang, K. A literature review on properties and applications of grouts for shield tunnel. Constr. Build. Mater. 2020, 239, 117782. [Google Scholar] [CrossRef]
- Baluch, K.; Baluch, S.Q.; Yang, H.-S.; Kim, J.-G.; Kim, J.-G.; Qaisrani, S. Non-Dispersive Anti-Washout Grout Design Based on Geotechnical Experimentation for Application in Subsidence-Prone Underwater Karstic Formations. Materials 2021, 14, 1587. [Google Scholar] [CrossRef] [PubMed]
- Sha, F.; Lin, C.; Li, Z.; Liu, R. Reinforcement simulation of water-rich and broken rock with Portland cement-based grout. Constr. Build. Mater. 2019, 221, 292–300. [Google Scholar] [CrossRef]
- Cui, W.; Huang, J.; Song, H.; Xiao, M. Development of two new anti-washout grouting materials using multi-way ANOVA in conjunction with grey relational analysis. Constr. Build. Mater. 2017, 156, 184–198. [Google Scholar] [CrossRef]
- Li, S.; Pan, D.; Xu, Z.; Lin, P.; Zhang, Y. Numerical simulation of dynamic water grouting using quick-setting slurry in rock fracture: The Sequential Diffusion and Solidification (SDS) method. Comput. Geotech. 2020, 122, 103497. [Google Scholar] [CrossRef]
- Sun, L.; Grasselli, G.; Liu, Q.; Tang, X. Coupled hydro-mechanical analysis for grout penetration in fractured rocks using the finite-discrete element method. Int. J. Rock Mech. Min. Sci. 2019, 124, 104138. [Google Scholar] [CrossRef]
- Liu, Y.; Wu, Z.; Weng, L.; Wu, L.; Xu, X.; Liu, Q. Experimental Study on the Grouting Diffusion Process in Fractured Sandstone with Flowing Water Based on the Low-Field Nuclear Magnetic Resonance Technique. Rock Mech. Rock Eng. 2023. [Google Scholar] [CrossRef]
- Xu, C.; Han, L. Formation Mechanism of Slurry Consolidated Body in Different Grouting Media under Dynamic Water Conditions by the Test-simulation Method. Ksce J. Civ. Eng. 2023, 27, 169–180. [Google Scholar] [CrossRef]
- Wang, C.; Diao, Y.; Guo, C.; Li, P.; Du, X.; Pan, Y. Two-stage column-hemispherical penetration diffusion model considering porosity tortuosity and time-dependent viscosity behavior. Acta Geotech. 2023, 18, 2661–2680. [Google Scholar] [CrossRef]
- Mirza, J.; Mirza, M.S.; Roy, V.; Saleh, K. Basic rheological and mechanical properties of high-volume fly ash grouts. Constr. Build. Mater. 2002, 16, 353–363. [Google Scholar] [CrossRef]
- Sonebi, M. Experimental design to optimize high-volume of fly ash grout in the presence of welan gum and superplasticizer. Mater. Struct. 2002, 35, 373–380. [Google Scholar] [CrossRef]
- Khayat, K.H.; Ballivy, G.; Gaudreault, M. High-performance cement grout for underwater crack injection. Can. J. Civ. Eng. 1997, 24, 405–418. [Google Scholar] [CrossRef]
- Liu, J.; Li, X.; Saffari, P.; Liang, Q.; Li, L.; Chen, W. Developing a Polypropylene Fabric, Silica Fume, and Redispersible Emulsion Powder Cementitious Composite for Dynamic Water Environment. Polymers 2019, 11, 47. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, J.; Li, Z.; Gao, Y.; Qi, Y.; Li, H.; Zhang, Q. Investigation and practical application of a new cementitious anti-washout grouting material. Constr. Build. Mater. 2019, 224, 66–77. [Google Scholar] [CrossRef]
- Ohazuruike, L.; Lee, K.J. A comprehensive review on clay swelling and illitization of smectite in natural subsurface formations and engineered barrier systems. Nucl. Eng. Technol. 2023, 55, 1495–1506. [Google Scholar] [CrossRef]
- Borah, D.; Nath, H.; Saikia, H. Modification of bentonite clay & its applications: A review. Rev. Inorg. Chem. 2022, 42, 265–282. [Google Scholar] [CrossRef]
- Uddin, M.K. A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chem. Eng. J. 2017, 308, 438–462. [Google Scholar] [CrossRef]
- Zhu, R.; Chen, Q.; Zhou, Q.; Xi, Y.; Zhu, J.; He, H. Adsorbents based on montmorillonite for contaminant removal from water: A review. Appl. Clay Sci. 2016, 123, 239–258. [Google Scholar] [CrossRef]
- Zheng, G.; Huang, J.; Diao, Y.; Ma, A.; Su, Y.; Jiao, C.; Chen, H. Experimental study on preparation and optimization of high-performance cement grouts mixed with chemical additives for capsule grouting technology. J. Mater. Res. Technol. 2022, 17, 1469–1484. [Google Scholar] [CrossRef]
- Zhang, J.P.; Liu, L.M.; Li, Q.H.; Peng, W.; Zhang, F.T.; Cao, J.Z.; Wang, H. Development of cement-based self-stress composite grouting material for reinforcing rock mass and engineering application. Constr. Build. Mater. 2019, 201, 314–327. [Google Scholar] [CrossRef]
- Zhang, C.; Fu, J.; Yang, J.; Ou, X.; Ye, X.; Zhang, Y. Formulation and performance of grouting materials for underwater shield tunnel construction in karst ground. Constr. Build. Mater. 2018, 187, 327–338. [Google Scholar] [CrossRef]
- Li, D.; Guo, J.; Wang, X.; Pei, L.; Li, W.; Liu, Y.; Deng, Y.; Chen, Z. Synthesis and Characterization of a Novel Bentonite Composite Superabsorbent Resin Based on Starch. Adv. Mater. Sci. Eng. 2022, 2022, 9038912. [Google Scholar] [CrossRef]
- Prabhu, P.; Karthikeyan, B.; Vannan, R.R.R.M.; Balaji, A. Mechanical, thermal and morphological analysis of hybrid natural and glass fiber-reinforced hybrid resin nanocomposites. Biomass Convers. Biorefinery 2022. [Google Scholar] [CrossRef]
- ASTM C942-15; Standard Test Method for Compressive Strength of Grouts for Preplaced-Aggregate Concrete in the Laboratory. ASTM: West Conshohocken, PA, USA, 2015.
- ASTM C496/C496M; Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens. ASTM: West Conshohocken, PA, USA, 2017.
- Mandal, M.; Nath, D.; Maji, T.K. Wood polymer nanocomposites from functionalized soybean oil and nanoclay. Wood Sci. Technol. 2018, 52, 1621–1643. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, G.H.; Yuan, Y.F. Basic Properties and Engineering Application of Bentonite-Cement-Water Glass Grouting. Ksce J. Civ. Eng. 2020, 24, 2742–2750. [Google Scholar] [CrossRef]
- Sha, F.; Li, S.; Liu, R.; Li, Z.; Zhang, Q. Experimental study on performance of cement-based grouts admixed with fly ash, bentonite, superplasticizer and water glass. Constr. Build. Mater. 2018, 161, 282–291. [Google Scholar] [CrossRef]
- Bai, T.; Wu, F.; Zhang, Y.; Mao, C.; Wang, G.; Wu, Y.; Bai, H.; Li, Y. Sulfur modification with dipentene and ethylhexyl acrylate to enhance asphalt mixture performance. Constr. Build. Mater. 2022, 343, 128086. [Google Scholar] [CrossRef]
- Li, Y.-C.; Wei, S.-J.; Xu, N.; He, Y. Internal Forces within the Layered Structure of Na-Montmorillonite Hydrates: Molecular Dynamics Simulation. J. Phys. Chem. C 2020, 124, 25557–25567. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, G.H.; Chang, Y.H. Comparison of the effect of lithium bentonite and sodium bentonite on the engineering properties of bentonite-cement-sodium silicate grout. Adv. Concr. Constr. 2020, 9, 279–287. [Google Scholar] [CrossRef]
SiO2 | Al2O3 | MgO | Na2O | CaO | K2O | Fe2O | TiO2 | Li2O | Loss |
---|---|---|---|---|---|---|---|---|---|
65.89 | 13.60 | 3.79 | 0.31 | 1.94 | 0.58 | 1.80 | 0.23 | 0.74 | 10.79 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Huang, F.; Yang, Y.; Xiong, Y.; Su, F.; Wang, Y.; Tian, X. Improving the Anti-washout Property of Acrylate Grouting Material by Bentonite: Its Characterization, Improving Mechanism, and Practical Application. Polymers 2023, 15, 3865. https://doi.org/10.3390/polym15193865
Li Z, Huang F, Yang Y, Xiong Y, Su F, Wang Y, Tian X. Improving the Anti-washout Property of Acrylate Grouting Material by Bentonite: Its Characterization, Improving Mechanism, and Practical Application. Polymers. 2023; 15(19):3865. https://doi.org/10.3390/polym15193865
Chicago/Turabian StyleLi, Zuochun, Feng Huang, Yuyou Yang, Yifan Xiong, Fei Su, Yajian Wang, and Xiao Tian. 2023. "Improving the Anti-washout Property of Acrylate Grouting Material by Bentonite: Its Characterization, Improving Mechanism, and Practical Application" Polymers 15, no. 19: 3865. https://doi.org/10.3390/polym15193865
APA StyleLi, Z., Huang, F., Yang, Y., Xiong, Y., Su, F., Wang, Y., & Tian, X. (2023). Improving the Anti-washout Property of Acrylate Grouting Material by Bentonite: Its Characterization, Improving Mechanism, and Practical Application. Polymers, 15(19), 3865. https://doi.org/10.3390/polym15193865