Study of the Single-Screw Extrusion Process Using Polylactide
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- –
- With the increase of the rotational speed of the screw, the weight of the PLA sample and the mass yield increased.
- –
- The processing temperature affects the weight of the samples. At a higher temperature, a greater mass of samples was obtained, and thus a greater mass yield.
- –
- The active power increased with the increase in the rotational speed of the screw.
- –
- Processing temperature influences the active power value. At a lower temperature, the active power values were higher. This phenomenon is related, with resistances and clogging of the cochlea.
- –
- As the rotational speed of the screw increased, the current increased.
- –
- The processing temperature affects the current value. At a lower temperature, the current intensity was higher. This phenomenon is also associated with the occurrence of resistances and the so-called clogging of the cochlea.
- –
- As the screw speed increased, the pressure increased.
- –
- The processing temperature affects the pressure value. At a lower temperature, the pressure was higher.
- –
- Viscosity decreased with increasing shear rate and temperature.
- –
- The viscosity of the material increased with increasing pressure.
- –
- Viscosity decreased with increasing volume flow.
- –
- The highest pressure occurred in the third zone of the cochlea, the so-called dosing zone. In addition, the obtained graphs show a rapid pressure drop on the head (IV), which results from its low resistance.
- –
4. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Stasiek, J. Modern technologies and equipment for blowing extrusion of the films. Part I. Blowing extrusion of the films from plastics. Polimery 2002, 50, 169–175. [Google Scholar] [CrossRef]
- Garbacz, T.; Tor, A. Effect of Porophor Content on the Useful Properties of External Coatings of Cables Obtained by Foaming Extrusion. Polimery 2007, 52, 286–293. [Google Scholar] [CrossRef]
- Haque, A.N.M.A.; Naebe, M. Material Extrusion of Wool Waste/Polycaprolactone with Improved Tensile Strength and Biodegradation. Polymers 2023, 15, 3439. [Google Scholar] [CrossRef]
- Dziadowiec, D.; Matykiewicz, D.; Szostak, M.; Andrzejewski, J. Overview of the Cast Polyolefin Film Extrusion Technology for Multi-Layer Packaging Applications. Materials 2023, 16, 1071. [Google Scholar] [CrossRef] [PubMed]
- Ncube, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. An Overview of Plastic Waste Generation and Management in Food Packaging Industries. Recycling 2021, 6, 12. [Google Scholar] [CrossRef]
- Stepaniak, P.; Softić, S.; Woźniak, S.; Fabijański, M.; Nowakowski, K. Properties of polyethylene regranulates made from end-of-life products. Przem. Chem. 2023, 102, 473–477. [Google Scholar] [CrossRef]
- Lewandowski, A.; Wilczyński, K. General model of polymer melting in extrusion process. Polimery 2022, 63, 444–452. [Google Scholar] [CrossRef]
- Rauwendaal, C. Polymer Extrusion; Hanser: Munich, Germany, 2001. [Google Scholar]
- Wilczyński, K.; Nastaj, A.; Wilczyński, K.J. Melting Model for Starve Fed Single Screw Extrusion of Thermoplastics. Int. Polym. Process 2013, 28, 34–42. [Google Scholar] [CrossRef]
- Bawiskar, S.; White, J.L. Melting Model for Modular Self Wiping Co-Rotating Twin Screw Extruders. Polym. Eng. Sci. 1998, 38, 727–740. [Google Scholar] [CrossRef]
- Tadmor, Z. Fundamentals of Plasticating Extrusion. Theor. Model Melting Polym. Eng. Sci. 1966, 6, 185–190. [Google Scholar] [CrossRef]
- Vlachopoulos, J. Polymer Rheology and Extrusion; Polydynamics: Dundas, ON, Canada, 2011. [Google Scholar]
- Tadmor, Z.; Klein, I. Engineering Principles of Plasticating Extrusion; Van Nostrand Reinhold Co.: New York, NY, USA, 1970; ISBN 978-044-215-635-0. [Google Scholar]
- Nastaj, A.; Wilczyński, K. Process Optimization for Single Screw Extrusion of Polymeric Materials—Simulation Studies. Polimery 2018, 4, 297–304. [Google Scholar] [CrossRef]
- Wilczyńskie, K.J.; Buziak, K. Simulation of single screw extrusion of wood plastic composites based on the on-line pressure measurements. Polimery 2019, 64, 135–142. [Google Scholar] [CrossRef]
- Dhaval, M.; Sharma, S.; Dudhat, K.; Chavda, J. Twin-Screw Extruder in Pharmaceutical Industry: History, Working Principle, Applications, and Marketed Products: An In-depth Review. J. Pharm. Innov. 2022, 17, 294–318. [Google Scholar] [CrossRef]
- Wilczyński, K.J.; Nastaj, A.; Lewandowski, A.; Wilczyński, K. A composite model for starve fed single screw extrusion of thermoplastics. Polym. Eng. Sci. 2014, 54, 2362. [Google Scholar] [CrossRef]
- La Galla, A.; Fiorio, R.; Erkoç, M.; Cardon, L.; D’hooge, D.R. Theoretical Evaluation of the Melting Efficiency for the Single-Screw Micro-Extrusion Process: The Case of 3D Printing of ABS. Processes 2020, 8, 1522. [Google Scholar] [CrossRef]
- Fabijanski, M. Mechanical Properties of Polylactide Filled with Micronized Chalcedonite. J. Compos. Sci. 2022, 6, 387. [Google Scholar] [CrossRef]
- Fabijański, M. Effect of multiple processing on the strength properties of polylactide/polystyrene mixture. Przem. Chem. 2022, 101, 65–68. [Google Scholar] [CrossRef]
- Foltynowicz, Z.; Jakubiak, P. Polylactid acid—Biodegradable polymer obtained from vegetable resources. Polimery 2002, 47, 769–774. Available online: https://archiwum.ichp.vot.pl/2002/rok_2002_11-12_art_03.pdf (accessed on 22 July 2023). [CrossRef]
- Berzin, F.; Beaugrand, J.; Dobosz, S.; Budtova, T.; Vergnes, B. Lignocellulosic fiber breakage in a molten polymer. Part 3. Modeling of the dimensional change of the fibers during compounding by twin screw extrusion. Compos. Part A Appl. Sci. Manuf. 2017, 101, 422–431. [Google Scholar] [CrossRef]
- Tábi, T.; Ageyeva, T.; Kovács, J.G. Improving the ductility and heat deflection temperature of injection molded Poly (lactic acid) products: Comprehensive review. Polym. Test. 2021, 101, 107282. [Google Scholar] [CrossRef]
- He, Y.; Wu, S.; Yuen, A.C.Y.; Huang, F.; Boyer, C.; Wang, C.H.; Zhang, J. Scalable Manufacturing Process and Multifunctional Performance of Cotton Fibre-Reinforced Poly(Lactic Acid) (PLA) Bio-Composites Coated by Graphene Oxide. Polymers 2022, 14, 3946. [Google Scholar] [CrossRef]
- Garbarski, J.; Fabijanski, M. Properties of high impact polystyrene flame retarded by magnesium hydroxide and modified with triblock copolymer styrene/butadiene/styrene. Polimery 2005, 50, 190–195. [Google Scholar] [CrossRef]
- Ismail, K.I.; Pang, R.; Ahmed, R.; Yap, T.C. Tensile Properties of In Situ 3D Printed Glass Fiber-Reinforced PLA. Polymers 2023, 15, 3436. [Google Scholar] [CrossRef] [PubMed]
- Laureto, J.; Tomasi, J.; King, J.A.; Pearce, J.M. Thermal properties of 3-D printed polylactic acid-metal composites. Prog. Addit. Manuf. 2017, 2, 57–71. [Google Scholar] [CrossRef]
- Le Duigou, A.; Castro, M.; Bevan, R.; Martin, N. 3D printing of wood fibre biocomposites: From mechanical to actuation functionality. Mater. Des. 2016, 96, 106–114. [Google Scholar] [CrossRef]
- Fabijański, M. Study on mechanical properties of phosphogypsum-filled polylactide. Przem. Chem. 2016, 95, 2227–2229. [Google Scholar] [CrossRef]
- Nastaj, A.; Wilczyński, K. Optimization for Starve Fed/Flood Fed Single Screw Extrusion of Polymeric Materials. Polymers 2020, 12, 149. [Google Scholar] [CrossRef]
- Ju, Q.; Tang, Z.P.; Shi, H.D.; Zhu, Y.F.; Shen, Y.C.; Wang, T.W. Thermoplastic starch based blends as a highly renewable filament for fused deposition modeling 3D printing. Int. J. Biol. Macromol. 2022, 219, 175–184. [Google Scholar] [CrossRef]
- Haider, T.P.; Völker, C.; Kramm, J.; Landfester, K.; Wurm, F.R. Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society. Angew. Chem.Int. Ed. 2019, 58, 50–62. [Google Scholar] [CrossRef]
- Fabijański, M. Mechanical properties of polylactide wood composites. Przem. Chem. 2019, 98, 1246–1268. [Google Scholar] [CrossRef]
- Silva, T.F.D.; Menezes, F.; Montagna, L.S.; Lemes, A.P.; Passador, F.R. Effect of lignin as accelerator of the biodegradation process of poly(lactic acid)/lignin composites. Mater. Sci. Eng. 2019, 251, 114441. [Google Scholar] [CrossRef]
- Mendoza-Duarte, M.E.; Estrada-Morena, I.A.; Lopez-Martinez, E.I.; Vega-Rios, A. Effect of the addition of different natural waxes on the mechanical and rheological behavior of PLA- A comparative study. Polymers 2023, 15, 305. [Google Scholar] [CrossRef]
- Fabijański, M. Mechanical strength and flammability of polylactide. Przem. Chem. 2019, 98, 556–558. [Google Scholar] [CrossRef]
- Lebaal, N. Robust low cost meta-modeling optimization algorithm based on meta-heuristic and knowledge databases approach: Application to polymer extrusion die design. Finite Elem. Anal. Des. 2019, 162, 51–66. [Google Scholar] [CrossRef]
- Tryznowski, M.; Soroczyński, A. Use of biodegradable poly(lactic acid) as a binder for molding sands for foundry industry. Przem. Chem. 2020, 1, 146–149. [Google Scholar] [CrossRef]
- Fabijański, M. Effect of injection parameters on the mechanical properties of foamed polylactide. Przem. Chem. 2021, 100, 750–753. [Google Scholar] [CrossRef]
- Jiang, Q.; White, J.L.; Yang, J. A Global Model for Closely Intermeshing Counter-Rotating Twin Screw Extruders with Flood Feeding. Int. Polym. Process. 2010, 25, 223–235. [Google Scholar] [CrossRef]
- Zochowski, P.; Bajkowski, M.; Grygoruk, R.; Magier, M.; Burian, W.; Pyka, D.; Bocian, M.; Jamroziak, K. Ballistic Impact Resistance of Bulletproof Vest Inserts Containing Printed Titanium Structures. Metals 2021, 11, 225. [Google Scholar] [CrossRef]
- Hyvärinen, M.; Jabeen, R.; Kärki, T. The Modelling of Extrusion Processes for Polymers—A Review. Polymers 2020, 12, 1306. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, P.; Tan, L.; Huang, H.; Jiang, G. Relationship between screw structure and properties of recycled glass fiber reinforced flame retardant nylon 46. RSC Adv. 2015, 5, 13296–13306. [Google Scholar] [CrossRef]
- Stepczyńska, M.; Rytlewski, P. Enzymatic degradation of flax-fibers reinforced polylactide. Int. Biodeterior. Biodegrad. 2018, 126, 160–166. [Google Scholar] [CrossRef]
- Ingeo Biopolymer 4043D Technical Data Sheet (data: 01/08/2023). Available online: https://www.natureworksllc.com/~/media/Files/NatureWorks/Technical-Documents/Technical-Data-Sheets/TechnicalDataSheet_4043D_3D-monofilament_pdf.pdf (accessed on 22 July 2023).
Parameter | Value |
---|---|
Density (g/cm3) | 1.24 |
Tensile strength (MPa) | 127.54 |
Young’s modulus (MPa) | 3585 |
Softening point (°C) | 145–160 |
Flow rate index (g/10 min) | 6 |
Melting temperature (°C) | 210 |
Drying temperature (°C) | 80 |
Drying time (h) | 6 |
Permissible moisture content (%) | 0.025 |
Supply zone temperature (°C) | 180 |
Temperature in the compression zone (°C) | 190 |
Temperature in the dispensing zone (°C) | 200 |
Die temperature (°C) | 190–200 |
Screw Rotation n, (rpm) | Sensor Number | Pressure P, (MPa) |
---|---|---|
20 | 50 | 5.5 |
49 | 12.0 | |
22 | 13.0 | |
21 | 10.5 | |
40 | 50 | 13.0 |
49 | 18.0 | |
22 | 29.0 | |
21 | 15.0 | |
60 | 50 | 18.0 |
49 | 25.5 | |
22 | 36.0 | |
21 | 22.0 | |
80 | 50 | 21.5 |
49 | 31.0 | |
22 | 36.0 | |
21 | 21.0 |
Screw Rotation n, (rpm) | Active Power, (kW) | Amperage, (A) | Average Sample Weight, (g) | Mass Efficiency W, (kg/h) | Pressure P, (MPa) |
---|---|---|---|---|---|
20 | 4.0 | 11.0 | 38.98 | 9.36 | 10.25 |
40 | 5.5 | 17.0 | 71.21 | 17.09 | 18.75 |
60 | 7.3 | 22.0 | 107.62 | 25.83 | 25.38 |
80 | 9.0 | 28.0 | 143.66 | 34.48 | 27.38 |
Screw Rotation n, (rpm) | Sensor Number | Pressure P, (MPa) |
---|---|---|
20 | 50 | 5.5 |
49 | 8.0 | |
22 | 9.5 | |
21 | 6.0 | |
40 | 50 | 10.0 |
49 | 15.0 | |
22 | 18.0 | |
21 | 12.0 | |
60 | 50 | 14.5 |
49 | 21.0 | |
22 | 27.0 | |
21 | 17.0 | |
80 | 50 | 18.5 |
49 | 25.0 | |
22 | 31.0 | |
21 | 19.0 |
Screw Rotation n, (rpm) | Active Power, (kW) | Amperage, (A) | Average Sample Weight, (g) | Mass Efficiency W, (kg/h) | Pressure P, (MPa) |
---|---|---|---|---|---|
20 | 3.8 | 9.0 | 41.02 | 9.85 | 7.25 |
40 | 5.0 | 15.0 | 77.25 | 18.54 | 13.75 |
60 | 6.8 | 19.0 | 114.90 | 27.58 | 19.88 |
80 | 8.8 | 24.0 | 151.53 | 36.37 | 23.38 |
Screw Rotation n, (rpm) | Average Mass of Samples, (g/s) | Mass Capacity W, (kg/h) | Pressure Drop in the Flow Channel Δp, (MPa) | Volume Flow Q, (cm3/s) | Shear Rate -𝛾̇, (1/s) | Viscosity η, (Pa × s) |
---|---|---|---|---|---|---|
20 | 2.60 | 9.36 | 10.5 | 2.10 | 157.19 | 1319.98 |
40 | 4.75 | 17.09 | 15.0 | 3.83 | 287.14 | 722.61 |
60 | 7.17 | 25.83 | 22.0 | 5.79 | 433.94 | 478.15 |
80 | 9.58 | 34.48 | 21.0 | 7.72 | 579.27 | 358.19 |
Screw Rotation n, (rpm) | Average Mass of Samples, (g/s) | Mass Capacity W, (kg/h) | Pressure Drop in the Flow Channel Δp, (MPa) | Volume Flow Q, (cm3/s) | Shear Rate -𝛾̇, (1/s) | Viscosity η, (Pa × s) |
---|---|---|---|---|---|---|
20 | 2.73 | 9.85 | 6.0 | 2.21 | 165.42 | 1254.34 |
40 | 5.15 | 18.54 | 12.0 | 4.15 | 311.51 | 666.08 |
60 | 7.66 | 27.58 | 17.0 | 6.18 | 463.29 | 447.86 |
80 | 10.10 | 36.37 | 19.0 | 8.15 | 610.99 | 339.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabijański, M. Study of the Single-Screw Extrusion Process Using Polylactide. Polymers 2023, 15, 3878. https://doi.org/10.3390/polym15193878
Fabijański M. Study of the Single-Screw Extrusion Process Using Polylactide. Polymers. 2023; 15(19):3878. https://doi.org/10.3390/polym15193878
Chicago/Turabian StyleFabijański, Mariusz. 2023. "Study of the Single-Screw Extrusion Process Using Polylactide" Polymers 15, no. 19: 3878. https://doi.org/10.3390/polym15193878
APA StyleFabijański, M. (2023). Study of the Single-Screw Extrusion Process Using Polylactide. Polymers, 15(19), 3878. https://doi.org/10.3390/polym15193878