Effect of Different Ratios of Gasoline-Ethanol Blend Fuels on Combustion Enhancement and Emission Reduction in Electronic Fuel Injection Engine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation and Characterization of Test Fuels
- (1)
- Mixture G100-100% gasoline;
- (2)
- Mixture G90E10-90% gasoline and 10% cassava bioethanol;
- (3)
- Mixture G80E20-80% gasoline and 20% cassava bioethanol;
- (4)
- Mixture G70E30-70% gasoline and 30% cassava bioethanol.
2.2. Experimental Setup
2.3. Response Surface Method
2.4. Uncertainty Analysis and Control Expectations
3. Results and Discussion
3.1. Performance Characteristics
3.1.1. Brake Power
3.1.2. Torque
3.1.3. Brake Specific Fuel Consumption
3.1.4. Exhaust Gas Temperature
3.2. Emission Characteristics
3.2.1. Variation in Nitrogen Oxide Emission
3.2.2. Variation in Carbon Monoxide Emission
3.2.3. Variation in Total Hydrocarbon Emission
4. Multi-Objective Optimization
4.1. Main Factors Affecting Brake Specific Fuel Consumption Emissions
7.98B2 − 0.52C2
4.2. Main Factors Affecting Nitrogen Oxide Emission
− 75.14A2 − 70.39B2 − 201.01C2
4.3. Main Factors Affecting Total Hydrocarbon Emissions
2.6A2 + 4.1B2 − 3.15C2
4.4. Optimum Solution
5. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclatures
BSFC | Brake specific fuel consumption |
CO | Carbon monoxide |
NOx | Nitrogen oxides |
RSM | Response surface methodology |
SI | Spark ignition |
THC | Total hydrocarbons |
References
- Zhang, B.; Li, X.; Wan, Q.; Liu, B.; Jia, G.; Yin, Z. Hydrocarbon emission control of an adsorptive catalytic gasoline particulate filter during cold-start period of the gasoline engine. Energy 2023, 262, 125445. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D.; Chan, S.; Shahsavari, M. Tailoring reduced mechanisms for predicting flame propagation and ignition characteristics in ammonia and ammonia/hydrogen mixtures. Energy 2022, 260, 125090. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, J.; Li, J.; Lv, J.; Wang, S.; Zhong, Y.; Dong, R.; Gao, S.; Cao, C.; Tan, D. Investigation on combustion, performance and emission characteristics of a diesel engine fueled with diesel/alcohol/n-butanol blended fuels. Fuel 2022, 320, 123975. [Google Scholar] [CrossRef]
- E, S.; Cui, Y.; Liu, Y.; Yin, H. Effects of the different phase change materials on heat dissipation performances of the ternary polymer Li-ion battery pack in hot climate. Energy 2023, 282, 128805. [Google Scholar] [CrossRef]
- Tan, D.; Wu, Y.; Lv, J.; Li, J.; Ou, X.; Meng, Y.; Lan, G.; Chen, Y.; Zhang, Z. Performance optimization of a diesel engine fueled with hydrogen/biodiesel with water addition based on the response surface methodology. Energy 2023, 263, 125869. [Google Scholar] [CrossRef]
- Yan, Z.; Gainey, B.; Gohn, J.; Hariharan, D.; Saputo, J.; Schmidt, C.; Caliari, F.; Sampath, S.; Lawler, B. A comprehensive experimental investigation of low-temperature combustion with thick thermal barrier coatings. Energy 2021, 222, 119954. [Google Scholar] [CrossRef]
- Tan, D.; Meng, Y.; Tian, J.; Zhang, C.; Zhang, Z.; Yang, G.; Cui, S.; Hu, J.; Zhao, Z. Utilization of renewable and sustainable diesel/methanol/n-butanol (DMB) blends for reducing the engine emissions in a diesel engine with different pre-injection strategies. Energy 2023, 269, 126785. [Google Scholar] [CrossRef]
- E, S.; Liu, Y.; Cui, Y.; Wu, A.; Yin, H. Effects of composite cooling strategy including phase change material and cooling air on the heat dissipation performance improvement of lithium ion power batteries pack in hot climate and its catastrophe evaluation. Energy 2023, 283, 129074. [Google Scholar] [CrossRef]
- Gainey, B.; Yan, Z.; Lawler, B. Autoignition characterization of methanol, ethanol, propanol, and butanol over a wide range of operating conditions in LTC/HCCI. Fuel 2021, 287, 119495. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D. Enhancing and assessing ammonia-air combustion performance by blending with dimethyl ether. Renew. Sustain. Energy Rev. 2022, 156, 112003. [Google Scholar] [CrossRef]
- Cai, T.; Zhao, D. Temperature Dependence of Laminar Burning Velocity in Ammonia/Dimethyl Ether-air Premixed Flames. J. Therm. Sci. 2022, 31, 189–197. [Google Scholar] [CrossRef]
- Ye, J.; Peng, Q. Improved emissions conversion of diesel oxidation catalyst using multifactor impact analysis and neural network. Energy 2023, 271, 127048. [Google Scholar] [CrossRef]
- Ye, J.; E, J.; Peng, Q. Effects of porosity setting and multilayers of diesel particulate filter on the improvement of regeneration performance. Energy 2023, 263, 126063. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, K.; Han, Z.; Tian, W. A comparative study of combustion and emission characteristics of butanol isomers on a diesel engine with dual fuel butanol isomers/diesel compound combustion. Fuel 2019, 254, 115581. [Google Scholar] [CrossRef]
- Zuo, H.; Liang, J.; Zhang, B.; Wei, K.; Zhu, H.; Tan, J. Intelligent estimation on state of health of lithium-ion power batteries based on failure feature extraction. Energy 2023, 282, 128794. [Google Scholar] [CrossRef]
- Shi, Z.; Peng, Q.; E, J.; Xie, B.; Wei, J.; Yin, R.; Fu, G. Mechanism, performance and modification methods for NH3-SCR catalysts: A review. Fuel 2023, 331, 125885. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, R.; Tan, D.; Duan, L.; Jiang, F.; Yao, X.; Yang, D.; Hu, J.; Zhang, J.; Zhong, W.; et al. Effect of structural parameters on diesel particulate filter trapping performance of heavy-duty diesel engines based on grey correlation analysis. Energy 2023, 271, 127025. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Li, J.T.; Tian, J.; Dong, R.; Zou, Z.; Gao, S.; Tan, D.L. Performance, combustion and emission characteristics investigations on a diesel engine fueled with diesel/ ethanol /n-butanol blends. Energy 2022, 249, 123733. [Google Scholar] [CrossRef]
- Zuo, H.Y.; Tan, J.Q.; Wei, K.X.; Huang, Z.H.; Zhong, D.Q.; Xie, F.C. Effects of different poses and wind speeds on wind-induced vibration characteristics of a dish solar concentrator system. Renew. Energy 2021, 168, 1308–1326. [Google Scholar] [CrossRef]
- Zuo, H.Y.; Zhang, B.; Huang, Z.H.; Wei, K.X.; Zhu, H.; Tan, J.Q. Effect analysis on SOC values of the power lithium manganate battery during discharging process and its intelligent estimation. Energy 2022, 238, 121854. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, R.; Lan, G.; Yuan, T.; Tan, D. Diesel particulate filter regeneration mechanism of modern automobile engines and methods of reducing PM emissions: A review. Environ. Sci. Pollut. Res. 2023, 30, 39338–39376. [Google Scholar] [CrossRef]
- Singh, A.; Bishnoi, N.R. Ethanol production from pretreated wheat straw hydrolyzate by Saccharomyces cerevisiae via sequential statistical optimization. Ind. Crops Prod. 2013, 41, 221–226. [Google Scholar] [CrossRef]
- Hu, W.; E, J.; Han, D.; Feng, C.; Luo, X. Investigation on distribution characteristics of convective wind energy from vehicle driving on multi-lane highway. Energy 2023, 271, 127024. [Google Scholar] [CrossRef]
- Luo, Y.; Zhu, L.; Fang, J.; Zhuang, Z.; Guan, C.; Xia, C.; Xie, X.; Huang, Z. Size distribution, chemical composition and oxidation reactivity of particulate matter from gasoline direct injection (GDI) engine fueled with ethanol-gasoline fuel. Appl. Therm. Eng. 2015, 89, 647–655. [Google Scholar] [CrossRef]
- Hu, W.; E, J.; Leng, E.; Zhang, F.; Chen, J.; Ma, Y. Investigation on harvesting characteristics of convective wind energy from vehicle driving on multi-lane highway. Energy 2023, 263, 126062. [Google Scholar] [CrossRef]
- Zhang, Z.; Lv, J.; Li, W.; Long, J.; Wang, S.; Tan, D.; Yin, Z. Performance and emission evaluation of a marine diesel engine fueled with natural gas ignited by biodiesel-diesel blended fuel. Energy 2022, 256, 124662. [Google Scholar] [CrossRef]
- Cai, L.; E, J.; Li, J.; Ding, J.; Luo, B. A comprehensive review on combustion stabilization technologies of micro/meso-scale combustors for micro thermophotovoltaic systems: Thermal, emission, and energy conversion. Fuel 2023, 335, 126660. [Google Scholar] [CrossRef]
- Shamun, S.; Belgiorno, G.; Di Blasio, G.; Beatrice, C.; Tuner, M.; Tunestal, P. Performance and emissions of diesel-biodiesel-ethanol blends in a light duty compression ignition engine. Appl. Therm. Eng. 2018, 145, 444–452. [Google Scholar] [CrossRef]
- Zhang, Z.Q.; Ye, J.D.; Tan, D.L.; Feng, Z.Q.; Luo, J.B.; Tan, Y.; Huang, Y.X. The effects of Fe2O3 based DOC and SCR catalyst on the combustion and emission characteristics of a diesel engine fueled with biodiesel. Fuel 2021, 290, 120039. [Google Scholar] [CrossRef]
- Li, Y.; Tang, W.; Abubakar, S.; Wu, G. Construction of a compact skeletal mechanism for acetone-n-butanol-ethanol (ABE)/diesel blends combustion in engines using a decoupling methodology. Fuel Process. Technol. 2020, 209, 106526. [Google Scholar] [CrossRef]
- Li, Y.; Tang, W.; Chen, Y.; Liu, J.; Lee, C.-f.F. Potential of acetone-butanol-ethanol (ABE) as a biofuel. Fuel 2019, 242, 673–686. [Google Scholar] [CrossRef]
- Akansu, S.O.; Tangoz, S.; Kahraman, N.; Ilhak, M.I.; Acikgoz, S. Experimental study of gasoline-ethanol-hydrogen blends combustion in an SI engine. Int. J. Hydrogen Energy 2017, 42, 25781–25790. [Google Scholar] [CrossRef]
- Thangavel, V.; Momula, S.Y.; Gosala, D.B.; Asvathanarayanan, R. Experimental studies on simultaneous injection of ethanol-gasoline and n-butanol-gasoline in the intake port of a four stroke SI engine. Renew. Energy 2016, 91, 347–360. [Google Scholar] [CrossRef]
- Mohammed, M.K.; Balla, H.H.; Al-Dulaimi, Z.M.H.; Kareem, Z.S.; Al-Zuhairy, M.S. Effect of ethanol-gasoline blends on SI engine performance and emissions. Case Stud. Therm. Eng. 2021, 25, 100891. [Google Scholar] [CrossRef]
- Rao, R.N.; Silitonga, A.S.; Shamsuddin, A.H.; Milano, J.; Riayatsyah, T.M.I.; Sebayang, A.H.; Nur, T.B.; Sabri, M.; Yulita, M.R.; Sembiring, R.W. Effect of Ethanol and Gasoline Blending on the Performance of a Stationary Small Single Cylinder Engine. Arab. J. Sci. Eng. 2020, 45, 5793–5802. [Google Scholar] [CrossRef]
- Bielaczyc, P.; Woodburn, J.; Klimkiewicz, D.; Pajdowski, P.; Szczotka, A. An examination of the effect of ethanol-gasoline blends’ physicochemical properties on emissions from a light-duty spark ignition engine. Fuel Process. Technol. 2013, 107, 50–63. [Google Scholar] [CrossRef]
- Rios Quiroga, L.C.; Perrella Balestieri, J.A.; Avila, I. Thermal behavior and kinetics assessment of ethanol/gasoline blends during combustion by thermogravimetric analysis. Appl. Therm. Eng. 2017, 115, 99–110. [Google Scholar] [CrossRef]
- Ismail, F.B.; Al-Bazi, A.; Aboubakr, I.G. Numerical investigations on the performance and emissions of a turbocharged engine using an ethanol-gasoline blend. Case Stud. Therm. Eng. 2022, 39, 102366. [Google Scholar] [CrossRef]
- Cordeiro de Melo, T.C.; Machado, G.B.; Belchior, C.R.P.; Colaco, M.J.; Barros, J.E.M.; de Oliveira, E.J.; de Oliveira, D.G. Hydrous ethanol-gasoline blends—Combustion and emission investigations on a Flex-Fuel engine. Fuel 2012, 97, 796–804. [Google Scholar] [CrossRef]
- Li, D.; Yu, X.; Du, Y.; Xu, M.; Li, Y.; Shang, Z.; Zhao, Z. Study on combustion and emissions of a hydrous ethanol/gasoline dual fuel engine with combined injection. Fuel 2022, 309, 122004. [Google Scholar] [CrossRef]
- Shirneshan, A.; Bagherzadeh, S.A.; Najafi, G.; Mamat, R.; Mazlan, M. Optimization and investigation the effects of using biodiesel-ethanol blends on the performance and emission characteristics of a diesel engine by genetic algorithm. Fuel 2021, 289, 119753. [Google Scholar] [CrossRef]
- Najafi, G.; Ghobadian, B.; Yusaf, T.; Ardebili, S.M.S.; Mamat, R. Optimization of performance and exhaust emission parameters of a SI (spark ignition) engine with gasoline-ethanol blended fuels using response surface methodology. Energy 2015, 90, 1815–1829. [Google Scholar] [CrossRef]
- Yu, S.R.; Tao, J. Energy efficiency assessment by life cycle simulation of cassava-based fuel ethanol for automotive use in Chinese Guangxi context. Energy 2009, 34, 22–31. [Google Scholar] [CrossRef]
- Iodice, P.; Amoresano, A.; Langella, G. A review on the effects of ethanol/gasoline fuel blends on NOx emissions in spark-ignition engines. Biofuel Res. J. 2021, 32, 1465–1480. [Google Scholar] [CrossRef]
- Barboza, A.B.V.; Mohan, S.; Dinesha, P. On reducing the emissions of CO, HC, and NOx from gasoline blended with hydrogen peroxide and ethanol: Optimization study aided with ANN-PSO. Environ. Pollut. 2022, 310, 119866. [Google Scholar] [CrossRef]
- Mokhtar, M.; Sukmono, A.; Setiapraja, H.; Ma’ruf, M.; Yubaidah, S.; Haryono, I.; Rochmanto, B.; Soewono, R.T.; Adhi Sukra, K.F.; Thahar, A.; et al. Towards nationwide implementation of 40% biodiesel blend fuel in Indonesia: A comprehensive road test and laboratory evaluation. Biofuel Res. J. 2023, 39, 1876–1889. [Google Scholar] [CrossRef]
- Celik, M.B. Experimental determination of suitable ethanol–gasoline blend rate at high compression ratio for gasoline engine. Appl. Therm. Eng. 2008, 28, 396–404. [Google Scholar] [CrossRef]
- Koç, M.; Sekmen, Y.; Topgül, T.; Yücesu, H.S. The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine. Renew. Energy 2009, 34, 2101–2106. [Google Scholar] [CrossRef]
- Costa, R.C.; Sodré, J.R. Hydrous ethanol vs. gasoline–ethanol blend: Engine performance and emissions. Fuel 2010, 89, 287–293. [Google Scholar] [CrossRef]
- Schifter, I.; Diaz, L.; Rodriguez, R.; Gómez, J.P.; Gonzalez, U. Combustion and emissions behavior for ethanol–gasoline blends in a single cylinder engine. Fuel 2011, 90, 3586–3592. [Google Scholar] [CrossRef]
- Yao, Y.C.; Tsai, J.H.; Wang, I.T. Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend. Appl. Energy 2013, 102, 93–100. [Google Scholar] [CrossRef]
- Raja, A.S.; Arasu, A.V. Control of cold start hydrocarbon emissions of motor bike engine by gasoline–ethanol blends and intake air heating. J. Mech. Sci. Technol. 2014, 28, 1567–1573. [Google Scholar] [CrossRef]
- Ozsezen, A.N. The Investigation of Thermodynamics and Combustion Properties of Alcohol–Gasoline Blends in an SI Engine. Int. J. Green Energy 2015, 12, 1107–1112. [Google Scholar] [CrossRef]
- Iodice, P.; Senatore, A.; Langella, G.; Amoresano, A. Effect of ethanol-gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation. Appl. Energy 2016, 179, 182–190. [Google Scholar] [CrossRef]
- Jin, D.; Choi, K.; Myung, C.-L.; Lim, Y.; Lee, J.; Park, S. The impact of various ethanol-gasoline blends on particulates and unregulated gaseous emissions characteristics from a spark ignition direct injection (SIDI) passenger vehicle. Fuel 2017, 209, 702–712. [Google Scholar] [CrossRef]
- Iodice, P.; Langella, G.; Amoresano, A. Ethanol in gasoline fuel blends: Effect on fuel consumption and engine out emissions of SI engines in cold operating conditions. Appl. Therm. Eng. 2018, 130, 1081–1089. [Google Scholar] [CrossRef]
- Liu, H.F.; Wang, X.C.; Zhang, D.P.; Dong, F.; Liu, X.L.; Yang, Y.; Huang, H.Z.; Wang, Y.; Wang, Q.L.; Zheng, Z.Q. Investigation on Blending Effects of Gasoline Fuel with N-Butanol, DMF, and Ethanol on the Fuel Consumption and Harmful Emissions in a GDI Vehicle. Energies 2019, 12, 1845. [Google Scholar] [CrossRef]
- Koten, H.; Karagoz, Y.; Balci, O. Effect of different levels of ethanol addition on performance, emission, and combustion characteristics of a gasoline engine. Adv. Mech. Eng. 2020, 12, 1687814020943356. [Google Scholar] [CrossRef]
- Iodice, P.; Cardone, M. Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions. Energies 2021, 14, 4034. [Google Scholar] [CrossRef]
- Kaya, G. Experimental comparative study on combustion, performance and emissions characteristics of ethanol-gasoline blends in a two stroke uniflow gasoline engine. Fuel 2022, 317, 120917. [Google Scholar] [CrossRef]
- Elshenawy, A.A.; Razik, S.M.A.; Gad, M.S. Modeling of combustion and emissions behavior on the effect of ethanol-gasoline blends in a four stroke SI engine. Adv. Mech. Eng. 2023, 15, 16878132231157178. [Google Scholar] [CrossRef]
- Cai, L.; Pitsch, H. Optimized chemical mechanism for combustion of gasoline surrogate fuels. Combust. Flame 2015, 162, 1623–1637. [Google Scholar] [CrossRef]
- Zhang, B.; Li, X.; Zuo, Q.; Yin, Z.; Zhang, J.; Chen, W.; Lu, C.; Tan, D. Effects analysis on hydrocarbon light-off performance of a catalytic gasoline particulate filter during cold start. Environ. Sci. Pollut. Res. 2022, 29, 76890–76906. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tian, J.; Xie, G.; Li, J.; Xu, W.; Jiang, F.; Huang, Y.; Tan, D. Investigation on the combustion and emission characteristics of diesel engine fueled with diesel/methanol/n-butanol blends. Fuel 2022, 314, 123088. [Google Scholar] [CrossRef]
- Badrawada, I.G.G.; Susastriawan, A.A.P. Influence of ethanol-gasoline blend on performance and emission of four-stroke spark ignition motorcycle. Clean Technol. Environ. Policy 2019, 21, 1891–1896. [Google Scholar] [CrossRef]
- Luo, M.; El-Faroug, M.O.; Yan, F.; Wang, Y. Particulate Matter and Gaseous Emission of Hydrous Ethanol Gasoline Blends Fuel in a Port Injection Gasoline Engine. Energies 2017, 10, 1263. [Google Scholar] [CrossRef]
- Sakthivel, P.; Subramanian, K.A.; Mathai, R. Comparative studies on combustion, performance and emission characteristics of a two-wheeler with gasoline and 30% ethanol-gasoline blend using chassis dynamometer. Appl. Therm. Eng. 2019, 146, 726–737. [Google Scholar] [CrossRef]
- Yontar, A.A. Effects of ethanol, methyl tert-butyl ether and gasoline-hydrogen blend on performance parameters and HC emission at Wankel engine. Biofuels 2020, 11, 377–388. [Google Scholar] [CrossRef]
Ref. | Ethanol Concentration in Blend | Engine Tested | Test Results |
---|---|---|---|
[47] | 0%, 25%, 50%, 75%, 100% | spark ignition (SI) | NOx, CO, HC, CO2 ↓ |
[48] | 0%, 50%, 85% | SI | NOx, CO, HC ↓ |
[49] | 22%, H100% | SI | NOx ↑ (compared with E22); HC, CO ↓ |
[50] | 0%, 6%, 10%, 15%, 20% | SI | NOx ↓ (except E6); HC ↑, CO ↓ |
[51] | 0%, 5%, 15% | fuel-injected engine | CO, THC ↓, NOx- |
[52] | 0%, 5%, 10%, 15%, 20% | SI | CO ↑ (0–10%), HC ↑, NOx ↓, CO ↓ (10–20%) |
[53] | 0%, 5%, 10% | SI | CO, HC, CO2, NOx ↓ |
[54] | 0%, 10%, 20%, 30% | SI | CO, HC ↓ |
[55] | 0%, 10%, 30%, 50%, 85% | spark ignition direct injection | THC ↑, CO, CO2, NOx ↓ |
[56] | 0%, 10%, 20%, 30% | SI | CO ↓ (0–20%), CO ↑ (20–30%), HC, NOx ↓, CO2 ↑ |
[57] | 0%, 20%, 50%, 75%, 100% | direct injection engine | NOx, CO, HC, CO2 ↓ |
[58] | 0%, 2.5%, 5%, 10%, 15%, 20% | SI | NOx ↑, CO, THC ↓ |
[59] | 0%, 10%, 20%, 30% | SI | CO ↓, HC ↑ |
[60] | 0%, 10%, 30%, 50% | SI | CO, HC, CO2, NOx ↓ |
[61] | 0%, 5%, 10%, 15%, 20% | SI | CO, HC, NOx ↓ |
Fuel Properties | G100 | G90E10 | G80E20 | G70E30 |
---|---|---|---|---|
Density (15 °C, kg/m3) | 745 | 756 | 763 | 787 |
Kinematic viscosity (40 °C, cSt) | 0.480 | 0.570 | 0.620 | 0.690 |
Lower heating value (MJ/kg) | 42.9 | 41.1 | 39.4 | 37.6 |
Latent heat of evaporation (kJ/kg) | 450 | 491 | 532 | 738 |
Oxygen content (%) | 0.000 | 3.50 | 6.90 | 10.4 |
Theoretical excess air coefficient | 0.92 | 0.966 | 1.02 | 1.09 |
Theoretical air-fuel ratio | 14.8 | 13.5 | 12.2 | 10.9 |
Type | Value |
---|---|
Number of cylinders | 4 |
Displacement (L) | 1.59 |
Bore × stroke (mm) | 81 × 77.5 |
Compression rate | 10:1 |
Rated power (kW) | 80.0 |
Rated tongue (N·m) | 144 |
Fuel injection type | Port injection, naturally inspired |
Torque (N·m) | Gasoline- Cassava Bioethanol Mixing Rate (%) | Speed (rpm) | Brake Specific Fuel Consumption (g/(kW·h)) | Nitrogen Oxide Emission (ppm) | Total Hydrocarbon Emission (ppm) |
---|---|---|---|---|---|
30.0 | 0.000 | 2.50 × 103 | 369 | 2.03 × 103 | 289 |
30.0 | 15.0 | 2.00 × 103 | 378 | 1.76 × 103 | 274 |
30.0 | 30.0 | 2.50 × 103 | 417 | 1.89 × 103 | 254 |
30.0 | 15.0 | 3.00 × 103 | 390 | 1.81 × 103 | 262 |
65.0 | 15.0 | 2.50 × 103 | 303 | 2.82 × 103 | 206 |
65.0 | 15.0 | 2.50 × 103 | 323 | 2.97 × 103 | 217 |
65.0 | 0.000 | 3.00 × 103 | 296 | 2.81 × 103 | 235 |
65.0 | 30.0 | 3.00 × 103 | 336 | 2.71 × 103 | 190 |
65.0 | 15.0 | 2.50 × 103 | 284 | 2.72 × 103 | 204 |
65.0 | 0.000 | 2.00 × 103 | 288 | 2.79 × 103 | 243 |
65.0 | 15.0 | 2.50 × 103 | 298 | 3.06 × 103 | 198 |
65.0 | 30.0 | 2.00 × 103 | 324 | 2.56 × 103 | 177 |
65.0 | 15.0 | 2.50 × 103 | 310 | 3.37 × 103 | 226 |
100 | 30.0 | 2.50 × 103 | 302 | 3.87 × 103 | 132 |
100 | 15.0 | 2.00 × 103 | 273 | 3.59 × 103 | 152 |
100 | 0.000 | 2.50 × 103 | 268 | 3.58 × 103 | 192 |
100 | 15.0 | 3.00 × 103 | 281 | 3.70 × 103 | 150 |
Source | Brake Specific Fuel Consumption Model | Nitrogen Oxide Model | Total Hydrocarbon Model | |||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Model | 27.9 | 0.0001 | 18.68 | 0.0004 | 40.8 | <0.0001 |
A | 192 | <0.0001 | 160 | <0.0001 | 300 | <0.0001 |
B | 26.3 | 0.001 | 0.092 | 0.770 | 62.6 | <0.0001 |
C | 1.67 | 0.237 | 0.290 | 0.605 | 0.120 | 0.741 |
AB | 0.440 | 0.528 | 1.08 | 0.333 | 1.83 | 0.218 |
AC | 0.042 | 0.843 | 0.022 | 0.886 | 0.240 | 0.641 |
BC | 0.042 | 0.843 | 0.110 | 0.753 | 1.29 | 0.293 |
A2 | 26.5 | 0.001 | 0.580 | 0.471 | 0.330 | 0.581 |
B2 | 2.24 | 0.178 | 0.510 | 0.498 | 0.830 | 0.393 |
C2 | 0.009 | 0.925 | 4.16 | 0.080 | 0.490 | 0.507 |
R2 | 0.972 | 0.960 | 0.981 | |||
Adj-R2 | 0.938 | 0.908 | 0.957 | |||
Pred-R2 | 0.955 | 0.870 | 0.925 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, Y.; Hu, J.; Zhang, Z.; Zhong, W.; Zhao, Z.; Zhang, J. Effect of Different Ratios of Gasoline-Ethanol Blend Fuels on Combustion Enhancement and Emission Reduction in Electronic Fuel Injection Engine. Polymers 2023, 15, 3932. https://doi.org/10.3390/polym15193932
Ye Y, Hu J, Zhang Z, Zhong W, Zhao Z, Zhang J. Effect of Different Ratios of Gasoline-Ethanol Blend Fuels on Combustion Enhancement and Emission Reduction in Electronic Fuel Injection Engine. Polymers. 2023; 15(19):3932. https://doi.org/10.3390/polym15193932
Chicago/Turabian StyleYe, Yanshuai, Jingyi Hu, Zhiqing Zhang, Weihuang Zhong, Ziheng Zhao, and Jian Zhang. 2023. "Effect of Different Ratios of Gasoline-Ethanol Blend Fuels on Combustion Enhancement and Emission Reduction in Electronic Fuel Injection Engine" Polymers 15, no. 19: 3932. https://doi.org/10.3390/polym15193932
APA StyleYe, Y., Hu, J., Zhang, Z., Zhong, W., Zhao, Z., & Zhang, J. (2023). Effect of Different Ratios of Gasoline-Ethanol Blend Fuels on Combustion Enhancement and Emission Reduction in Electronic Fuel Injection Engine. Polymers, 15(19), 3932. https://doi.org/10.3390/polym15193932