Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Preparation of CS/Sorbitol Composite Films
2.1.2. Preparation of CS/Sorbitol/SiO2 Composite Films
2.2. Characterization
2.2.1. Fourier-Transform Infrared (FTIR) Spectroscopy
2.2.2. X-ray Diffraction (XRD)
2.2.3. Scanning Electron Microscopy (SEM)
2.2.4. Mechanical Properties of the Composite Films
2.2.5. Thermogravimetric Analysis (TG)
2.2.6. Dynamic Mechanical Analysis (DMA)
2.2.7. Differential Scanning Calorimetry (DSC)
2.2.8. Water Vapor Permeability (WVP)
2.2.9. Water Contact Angle (WCA)
2.2.10. Statistical Analysis
3. Results and Discussion
3.1. Microstructural Morphology of Chitosan-Based Composite Films
3.1.1. Fourier Transform Infrared (FT-IR) Spectroscopy
3.1.2. XRD Spectra Analysis
3.1.3. SEM of Chitosan-Based Composite Films
3.2. Mechanical Properties of Chitosan-Based Composite Films
3.3. Thermal Property
3.3.1. Thermogravimetric Analysis
3.3.2. Dynamic Mechanical Analysis and Differential Scanning Calorimetry
3.4. Water Vapor Permeability
3.5. Water Contact Angle
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ncnbe, L.K.; Ude, A.U.; Ogunmuyiwa, E.N.; Zulkifli, R.; Beas, I.N. Environmental Impact of Food Packaging Materials: A Review of Contemporary Development from Conventional Plastics to Polylactic Acid Based Materials. Materials 2020, 13, 4994. [Google Scholar]
- Liu, M.; Zhou, Y.; Zhang, Y.; Yu, C.; Cao, S. Preparation and structural analysis of chitosan films with and without sorbitol. Food Hydrocoll. 2013, 33, 186–191. [Google Scholar] [CrossRef]
- Salama, A.; Hesemann, P. New N-guanidinium chitosan/silica ionic microhybrids as efficient adsorbent for dye removal from waste water. Int. J. Biol. Macromol. 2018, 111, 762–768. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Liu, Z.; Yin, C.; Han, Z.; Guan, Q.; Zhao, Y.; Ling, Z.; Liu, H.; Yang, K.; Sun, W.; et al. Edible, Ultrastrong, and Microplastic-Free Bacterial Cellulose-Based Straws by Biosynthesis. Adv. Funct. Mater. 2021, 32, 2111713. [Google Scholar] [CrossRef]
- Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial—A review on recent modifications and applications. Int. J. Biol. Macromol. 2020, 150, 1072–1083. [Google Scholar] [CrossRef]
- Wahba, M.I. Enhancement of the mechanical properties of chitosan. J. Biomater. Sci.-Polym. Ed. 2019, 31, 350–375. [Google Scholar] [CrossRef]
- Melro, E.; Antunes, F.E.; Silva, G.J.; Cruz, I.; Ramos, P.E.; Carvalho, F.; Alves, L. Chitosan Films in Food Applications. Tuning Film Properties by Changing Acidic Dissolution Conditions. Polymers 2021, 13, 1. [Google Scholar] [CrossRef]
- El-banna, F.S.; Mahfouz, M.E.; Leporatti, S.; El-Kemary, M.; Hanafy, N.A.N. Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels. Appl. Sci. 2019, 9, 2193. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Rhim, J.-W. Chitosan-based biodegradable functional films for food packaging Applications. Innov. Food. Sci. Emerg. Technol. 2020, 62, 10234. [Google Scholar] [CrossRef]
- Sharkawy, A.; Barreiro, M.F.; Rodrigues, A.E. Chitosan-based Pickering emulsions and their applications: A review. Carbohydr. Polym. 2020, 250, 116885. [Google Scholar] [CrossRef]
- Qiao, H.; Li, L.; Zhou, X.; Gao, X.; Li, X.; Wang, Y.; Zhang, Y.; Liao, Y.; Zhou, X.; Zhou, H.; et al. Efficient preparation of all cellulose composite films using a plasticizing-rolling method. Compos. Part A 2022, 158, 106968. [Google Scholar] [CrossRef]
- Tan, S.; Andriyana, A.; Ong, H.C.; Lim, S.; Pang, Y.L.; Ngoh, G.C. A Comprehensive Review on the Emerging Roles of Nanofillers and Plasticizers towards Sustainable Starch-Based Bioplastic Fabrication. Polymers 2022, 14, 664. [Google Scholar] [CrossRef] [PubMed]
- Luangtana-anan, M.; Soradech, S.; Saengsod, S.; Nunthanid, J.; Limmatvapirat, S. Enhancement of Moisture Protective Properties and Stability of Pectin through Formation of a Composite Film: Effects of Shellac and Plasticizer. J. Food Sci. 2017, 82, 2915–2925. [Google Scholar] [CrossRef] [PubMed]
- Ballesteros-Mártinez, L.; Pérez-Cervera, C.; Andrade-Pizarro, R. Effect of glycerol and sorbitol concentrations on mechanical, optical, and barrier properties of sweet potato starch film. NFS J. 2020, 20, 1–9. [Google Scholar] [CrossRef]
- Farhan, A.; Hani, N.M. Characterization of edible packaging films based on semi-refined kappa-carrageenan plasticized with glycerol and sorbitol. Food Hydrocoll. 2017, 64, 48–58. [Google Scholar] [CrossRef]
- Hanan, Z.A.N.; Roos, Y.H.; Kerry, J.P. Use and application of gelatin as potential biodegradable packaging materials for food products. Int. J. Biol. Macromol. 2014, 71, 94–102. [Google Scholar] [CrossRef]
- Thakhiew, W.; Devahastin, S.; Soponronnarit, S. Effects of drying methods and plasticizer concentration on some physical and mechanical properties of edible chitosan films. J. Food. Eng. 2010, 99, 216–224. [Google Scholar] [CrossRef]
- Leceta, I.; Guerrero, P.; Caba, K. Functional properties of chitosan-based films. Carbohydr. Polym. 2013, 93, 339–346. [Google Scholar] [CrossRef]
- Mei, J.; Yuan, Y.; Wu, Y.; Li, Y. Characterization of edible starch–chitosan film and its application in the storage of Mongolian cheese. Int. J. Biol. Macromol. 2013, 57, 17–21. [Google Scholar] [CrossRef]
- Dayarian, S.; Zamani, A.; Moheb, A.; Masoomi, M. Physico-Mechanical Properties of Films of Chitosan, Carboxymethyl Chitosan, and Their Blends. J. Polym. Environ. 2014, 22, 409–416. [Google Scholar] [CrossRef]
- Amin, K.A.M.; Panhuis, M. Reinforced Materials Based on Chitosan, TiO2 and Ag Composites. Polymers 2012, 4, 590–599. [Google Scholar] [CrossRef]
- Budnyak, T.M.; Pylypchuk, I.V.; Tertykh, V.A.; Yanovska, E.S.; Kolodynska, D.K. Synthesis and adsorption properties of chitosan-silica nanocomposite prepared by sol-gel method. Nanoscale Res. Lett. 2015, 10, 87. [Google Scholar] [CrossRef] [PubMed]
- Sharififard, H.; Rezvanpanah, E. Ultrasonic-assisted synthesis of SiO2 nanoparticles and SiO2/chitosan/Fe nanocomposite and their application for vanadium adsorption from aqueous solution. Environ. Sci. Pollut. Res. 2020, 28, 11586–11597. [Google Scholar] [CrossRef]
- Mark, J.E. Some interesting things about polysiloxanes. Acc. Chem. Res. 2004, 37, 946–953. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Gong, S.; Moll, J.; Zhao, D.; Kumar, S.K.; Colby, R.H. Mechanical Reinforcement of Polymer Nanocomposites from Percolation of a Nanoparticle Network. ACS Macro. Lett. 2015, 4, 398–402. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wang, M.; Zhang, Z.; Yang, L.; Ma, L.; Liu, H. Preparation and Properties of Poly(butylene adipate-co-terephthalate)/thermoplastic Hydroxypropyl Starch Composite Films Reinforced with Nano-Silica. Polymers 2023, 15, 2026. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Gao, W.; Wang, B.; Kang, X.; Liu, P.; Cui, B.; El-Aty, A.M.A. Preparation and evaluation of starch-based extrusion-blown nanocomposite films incorporated with nano-ZnO and nano-SiO2. Int. J. Biol. Macromol. 2021, 183, 1371–1378. [Google Scholar] [CrossRef]
- Marangoni, L.; Rodrigues, P.R.; Silva, R.G.; Vieira, R.P.; Alves, R.M.V. Improving the mechanical properties and thermal stability of sodium alginate/hydrolyzed collagen films through the incorporation of SiO2. Curr. Res. Food Sci. 2022, 5, 96–101. [Google Scholar] [CrossRef]
- ASTM D638:2022; Standard Test Method for Tensile Properties of Plastics. ASTM: Conshohocken, PA, USA, 2022.
- Badawy, M.E.I. A new rapid and sensitive spectrophotometric method for determination of a biopolymer chitosan. Int. J. Carbohydr. Chem. 2012, 2012, 139328. [Google Scholar] [CrossRef]
- Lim, S.H.; Hudson, S.M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res. 2004, 339, 313–321. [Google Scholar] [CrossRef]
- Gu, W.; Wu, P. FT-IR and 2D-IR spectroscopic studies on the effect of ions on the phase separation behavior of PVME aqueous solution. Anal. Sci. 2007, 23, 823. [Google Scholar] [CrossRef] [PubMed]
- Piermaria, J.; Bosch, A.; Pinoti, A.; Yantorno, O.; Garcia, M.A.; Abraham, A.G. Kefiran films plasticized with sugars and polyols; water vapor barrier and mechanical properties in relation to their microstructure analyzed by ATRFTIR spectroscopy. Food Hydrocol. 2011, 25, 1261–1269. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, B.; Wu, M.; Zhang, H.; Yao, J.; Chen, X.; Shao, Z. Preparation and characterization of antibacterial poly(lactic acid)nanocomposites with N-halamine modified silica. Int. J. Biol. Macromol. 2020, 155, 1468–1477. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Yan, X. Preparation of chitosan-SiO2 nanoparticles by ultrasonic treatment and its effect on the properties of starch film. Int. J. Biol. Macromol. 2021, 189, 271–278. [Google Scholar] [CrossRef]
- Zhong, T.; Xia, M.; Yao, Z.; Han, C. Chitosan/Silica Nanocomposite Preparation from Shrimp Shell and Its Adsorption Performance for Methylene Blue. Sustainability 2023, 15, 47. [Google Scholar] [CrossRef]
- Ali, F.; Khan, S.B.; Kamal, T.; Alamry, K.A.; Bakhsh, E.M.; Asiri, A.M.; Sobahi, T.R.A. Synthesis and characterization of metal nanoparticles templated chitosan-SiO2 catalyst for the reduction of nitrophenols and dyes. Carbohydr. Polym. 2018, 192, 217–230. [Google Scholar] [CrossRef]
- Song, X.; Liu, L.; Wu, X.; Liu, Y.; Yuan, J. Chitosan-Based Functional Films Integrated with Magnolol: Characterization, Antioxidant and Antimicrobial Activity and Pork Preservation. Int. J. Mol. Sci. 2021, 22, 7769. [Google Scholar] [CrossRef]
- Qiao, C.; Ma, X.; Zhang, J.; Yao, J. Molecular interactions in gelatin/chitosan composite films. Food. Chem. 2017, 235, 45–50. [Google Scholar] [CrossRef]
- Ogawa, K.; Yui, T.; Okuyama, K. Three D structures of chitosan. Int. J. Biol. Macromol. 2004, 34, 1–8. [Google Scholar] [CrossRef]
- Niu, N.; Teng, S.; Zhou, H.; Qian, H. Synthesis, Characterization, and In Vitro Drug Delivery of Chitosan-Silica Hybrid Microspheres for Bone Tissue Engineering. J. Nanomater. 2019, 2019, 7425787. [Google Scholar] [CrossRef]
- Montoille, L.; Vicencio, C.M.; Fontalba, D.; Ortiz, J.A.; Moreno-Serna, V.; Peponi, L.; Matiacevich, S.; Zapata, P.A. Study of the effect of the addition of plasticizers on the physical properties of biodegradable films based on kefiran for potential application as food packaging. Food. Chem. 2021, 360, 129966. [Google Scholar] [CrossRef] [PubMed]
- Ghasemlou, M.; Khodaiyan, F.; Oromiehie, A. Rheological and structural characterisation of film-forming solutions and biodegradable edible film made from kefiran as affected by various plasticizer types. Int. J. Biol. Macromol. 2011, 49, 814–821. [Google Scholar] [CrossRef] [PubMed]
- Hazrati, K.Z.; Sapuan, S.M.; Zuhri, M.Y.M.; Jumaidin, R. Effect of plasticizers on physical, thermal, and tensile properties of thermoplastic films based on Dioscorea hispida starch. Int. J. Biol. Macromol. 2021, 185, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Qiao, C.; Zhang, J.; Xu, J. Effect of sorbitol content on microstructure and thermal properties of chitosan films. Int. J. Biol. Macromol. 2018, 119, 1294–1297. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Su, J.; Chen, Y.; Xu, D.; Cheng, L.; Mao, L.; Gao, Y.; Yuan, F. Characterization and antioxidant properties of chitosan film incorporated with modified silica nanoparticles as an active food packaging. Food Chem. 2022, 373, 131414. [Google Scholar] [CrossRef]
- Boughriba, S.; Souissi, N.; Jridi, M.; Li, S.; Nasri, M. Thermal, mechanical and microstructural characterization and antioxidant potential of Rhinobatos cemiculus gelatin films supplemented by titanium dioxide doped silver nanoparticles. Food Hydrocol. 2020, 103, 105695. [Google Scholar] [CrossRef]
- Dong, Z.; Qiao, Y.; Yu, M.; Zhang, X.; Wnag, J.; Hu, S.; Zhai, K. Preparation and Performances of Starch/Chitosan/Nano Silica Composite Packaging Film. China Plast. Ind. 2017, 45, 135–139. [Google Scholar]
- Hosseini, S.; Rezaei, M.; Zandi, M.; Farahmandghavi, F. Fabrication of bio-nanocomposite films based on fish gelatin reinforced with chitosan nanoparticles. Food Hydrocol. 2015, 44, 172–182. [Google Scholar] [CrossRef]
- Chang, P.R.; Jian, R.; Yu, J.; Ma, X. Fabrication and characterisation of chitosan nanoparticles/plasticised-starch composites. Food Chem. 2010, 120, 136–740. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Z.; Zhang, L.; Wang, X.; Li, L. Effects of plasticizer type and concentration on rheological, physico-mechanical and structural properties of chitosan/zein film. Int. J. Biol. Macromol. 2020, 143, 334–340. [Google Scholar] [CrossRef]
- Liu, M.; Mao, Z.; Jiang, X.; Yu, C.; Niu, Y.; Zhou, Y. Properties of Chitosan Film-Forming Solution and Its Films. Food. Sci. 2014, 35, 11–15. [Google Scholar]
- Galus, S.; Gaouditz, M.; Kowalska, H.; Debeaufort, F. Effects of Candelilla and Carnauba Wax Incorporation on the Functional Properties of Edible Sodium Caseinate Films. Int. J. Mol. Sci. 2020, 21, 9349. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Yin, L.; Li, Y. Combined effects of lemon essential oil and surfactants on physical and structural properties of chitosan films. Int. J. Food Sci. Technol. 2012, 48, 44–50. [Google Scholar] [CrossRef]
- Hou, X.; Xue, Z.; Xia, Y.; Qin, Y.; Zhang, G.; Liu, H.; Li, K. Effect of SiO2 nanoparticle on the physical and chemical properties of eco-friendly agar/sodium alginate nanocomposite film. Int. J. Biol. Macromol. 2019, 125, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Peighambardoust, S.J.; Peighambardoust, S.H.; Pournasir, N.; Pakdel, P.M. Properties of active starch-based films incorporating a combination of Ag, ZnO and CuO nanoparticles for potential use in food packaging application. Food Packag. Shelf Life 2020, 22, 100420. [Google Scholar] [CrossRef]
- Oliveira, F.; Barros-Timmons, A.; Lopes-da-Silva, J.A. Preparation and Characterization of Chitosan/SiO2 Composite Films. J. Nanosci. Nanotechnol. 2010, 10, 2816–2825. [Google Scholar] [CrossRef]
- Zhai, X.; Zou, X.; Shi, J.; Huang, X.; Sun, Z.; Li, Z.; Sun, Y.; Li, Y.; Wang, X.; Holmes, M.; et al. Amine-responsive bilayer films with improved illumination stability and electrochemical writing property for visual monitoring of meat spoilage. Sens. Actuators B Chem. 2020, 302, 127130. [Google Scholar] [CrossRef]
- Chen, X.; Sun, L.; Wang, H.; Cao, S.; Shang, T.; Yan, H.; Lin, Q. Nano-SiO2 reinforced alginate-chitosan-gelatin nanocomposite hydrogels with improved physicochemical properties and biological activity. Colloids Surf. B 2023, 228, 13413. [Google Scholar] [CrossRef]
- Liu, M.; Zhou, Y.; Zhang, Y.; Yu, C.; Cao, S. Physicochemical, mechanical and thermal properties of chitosan films with and without sorbitol. Int. J. Biol. Macromol. 2014, 70, 340–346. [Google Scholar] [CrossRef]
- Martínez-Camacho, A.P.; Cortez-Rocha, M.O.; Ezquerra-Brauer, J.M.; Graciano-Verdugo, A.Z.; Rodriguez-Félix, F.; Castillo-Ortega, M.M.; Yépiz-Gómez, M.S.; Plascencia-Jatomea, M. Chitosan composite films: Thermal, structural, mechanical and antifungal properties. Carbohydr. Polym. 2010, 82, 305–315. [Google Scholar] [CrossRef]
- Liu, M.; Dai, L.; Shi, H.; Xiong, S.; Zhou, C. In vitro evaluation of alginate/halloysite nanotube composite scaffolds for tissue engineering. Mater. Sci. Eng. C 2015, 49, 700–712. [Google Scholar] [CrossRef] [PubMed]
- Rafigh, S.; Heydarinasab, A. Mesoporous Chitosan-SiO2 Nanoparticles: Synthesis, characterization and CO2 adsorption capacity. ACS Sustain. Chem. Eng. 2017, 5, 10379–10386. [Google Scholar] [CrossRef]
- Qiao, C.; Ma, X.; Wang, X.; Liu, L. Structure and properties of chitosan films: Effect of the type of solvent acid. LWT-Food Sci. Technol. 2021, 135, 109984. [Google Scholar] [CrossRef]
- Iturraga, L.; Olabaraieta, I.; Castellan, A.; Gardrat, C.; Coma, V. Active naringin-chitosan films: Impact of UV irradiation. Carbohydr. Polym. 2014, 110, 374–381. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Y.; Wu, C.; Xiong, S.; Zhou, C. Chitosan/halloysite nanotubes bionanocomposites: Structure, mechanical properties and biocompatibility. Int. J. Biol. Macromol. 2012, 51, 566–575. [Google Scholar] [CrossRef]
- Ghosa, A.; Ali, M.A.; Walls, R. Modification of microstructural morphology and physical performance of chitosan films. Int. J. Biol. Macromol. 2010, 46, 179–186. [Google Scholar] [CrossRef]
- Li, W.; Zheng, K.; Chen, H.; Feng, S.; Wang, W.; Qin, C. Influence of Nano Titanium Dioxide and Clove Oil on Chitosan-Starch Film Characteristics. Polymers 2019, 11, 1418. [Google Scholar] [CrossRef]
- Hussein, E.M.; Desoky, W.M.; Hanafy, M.F.; Guirguis, O.W. Effect of TiO2 nanoparticles on the structural configurations and thermal, mechanical, and optical properties of chitosan/TiO2 nanoparticle composites. J. Phys. Chem. Solids 2021, 152, 109983. [Google Scholar] [CrossRef]
- Roy, S.; Rhim, J.-W.; Jaiswal, L. Bioactive agar-based functional composite film incorporated with copper sulfide nanoparticles. Food Hydrocoll. 2019, 93, 156–166. [Google Scholar] [CrossRef]
- Yu, M.; Zhao, S.; Yang, L.; Ji, N.; Wang, Y.; Xiong, L.; Sun, Q. Preparation of a superhydrophilic SiO2 nanoparticles coated chitosan-sodium phytate film by a simple ethanol soaking process. Carbohydr. Polym. 2021, 271, 118422. [Google Scholar] [CrossRef]
- Martinez-Aguilar, V.; Pena-Juarez, M.G.; Carrillo-Sanchez, P.C.; Lopez-Zamora, L.; Delgado-Alvarado, E.; Gutierrez-Castaneda, E.J.; Flores-Martinez, N.L.; Herrera-May, A.L.; Gonzalez-Calderon, J.A. Evaluation of the Antioxidant and Antimicrobial Potential of SiO2 Modified with Cinnamon Essential Oil (Cinnamomum verum) for Its Use as a Nanofiller in Active Packaging PLA Films. Antioxidants 2023, 12, 1090. [Google Scholar] [CrossRef] [PubMed]
Sample | CS | CS30 | CS45 | CS60 | CS75 | CS60/SiO2-2.5 | CS60/SiO2-4.5 | CS60/SiO2-6.5 |
---|---|---|---|---|---|---|---|---|
TS/MPa | 38.91 | 15.68 | 19.11 | 29.27 | 13.22 | 20.56 | 25.38 | 11.22 |
EAB/% | 5.9 | 20.96 | 42.68 | 66.16 | 87.23 | 73.7 | 90.8 | 78.4 |
Toughness/MJm−3 | 1.67 | 2.91 | 4.89 | 8.99 | 4.43 | 6.39 | 10.52 | 3.55 |
Sample | Tg1 (°C) | Tg2 (°C) |
---|---|---|
CS60 | 30 | 123 |
CS60/SiO2-2.5 | 50 | 129 |
CS60/SiO2-4.5 | 52 | 132 |
CS60/SiO2-6.5 | 62 | 135 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Zhou, W.; Zhang, Z.; Zhang, D.; Guo, Z.; Ren, P.; Liu, F. Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers 2023, 15, 4015. https://doi.org/10.3390/polym15194015
Zhang W, Zhou W, Zhang Z, Zhang D, Guo Z, Ren P, Liu F. Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers. 2023; 15(19):4015. https://doi.org/10.3390/polym15194015
Chicago/Turabian StyleZhang, Wei, Wentao Zhou, Zisen Zhang, Di Zhang, Zhengzheng Guo, Penggang Ren, and Fei Liu. 2023. "Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films" Polymers 15, no. 19: 4015. https://doi.org/10.3390/polym15194015
APA StyleZhang, W., Zhou, W., Zhang, Z., Zhang, D., Guo, Z., Ren, P., & Liu, F. (2023). Effect of Nano-Silica and Sorbitol on the Properties of Chitosan-Based Composite Films. Polymers, 15(19), 4015. https://doi.org/10.3390/polym15194015