Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare L.) Essential Oil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of Sodium Alginate Molecular Weight
2.3. Preparation of Solutions and Films
2.4. Viscosity Measurements
2.5. ATR-FTIR Spectroscopy
2.6. The Uniaxial Tensile Tests
2.7. Moisture Content
2.8. UV-VIS Spectroscopy
2.9. Scanning Electron Microscopy
2.10. Thermal Analysis
2.11. Antioxidant Capacity
2.12. Antibacterial Assay
2.13. Statistical Analysis
3. Results and Discussion
3.1. Viscosity Measurement Results
3.2. ATR-FTIR Spectroscopy Results
3.3. Mechanical Properties Results
3.4. The Film Thickness and Moisture Content Results
3.5. SEM Results
3.6. Thermal Analysis Results
3.7. Antioxidant Capacity Results
3.8. Antibacterial Assay Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Roy, S.; Rhim, J.W. Effect of CuS Reinforcement on the Mechanical, Water Vapor Barrier, UV-Light Barrier and Antibacterial Properties of Alginate-Based Composite Films. Int. J. Biol. Macromol. 2020, 164, 37–44. [Google Scholar] [CrossRef]
- Hoffmann, T.G.; Peters, D.A.; Angioletti, B.L.; Bertoli, S.L.; Péres, L.V.; Ratto Reiter, M.G.; de Souza, C.K. Potentials Nanocomposites in Food Packaging. Chem. Eng. Trans. 2019, 75, 253–258. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Sustainability of Biodegradable Plastics: New Problem or Solution to Solve the Global Plastic Pollution? Curr. Res. Green Sustain. Chem. 2022, 5, 100273. [Google Scholar] [CrossRef]
- Moshood, T.D.; Nawanir, G.; Mahmud, F.; Mohamad, F.; Ahmad, M.H.; AbdulGhani, A. Biodegradable Plastic Applications towards Sustainability: A Recent Innovations in the Green Product. Clean. Eng. Technol. 2022, 6, 100404. [Google Scholar] [CrossRef]
- Menzel, C. Improvement of Starch Films for Food Packaging through a Three-Principle Approach: Antioxidants, Cross-Linking and Reinforcement. Carbohydr. Polym. 2020, 250, 116828. [Google Scholar] [CrossRef]
- Joodaki, M.; Müller, B.; Schift, H.; Nallathambi, A.; Osmani, B. Micro-Patterned Cellulose Films for Flexible Electrodes in Medical Implants. Micro Nano Eng. 2022, 16, 100162. [Google Scholar] [CrossRef]
- Jahromi, M.; Niakousari, M.; Golmakani, M.T. Fabrication and Characterization of Pectin Films Incorporated with Clove Essential Oil Emulsions Stabilized by Modified Sodium Caseinate. Food Packag. Shelf Life 2022, 32, 100835. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, Z.; Wei, X.; Sui, Z.; Geng, J.; Xiao, J.; Huang, D. Antibacterial and Antioxidant Water-Degradable Food Packaging Chitosan Film Prepared from American Cockroach. Food Biosci. 2022, 49, 101893. [Google Scholar] [CrossRef]
- Santos, L.G.; Silva, G.F.A.; Gomes, B.M.; Martins, V.G. A Novel Sodium Alginate Active Films Functionalized with Purple Onion Peel Extract (Allium cepa). Biocatal. Agric. Biotechnol. 2021, 35, 102096. [Google Scholar] [CrossRef]
- Picchio, M.L.; Linck, Y.G.; Monti, G.A.; Gugliotta, L.M.; Minari, R.J.; Alvarez Igarzabal, C.I. Casein Films Crosslinked by Tannic Acid for Food Packaging Applications. Food Hydrocoll. 2018, 84, 424–434. [Google Scholar] [CrossRef]
- Peng, L.; Dai, H.; Wang, H.; Zhu, H.; Ma, L.; Yu, Y.; Fu, Y.; Feng, X.; Du, J.; Zhang, Y. Effect of Different Dehydration Methods on the Properties of Gelatin Films. Food Chem. 2022, 374, 131814. [Google Scholar] [CrossRef]
- Tang, P.; Zheng, T.; Yang, C.; Li, G. Enhanced Physicochemical and Functional Properties of Collagen Films Cross-Linked with Laccase Oxidized Phenolic Acids for Active Edible Food Packaging. Food Chem. 2022, 393, 133353. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Arauz, A.O.; Aguilar-Rabiela, A.E.; Vargas-Torres, A.; Rodríguez-Hernández, A.I.; Chavarría-Hernández, N.; Vergara-Porras, B.; López-Cuellar, M.R. Production and Characterization of Biodegradable Films of a Novel Polyhydroxyalkanoate (PHA) Synthesized from Peanut Oil. Food Packag. Shelf Life 2019, 20, 100297. [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Sajjadi, M.; Sajadi, S.M.; Issaabadi, Z. Green Nanotechnology. Interface Sci. Technol. 2019, 28, 145–198. [Google Scholar] [CrossRef]
- Shirwaiker, R.A.; Purser, M.F.; Wysk, R.A. Scaffolding Hydrogels for Rapid Prototyping Based Tissue Engineering; Woodhead Publishing Limited: Cambridge, UK, 2014; ISBN 9780857095992. [Google Scholar]
- Santos, L.G.; Alves-Silva, G.F.; Martins, V.G. Active-Intelligent and Biodegradable Sodium Alginate Films Loaded with Clitoria Ternatea Anthocyanin-Rich Extract to Preserve and Monitor Food Freshness. Int. J. Biol. Macromol. 2022, 220, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, W.; Zhang, J.; Xie, G.; Xiong, T.; Xu, H. Preparation and Characterization of Sodium Alginate/Gelatin/Ag Nanocomposite Antibacterial Film and Its Application in the Preservation of Tangerine. Food Packag. Shelf Life 2022, 33, 100928. [Google Scholar] [CrossRef]
- Puscaselu, R.G.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From Food Industry to Biomedical Applications and Management of Metabolic Disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Marangoni Júnior, L.; Rodrigues, P.R.; da Silva, R.G.; Vieira, R.P.; Alves, R.M.V. Improving the Mechanical Properties and Thermal Stability of Sodium Alginate/Hydrolyzed Collagen Films through the Incorporation of SiO2. Curr. Res. Food Sci. 2022, 5, 96–101. [Google Scholar] [CrossRef]
- Ionita, M.; Pandele, M.A.; Iovu, H. Sodium Alginate/Graphene Oxide Composite Films with Enhanced Thermal and Mechanical Properties. Carbohydr. Polym. 2013, 94, 339–344. [Google Scholar] [CrossRef]
- Heckert Bastos, L.P.; Vicente, J.; Corrêa dos Santos, C.H.; Geraldo de Carvalho, M.; Garcia-Rojas, E.E. Encapsulation of Black Pepper (Piper nigrum L.) Essential Oil with Gelatin and Sodium Alginate by Complex Coacervation. Food Hydrocoll. 2020, 102, 105605. [Google Scholar] [CrossRef]
- Lawal, O.A.; Ogunwande, I.A. Essential Oils from the Medicinal Plants of Africa. Med. Plant Res. Afr. Pharmacol. Chem. 2013, 203–224. [Google Scholar] [CrossRef]
- Kashyap, N.; Kumari, A.; Raina, N.; Zakir, F.; Gupta, M. Prospects of Essential Oil Loaded Nanosystems for Skincare. Phytomedicine Plus 2022, 2, 100198. [Google Scholar] [CrossRef]
- Piras, A.; Falconieri, D.; Bagdonaite, E.; Maxia, A.; Gonçalves, M.J.; Cavaleiro, C.; Salgueiro, L.; Porcedda, S. Chemical Composition and Antifungal Activity of Supercritical Extract and Essential Oil of Tanacetum vulgare Growing Wild in Lithuania. Nat. Prod. Res. 2014, 28, 1906–1909. [Google Scholar] [CrossRef] [PubMed]
- Bączek, K.B.; Kosakowska, O.; Przybył, J.L.; Pióro-Jabrucka, E.; Costa, R.; Mondello, L.; Gniewosz, M.; Synowiec, A.; Węglarz, Z. Antibacterial and Antioxidant Activity of Essential Oils and Extracts from Costmary (Tanacetum balsamita L.) and Tansy (Tanacetum vulgare L.). Ind. Crops Prod. 2017, 102, 154–163. [Google Scholar] [CrossRef]
- Devrnja, N.; Anđelković, B.; Aranđelović, S.; Radulović, S.; Soković, M.; Krstić-Milošević, D.; Ristić, M.; Ćalić, D. Comparative Studies on the Antimicrobial and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Methanol Extracts. S. Afr. J. Bot. 2017, 111, 212–221. [Google Scholar] [CrossRef]
- Czerniewicz, P.; Chrzanowski, G.; Sprawka, I.; Sytykiewicz, H. Aphicidal Activity of Selected Asteraceae Essential Oils and Their Effect on Enzyme Activities of the Green Peach Aphid, Myzus Persicae (Sulzer). Pestic. Biochem. Physiol. 2018, 145, 84–92. [Google Scholar] [CrossRef]
- Goudarzi, T.; Saharkhiz, M.J.; Rowshan, V.; Taban, A. Changes in Essential Oil Content and Composition of Tansy (Tanacetum vulgare L.) under Foliar Application of Salicylic and Orthophosphoric Acids. J. Essent. Oil Res. 2016, 28, 64–70. [Google Scholar] [CrossRef]
- Benedek, K.; Bálint, J.; Veronika Salamon, R.; Kovács, E.; Ábrahám, B.; Fazakas, C.; Loxdale, H.D.; Balog, A. Chemotype of Tansy (Tanacetum vulgare L.) Determines Aphid Genotype and Its Associated Predator System. Biol. J. Linn. Soc. 2015, 114, 709–719. [Google Scholar] [CrossRef] [Green Version]
- Vaverkova, S.; Birosova, L.; Luptak, P.; Brazdovicova, B.; Vaverkova, S.; Birosova, L.; Luptak, P.; Brazdovicova, B. Content of Essential Oil Obtained from Flowerheads in Selected Species of Tanacetum L. Genus and Identification of Selected Components. Herba Pol. 2008, 54, 22–29. [Google Scholar]
- Nurzyńska-Wierdak, R.; Sałata, A.; Kniaziewicz, M. Tansy (Tanacetum vulgare L.)—A Wild-Growing Aromatic Medicinal Plant with a Variable Essential Oil Composition. Agronomy 2022, 12, 277. [Google Scholar] [CrossRef]
- Formisano, C.; Senatore, F.; Bruno, M.; Rosselli, S.; Bellone, G.; Spadaro, V. Essential Oil Composition of Tanacetum Vulgare Subsp. Siculum (Guss.) Raimondo et Spadaro (Asteraceae) from Sicily. Nat. Prod. Commun. 2009, 4, 567–570. [Google Scholar] [CrossRef] [PubMed]
- Goudarzi, T.; Saharkhiz, M.J.; Rowshan, V. Ontogenetic Variation of Essential Oil Content and Constituents in Tansy (Tanacetum Vulgare L.). J. Appl. Res. Med. Aromat. Plants 2015, 2, 48–53. [Google Scholar] [CrossRef]
- Keskitalo, M.; Pehu, E.; Simon, J.E. Variation in Volatile Compounds from Tansy (Tanacetum vulgare L.) Related to Genetic and Morphological Differences of Genotype. Biochem. Syst. Ecol. 2001, 29, 267–285. [Google Scholar] [CrossRef] [PubMed]
- Coté, H.; Boucher, M.-A.; Pichette, A.; Legault, J. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum Vulgare L. Essential Oil and Its Constituents. Medicines 2017, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Magierowicz, K.; Górska-Drabik, E.; Sempruch, C. The Effect of Tanacetum Vulgare Essential Oil and Its Main Components on Some Ecological and Physiological Parameters of Acrobasis Advenella (Zinck.) (Lepidoptera: Pyralidae). Pestic. Biochem. Physiol. 2020, 162, 105–112. [Google Scholar] [CrossRef]
- Baranauskiene, R.; Kazernavičiute, R.; Pukalskiene, M.; Maždžieriene, R.; Venskutonis, P.R. Agrorefinery of Tanacetum Vulgare L. into Valuable Products and Evaluation of Their Antioxidant Properties and Phytochemical Composition. Ind. Crops Prod. 2014, 60, 113–122. [Google Scholar] [CrossRef]
- Masuelli, M.A.; Illanes, C.O. Review of the Characterization of Sodium Alginate by Intrinsic Viscosity Measurements. Comparative Analysis between Conventional and Single Point Methods. Int. J. Biomater. Sci. Eng. 2014, 1, 1–11. [Google Scholar]
- Tymczewska, A.; Furtado, B.U.; Nowaczyk, J.; Hrynkiewicz, K.; Szydłowska-Czerniak, A. Functional Properties of Gelatin/Polyvinyl Alcohol Films Containing Black Cumin Cake Extract and Zinc Oxide Nanoparticles Produced via Casting Technique. Int. J. Mol. Sci. 2022, 23, 2734. [Google Scholar] [CrossRef]
- Szydłowska-Czerniak, A.; Tułodziecka, A. Antioxidant Capacity of Rapeseed Extracts Obtained by Conventional and Ultrasound-Assisted Extraction. JAOCS J. Am. Oil Chem. Soc. 2014, 91, 2011–2019. [Google Scholar] [CrossRef] [Green Version]
- ISO 20645:2006; Flat Products—Determination of Antimicrobial Activity–Diffusion Method on Agar Plate. International Organization for Standardization: Geneva, Switzerland, 2006.
- ISO 22196:2011; Measurements of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland, 2011.
- Becker, T.A.; Kipke, D.R.; Brandon, T. Calcium Alginate Gel: A Biocompatible and Mechanically Stable Polymer for Endovascular Embolization. J. Biomed. Mater. Res. 2001, 54, 76–86. [Google Scholar] [CrossRef]
- Blaeser, A.; Duarte Campos, D.F.; Puster, U.; Richtering, W.; Stevens, M.M.; Fischer, H. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Adv. Healthc. Mater. 2016, 5, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Dodero, A.; Vicini, S.; Alloisio, M.; Castellano, M. Rheological Properties of Sodium Alginate Solutions in the Presence of Added Salt: An Application of Kulicke Ecquation. Rheol. Acta 2020, 59, 365–374. [Google Scholar] [CrossRef]
- Bonilla, J.; Atarés, L.; Vargas, M.; Chiralt, A. Effect of Essential Oils and Homogenization Conditions on Properties of Chitosan-Based Films. Food Hydrocoll. 2012, 26, 9–16. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, A.; Soliva-Fortuny, R.; Martín-Belloso, O. Physicochemical Characterization and Antimicrobial Activity of Food-Grade Emulsions and Nanoemulsions Incorporating Essential Oils. Food Hydrocoll. 2015, 43, 547–556. [Google Scholar] [CrossRef]
- Pitt, F.D.; Domingos, A.M.; Barros, A.A.C. Purification of Residual Glycerol Recovered from Biodiesel Production. S Afr J Chem Eng 2019, 29, 42–51. [Google Scholar] [CrossRef]
- Hong, T.; Yin, J.; Nie, S.; Xie, M. Applications of Infrared Spectroscopy in Polysaccharide Structural Analysis: Progress, Challenge and Perspective. Food Chem. X 2021, 12, 100168. [Google Scholar] [CrossRef]
- Mahcene, Z.; Khelil, A.; Hasni, S.; Akman, P.K.; Bozkurt, F.; Birech, K.; Goudjil, M.B.; Tornuk, F. Development and Characterization of Sodium Alginate Based Active Edible Films Incorporated with Essential Oils of Some Medicinal Plants. Int. J. Biol. Macromol. 2020, 145, 124–132. [Google Scholar] [CrossRef]
- Prasetyaningrum, A.; Utomo, D.P.; Raemas, A.F.A.; Kusworo, T.D.; Jos, B.; Djaeni, M. Alginate/κ-Carrageenan-Based Edible Films Incorporated with Clove Essential Oil: Physico-Chemical Characterization and Antioxidant-Antimicrobial Activity. Polymers 2021, 13, 354. [Google Scholar] [CrossRef]
- Cofelice, M.; Cuomo, F.; Chiralt, A. Alginate Films Encapsulating Lemongrass Essential Oil as Affected by Spray Calcium Application. Colloids Interfaces 2019, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Kaewpetch, T.; Pratummang, A.; Suwarak, S.; Wongphan, P.; Promhuad, K.; Leelaphiwat, P.; Bumbudsanpharoke, N.; Lorenzo, J.M.; Harnkarnsujarit, N. Ylang-ylang (Cananga odorata) essential oils with flora odorants enhanced active function of biodegradable polyester films produced by extrusion. Food Biosci. 2023, 51, 102284. [Google Scholar] [CrossRef]
- Moalla, S.; Ammar, I.; Fauconnier, M.L.; Danthine, S.; Blecker, C.; Besbes, S.; Attia, H. Development and Characterization of Chitosan Films Carrying Artemisia Campestris Antioxidants for Potential Use as Active Food Packaging Materials. Int. J. Biol. Macromol. 2021, 183, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Jafari, J.; Zandi, M.; Ganjloo, A. Characterization of Alginate-Gelatin Edible Film Containing Anise (Pimpinella anisum L.) Essential Oil. J. Polym. Environ. 2022. [Google Scholar] [CrossRef]
- Acevedo-Fani, A.; Salvia-Trujillo, L.; Rojas-Graü, M.A. Edible Films from Essential-Oil-Loaded Nanoemulsions: Physicochemical Characterization and Antimicrobial Properties. Food Hydrocoll. 2015, 47, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Soares, J.P.; Santos, J.E.; Chierice, G.O.; Cavalheiro, E.T.G. Thermal Behavior of Alginic Acid and Its Sodium Salt. Ecl. Quím. 2004, 29, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Reddy, S.G.; Thakur, A. Thermal Stability and Kinetics of Sodium Alginate and Lignosulfonic Acid Blends. Iran. J. Mater. Sci. Eng. 2018, 15, 53–59. [Google Scholar]
- Almasi, L.; Radi, M.; Amiri, S. The Release Rate and Antimicrobial Activity of Calcium Alginate Films Containing Self-Microemulsifying Thymus Vulgaris Essential Oil against Escherichia Coli and Staphylococcus Aureus. J. Food Saf. 2020, 40, e12828. [Google Scholar] [CrossRef]
- Dou, B.; Dupont, V.; Williams, P.T.; Chen, H.; Ding, Y. Thermogravimetric kinetics of crude glycerol. Bioresour. Technol. 2009, 100, 2613–2620. [Google Scholar] [CrossRef] [Green Version]
- Jovanović, J.; Ćirković, J.; Radojković, A.; Mutavdžić, D.; Gordana Tanasijevič, G.; Joksimovič, K.; Bakič, G.; Brankovič, G.; Brankovič, Z. Chitosan and Pectin-Based Films and Coatings with Active Components for Application in Antimicrobial Food Packaging. Prog. Org. Coat. 2021, 158, 106349. [Google Scholar] [CrossRef]
- Kavoosi, G.; Derakhshan, M.; Salehi, M.; Rahmati, L. Microencapsulation of Zataria Essential Oil in Agar, Alginate and Carrageenan. Innov. Food Sci. Emerg. Technol. 2018, 45, 92–97. [Google Scholar] [CrossRef]
- Al-Harrasi, A.; Bhatia, S.; Al-Azri, M.S.; Ullah, S.; Najmi, A. Effect of Drying Temperature on Physical, Chemical and Antioxidant Properties of Ginger Oil Loaded Gelatin-Sodium Alginate Edible Films. Membranes 2022, 12, 862. [Google Scholar] [CrossRef]
- Mihaylova, D.; Vrancheva, R.; Desseva, I.; Ivanov, I.; Dincheva, I.; Popova, M.; Popova, A. Analysis of the GC-MS of Volatile Compounds and the Phytochemical Profile and Antioxidant Activities of Some Bulgarian Medicinal Plants. Z. Nat. Sect. C Biosci. 2019, 74, 45–54. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Kitts, D.D. Antioxidant Property of Coffee Components: Assessment of Methods That Define Mechanism of Action. Molecules 2014, 19, 19180–19208. [Google Scholar] [CrossRef] [Green Version]
- Richert, A.; Olewnik-Kruszkowska, E.; Dąbrowska, G.B.; Dąbrowski, H.P. The Role of Birch Tar in Changing the Physicochemical and Biocidal Properties of Polylactide-Based Films. Int. J. Mol. Sci. 2022, 23, 268. [Google Scholar] [CrossRef] [PubMed]
- Korpinen, R.I.; Välimaa, A.L.; Liimatainen, J.; Kunnas, S. Essential Oils and Supercritical CO2 Extracts of Arctic Angelica (Angelica archangelica L.), Marsh Labrador Tea (Rhododendron tomentosum) and Common Tansy (Tanacetum vulgare)—Chemical Compositions and Antimicrobial Activities. Molecules 2021, 26, 7121. [Google Scholar] [CrossRef] [PubMed]
- Wojdyło, A.; Oszmiański, J.; Czemerys, R. Antioxidant Activity and Phenolic Compounds in 32 Selected Herbs. Food Chem. 2007, 105, 940–949. [Google Scholar] [CrossRef]
- Bintsis, T. Foodborne Pathogens. AIMS Microbiol. 2017, 3, 529–563. [Google Scholar] [CrossRef] [PubMed]
- Meliani, A.; Bensoltane, A. Review of Pseudomonas Attachment and Biofilm Formation in Food Industry. Poult. Fish. Wildl. Sci. 2015, 3, 1000126. [Google Scholar] [CrossRef]
- Iglewski, B.H. Pseudomonas. In Medical Microbiology, 4th ed.; Baron, S., Ed.; University of Texas Medical Branch at Galveston: Galveston, TX, USA, 1996; Chapter 27, PMID: 21413324. [Google Scholar]
- Radulović, N.S.; Genčić, M.S.; Stojanović, N.M.; Randjelović, P.J.; Stojanović-Radić, Z.Z.; Stojiljković, N.I. Toxic Essential Oils. Part V: Behaviour Modulating and Toxic Properties of Thujones and Thujone-Containing Essential Oils of Salvia officinalis L.; Artemisia absinthium L.; Thuja occidentalis L. and Tanacetum vulgare L. Food Chem. Toxicol. 2017, 105, 355–369. [Google Scholar] [CrossRef]
- Zámboriné Németh, É.; Thi Nguyen, H. Thujone, a Widely Debated Volatile Compound: What Do We Know about It? Phytochem. Rev. 2020, 19, 405–423. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jasiwal, S. Essential Oil as Additives in Food Packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Abdullah, C.J.; Hafeez, M.A.; Wang, Q.; Farooq, S.; Huang, Q.; Tian, W.; Xiao, J. Biopolymer-Based Functional Films for Packaging Applications: A review. Front. Nutr. 2022, 9, 1000116. [Google Scholar] [CrossRef] [PubMed]
- Laorenza, Y.; Chonhenchob, V.; Bumbudsanpharoke, N.; Jittanit, W.; Sae-tan, S.; Rachtanapun, C.; Chanput, W.P.; Charoensiddhi, S.; Srisa, A.; Promhuad, K.; et al. Polymeric Packaging Applications for Seafood Products: Packaging-Deterioration Relevance, Technology and Trends. Polymers 2022, 14, 3706. [Google Scholar] [CrossRef] [PubMed]
- San, H.; Laorenz, Y.; Behzadfar, E.; Sonchaeng, U.; Wadaugsorn, K.; Sodsai, J.; Kaewpetch, T.; Promhuad, K.; Srisa, A.; Wongphan, P.; et al. Functional Polymer and Packaging Technology for Bakery Products. Polymers 2022, 14, 3793. [Google Scholar] [CrossRef]
- Song, D.-H.; Hoa, V.B.; Kim, H.W.; Khang, S.M.; Cho, S.-H.; Ham, J.-S.; Seol, K.-H. Edible Films on Meat and Meat Products. Coatings 2021, 11, 1344. [Google Scholar] [CrossRef]
Viscosity (mPa∙s) ± SD | ||||||
---|---|---|---|---|---|---|
Sample | 1.5 rpm | 3 rpm | 6 rpm | 12 rpm | 30 rpm | 60 rpm |
Alg + G | 800 ± 23 a | 933 ± 5 b | 933 ± 8 d | 967 ± 16 a | 947 ± 12 c | 906 ± 5 b |
Alg + G + TO 1% | 800 ± 11 a | 1022 ± 8 a | 1067 ± 9 b | 1111 ± 12 a | 1064 ± 33 a | 1033 ± 12 a |
Alg + G + TO 1.33% | 800 ± 15 a | 1022 ± 13 a | 1133 ± 6 a | 1133 ± 12 a | 1098 ± 10 a | 1038 ± 10 a |
Alg + G + TO 1.67% | 800 ± 13 a | 978 ± 11 b | 1067 ± 9 b | 1100 ± 7 a | 1080 ± 11 a | 1029 ± 4 a |
Alg + G + TO 2% | 800 ± 17 a | 933 ± 16 b | 1000 ± 7 c | 1011 ± 23 a | 1004 ± 9 b | 953 ± 7 c |
Wavenumber (cm−1) | Vibrational Mode |
---|---|
3266 | O–H stretching |
2932 | C–H asymmetric stretching |
2881 | C–H symmetric stretching |
1603 | COO– asymmetric stretching |
1407 | COO– symmetric stretching |
1095 | C–O–C asymmetric stretching in the glycosidic bond |
1026 | C–O–C asymmetric stretching |
995 | C–O asymmetric stretching (in C–O–H) |
924 | O–H deformation (in glycerol) |
851 | C–O symmetric stretching (in glycerol) |
816 | C–O–C symmetric stretching |
Sample | E(MPa) ± SD | σ (MPa) ± SD | ε (%) ± SD |
---|---|---|---|
Alg + G | 10.48 ± 1.49 a | 7.10 ± 1.47 a | 52.29 ± 1.78 ab |
Alg + G + TO 1% | 7.83 ± 1.39 b | 6.88 ± 0.97 ab | 61.81 ± 4.88 a |
Alg + G + TO 1.33% | 9.13 ± 0.67 a | 6.02 ± 0.44 ab | 50.16 ± 3.58 b |
Alg + G + TO 1.67% | 7.27 ± 0.57 b | 5.31 ± 0.46 b | 53.48 ± 4.07 ab |
Alg + G + TO 2% | 6.89 ± 0.64 b | 5.22 ± 0.63 b | 56.19 ± 4.82 ab |
Sample | Thickness (mm) ± SD | MC (%)± SD | AC ± SD |
---|---|---|---|
Alg + G | 0.108 ± 0.005 a | 50.32 ± 1.38 a | 0 a |
Alg + G + TO 1% | 0.145 ± 0.007 b | 35.50 ± 0.08 b | 136.69 ± 4.98 b |
Alg + G + TO 1.33% | 0.143 ± 0.010 b | 29.40 ± 1.67 c | 138.96 ± 6.46 b |
Alg + G + TO 1.67% | 0.146 ± 0.012 b | 19.48 ± 0.98 d | 292.91 ± 7.00 c |
Alg + G + TO 2% | 0.148 ± 0.013 b | 14.32 ± 0.12 e | 280.08 ± 8.39 c |
Sample | Growth of Bacteria on the Nutrient Solution under the Working Sample | Rating of Antibacterial Effect |
---|---|---|
E. coli | ||
Alg + G | strong | insufficient effect |
Alg + G + TO 1% | average | limited efficiency |
Alg + G + TO 1.33% | average | limited efficiency |
Alg + G + TO 1.67% | lack | good effect |
Alg + G + TO 2% | lack | good effect |
S. aureus | ||
Alg + G | strong | insufficient effect |
Alg + G + TO 1% | average | limited efficiency |
Alg + G + TO 1.33% | average | limited efficiency |
Alg + G + TO 1.67% | lack | good effect |
Alg + G + TO 2% | lack | good effect |
P. aeruginosa | ||
Alg + G | strong | insufficient effect |
Alg + G + TO 1% | average | limited efficiency |
Alg + G + TO 1.33% | average | limited efficiency |
Alg + G + TO 1.67% | lack | good effect |
Alg + G + TO 2% | lack | good effect |
Sample | Bacteria Strain | R | % Reduction |
---|---|---|---|
Alg + G | E. coli | 0.32 | <90.0 |
Alg + G + TO 1% | 1.04 | >90.0–99.0 | |
Alg + G + TO 1.33% | 1.26 | >90.0–99.0 | |
Alg + G + TO 1.67% | 2.16 | >99.9 | |
Alg + G + TO 2% | 2.30 | >99.9 | |
Alg + G | S. aureus | 0.44 | <90.0 |
Alg + G + TO 1% | 1.12 | >90.0–99.0 | |
Alg + G + TO 1.33% | 1.42 | >90.0–99.0 | |
Alg + G + TO 1.67% | 2.02 | >99.9 | |
Alg + G + TO 2% | 2.32 | >99.9 | |
Alg + G | P. aeruginosa | 0.50 | <90.0 |
Alg + G + TO 1% | 1.40 | >90.0–99.0 | |
Alg + G + TO 1.33% | 1.60 | >90.0–99.0 | |
Alg + G + TO 1.67% | 2.10 | >99.9 | |
Alg + G + TO 2% | 2.20 | >99.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kowalonek, J.; Stachowiak, N.; Bolczak, K.; Richert, A. Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare L.) Essential Oil. Polymers 2023, 15, 260. https://doi.org/10.3390/polym15020260
Kowalonek J, Stachowiak N, Bolczak K, Richert A. Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare L.) Essential Oil. Polymers. 2023; 15(2):260. https://doi.org/10.3390/polym15020260
Chicago/Turabian StyleKowalonek, Jolanta, Natalia Stachowiak, Kinga Bolczak, and Agnieszka Richert. 2023. "Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare L.) Essential Oil" Polymers 15, no. 2: 260. https://doi.org/10.3390/polym15020260
APA StyleKowalonek, J., Stachowiak, N., Bolczak, K., & Richert, A. (2023). Physicochemical and Antibacterial Properties of Alginate Films Containing Tansy (Tanacetum vulgare L.) Essential Oil. Polymers, 15(2), 260. https://doi.org/10.3390/polym15020260