Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Device Preparation
2.2. Device and Thin Film Characterization
3. Results
3.1. Material’s Characterization
3.2. Current–Voltage (I-V) Characteristics
3.2.1. I-V Parameters in the Dark
Prepared Devices | ZnO (wt%) | VTO (V) | RR at (V) | n | I0 (mA) | ϕb (eV) | Rsh | Rs |
---|---|---|---|---|---|---|---|---|
Pure PANI | 0 | 1.07 | 135 at ±3.2 | 10 | 3.7 × 10−5 | 0.91 | 0.13 GΩ | 2 kΩ |
PANI/ZnO | 1 | 1.05 | 43.3 at ± 3.2 | 2.7 | 9.5 × 10−7 | 0.93 | 65 kΩ | 2 kΩ |
PANI/ZnO | 2 | 0.77 | 32.5 at ± 3.2 | 4.8 | 3.7 × 10−7 | 1.02 | 69 kΩ | 2 kΩ |
PANI/ZnO | 3 | 0.68 | 66.8 at ± 3.2 | 18.7 | 1.7 × 10−5 | 1.01 | 76 kΩ | 1 kΩ |
PANI/ZnO | 4 | 0.97 | 168 at ± 3.2 | 18.8 | 3.6 × 10−5 | 0.91 | 0.13 GΩ | 2 kΩ |
3.2.2. Illumination of I-V Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Beygisangchin, M.; Rashid, S.A.; Shafie, S.; Sadrolhosseini, A.R.; Lim, H.N. Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films—A Review. Polymers 2021, 13, 2003. [Google Scholar] [CrossRef] [PubMed]
- Czyżowska, A.; Barbasz, A. A review: Zinc oxide nanoparticles—Friends or enemies? Int. J. Environ. Health Res. 2020, 32, 885–901. [Google Scholar] [CrossRef] [PubMed]
- Droepenu, E.K.; Wee, B.S.; Chin, S.F.; Kok, K.Y.; Maligan, M.F. Zinc oxide nanoparticles synthesis methods and its effect on morphology: A review. Biointerface Res. Appl. Chem. 2022, 12, 4261–4292. [Google Scholar] [CrossRef]
- Bush, K.A.; Manzoor, S.; Frohna, K.; Yu, Z.J.; Raiford, J.A.; Palmstrom, A.F.; Wang, H.P.; Prasanna, R.; Bent, S.F.; Holman, Z.C.; et al. Minimizing Current and Voltage Losses to Reach 25% Efficient Monolithic Two-Terminal Perovskite-Silicon Tandem Solar Cells. ACS Energy Lett. 2018, 3, 2173–2180. [Google Scholar] [CrossRef]
- Guguloth, L.; Raja Shekar, P.V.; Reddy Channu, V.S.; Kumari, K. Effect of reduced fluorinated graphene oxide as ternary component on synergistically boosting the performance of polymer bulk heterojunction solar cells. Sol. Energy 2021, 225, 259–265. [Google Scholar] [CrossRef]
- Guo, Z.; Jena, A.K.; Kim, G.M.; Miyasaka, T. The high open-circuit voltage of perovskite solar cells: A review. Energy Environ. Sci. 2022, 15, 3171–3222. [Google Scholar] [CrossRef]
- Heeger, A.J. 25th Anniversary Article: Bulk Heterojunction Solar Cells: Understanding the Mechanism of Operation. Adv. Mater. 2014, 26, 10–28. [Google Scholar] [CrossRef]
- Mdluli, S.B.; Ramoroka, M.E.; Yussuf, S.T.; Modibane, K.D.; John-Denk, V.S.; Iwuoha, E.I. π-Conjugated Polymers and Their Application in Organic and Hybrid Organic-Silicon Solar Cells. Polymers 2022, 14, 716. [Google Scholar] [CrossRef]
- Meng, L.; Fan, H.; Lane, J.M.D.; Qin, Y. Bottom-Up Approaches for Precisely Nanostructuring Hybrid Organic/Inorganic Multi-Component Composites for Organic Photovoltaics. MRS Adv. 2020, 5, 2055–2065. [Google Scholar] [CrossRef]
- Wang, K.; Yi, C.; Liu, C.; Hu, X.; Chuang, S.; Gong, X. Effects of Magnetic Nanoparticles and External Magnetostatic Field on the Bulk Heterojunction Polymer Solar Cells. Sci. Rep. 2015, 5, 9265. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, J.; Bi, P.; Ren, J.; Wang, Y.; Yang, Y.; Liu, X.; Zhang, S.; Hou, J. Tandem Organic Solar Cell with 20.2% Efficiency. Joule 2022, 6, 171–184. [Google Scholar] [CrossRef]
- Ashok Kumar, S.; Shankar, J.S.; Periyasamy, B.K. Study on interfacial interactions and optoelectronic properties of MEH-PPV/SnO2 hetero-structure. Semicond. Sci. Technol. 2022, 37, 045015. [Google Scholar] [CrossRef]
- Ma, R.; Yan, C.; Yu, J.; Liu, T.; Liu, H.; Li, Y.; Chen, J.; Luo, Z.; Tang, B.; Lu, X.; et al. High-Efficiency Ternary Organic Solar Cells with a Good Figure-of-Merit Enabled by Two Low-Cost Donor Polymers. ACS Energy Lett. 2022, 7, 2547–2556. [Google Scholar] [CrossRef]
- Rashid, I.A.; Tariq, A.; Shakir, H.F.; Afzal, A.; Ali, F.; Abuzar, M.; Haider, T. Electrically conductive epoxy/polyaniline composite fabrication and characterization for electronic applications. J. Reinf. Plast. Compos. 2021, 41, 34–45. [Google Scholar] [CrossRef]
- Zhou, K.; Xian, K.; Ye, L. Morphology control in high-efficiency all-polymer solar cells. InfoMat 2022, 4, e12270. [Google Scholar] [CrossRef]
- Kausar, A. Polyaniline/graphene nanoplatelet nanocomposite towards high-end features and applications. Mater. Res. Innov. 2021, 26, 249–261. [Google Scholar] [CrossRef]
- Doustkhah, E.; Esmat, M.; Fukata, N.; Ide, Y.; Hanaor, D.A.H.; Assadi, M.H.N. MOF-derived nanocrystalline ZnO with controlled orientation and photocatalytic activity. Chemosphere 2022, 303, 134932. [Google Scholar] [CrossRef]
- Mahalingam, S.; Low, F.W.; Omar, A.; Manap, A.; Rahim, N.A.; Tan, C.H.; Abdullah, H.; Voon, C.H.; Rokhmat, M.; Wibowo, E.; et al. Zinc oxide/graphene nanocomposite as efficient photoelectrode in dye-sensitized solar cells: Recent advances and future outlook. Int. J. Energy Res. 2022, 46, 7082–7100. [Google Scholar] [CrossRef]
- Tahir, M.; Din, I.U.; Zeb, M.; Aziz, F.; Wahab, F.; Gul, Z.; Alamgeer; Sarker, M.R.; Ali, S.; Ali, S.H.M.; et al. Thin Films Characterization and Study of N749-Black Dye for Photovoltaic Applications. Coatings 2022, 12, 1163. [Google Scholar] [CrossRef]
- Islam, Z.U.; Tahir, M.; Syed, W.A.; Aziz, F.; Wahab, F.; Said, S.M.; Sarker, M.R.; Md Ali, S.H.; Sabri, M.F.M. Fabrication and Photovoltaic Properties of Organic Solar Cell Based on Zinc Phthalocyanine. Energies 2020, 13, 962. [Google Scholar] [CrossRef]
- Shahat, M.A.; Ghitas, A.; El-Hossary, F.M.; El-Rahman, A.M.A. Performance Enhancement of Organic Solar Cells via Modification of the PAni-TiO2 Interface with Hydrogen Plasma Treatment. Recent Trends Chem. Mater. Sci. 2022, 8, 72–88. [Google Scholar] [CrossRef]
- Assadi, M.H.N.; Zheng, R.K.; Li, S.; Ringer, S.R. First-principles investigation of electrical and magnetic properties of ZnO based diluted magnetic semiconductors codoped with H. J. Appl. Phys. 2012, 111, 113901. [Google Scholar] [CrossRef]
- Alkuam, E.; Mohammed, M.; Chen, T.P. Fabrication of CdS nanorods and nanoparticles with PANI for (DSSCs) dye-sensitized solar cells. Sol. Energy 2017, 150, 317–324. [Google Scholar] [CrossRef]
- Turkten, N.; Karatas, Y.; Bekbolet, M. Preparation of PANI Modified ZnO Composites via Different Methods: Structural, Morphological and Photocatalytic Properties. Water 2021, 13, 1025. [Google Scholar] [CrossRef]
- Begum, A.N.; Dhachanamoorthi, N.; Saravanan, M.E.R.; Jayamurugan, P.; Manoharan, D.; Ponnuswamy, V. Influence of annealing effects on polyaniline for good microstructural modification. Optik 2013, 124, 238–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kandulna, R.; Choudhary, R.B. Robust electron transport properties of PANI/PPY/ZnO polymeric nanocomposites for OLED applications. Optik 2017, 144, 40–48. [Google Scholar] [CrossRef]
- Ahmed, F.; Kumar, S.; Arshi, N.; Anwar, M.S.; Su-Yeon, L.; Kil, G.S.; Park, D.W.; Koo, B.H.; Lee, C.G. Preparation and characterizations of polyaniline (PANI)/ZnO nanocomposites film using solution casting method. Thin Solid Films 2011, 519, 8375–8378. [Google Scholar] [CrossRef]
- Patil, S.L.; Pawar, S.G.; Chougule, M.A.; Raut, B.T.; Godse, P.R.; Sen, S.; Patil, V.B. Structural, Morphological, Optical, and Electrical Properties of PANi-ZnO Nanocomposites. Int. J. Polym. Mater. 2012, 61, 809–820. [Google Scholar] [CrossRef]
- Uddin, S.I.; Tahir, M.; Aziz, F.; Sarker, M.R.; Muhammad, F.; Khan, D.N.; Ali, S.H.M. Thickness Optimization and Photovoltaic Properties of Bulk Heterojunction Solar Cells Based on PFB–PCBM Layer. Energies 2020, 13, 5915. [Google Scholar] [CrossRef]
- Zeb, M.; Tahir, M.; Muhammad, F.; Mohd Said, S.; Mohd Sabri, M.F.; Sarker, M.R.; Hamid Md Ali, S.; Wahab, F. Amplified Spontaneous Emission and Optical Gain in Organic Single Crystal Quinquethiophene. Crystals 2019, 9, 609. [Google Scholar] [CrossRef]
- El-Zaidia, E.F.M.; Darwish, A.A.A. Electronic properties and photovoltaic performance of VONc-ZnO hybrid junction solar cells. Synth. Met. 2020, 259, 116227. [Google Scholar] [CrossRef]
- Zaidan, K.M.; Hussein, H.F.; Talib, R.A.; Hassan, A.K. Synthesis and characterization of (Pani/n-si)solar cell. Energy Procedia 2011, 6, 85–91. [Google Scholar] [CrossRef] [Green Version]
- El-Nahass, M.M.; Abd-El-Rahman, K.F.; Farag, A.A.M.; Darwish, A.A.A. Photovoltaic properties of NiPc/p-Si (organic/inorganic) heterojunctions. Org. Electron. 2005, 6, 129–136. [Google Scholar] [CrossRef]
- Oosterhout, S.D.; Wienk, M.M.; Van Bavel, S.S.; Thiedmann, R.; Jan Anton Koster, L.; Gilot, J.; Loos, J.; Schmidt, V.; Janssen, R.A.J. The effect of three-dimensional morphology on the efficiency of hybrid polymer solar cells. Nat. Mater. 2009, 8, 818–824. [Google Scholar] [CrossRef]
- Nguyen, B.P.; Kim, T.; Park, C.R. Nanocomposite-based bulk heterojunction hybrid solar cells. J. Nanomater. 2014, 2014, 26. [Google Scholar] [CrossRef]
- Gunasekar, K.; Chakravarthi, N.; Cho, W.; Lee, J.W.; Kim, S.W.; Cha, S.H.; Kotov, N.A.; Jin, S.H. Optimization of polymer solar cells performance by incorporated scattering of ZnO nanoparticles with different particle geometry. Synth. Met. 2015, 205, 185–189. [Google Scholar] [CrossRef]
Peaks (cm−1) | Bonds Nature/Dynamics |
---|---|
545 | Zn-O Stretch Vibration |
647 | C-H Out-of-Plane Bend in Benzenoid Ring |
721 | C-H Out-of-Plane Bend in Benzenoid Ring |
810 | C-H Out-of-Plane Bend in Benzenoid Ring |
1000 | C-O Stretch |
1305 | PANI/ZnO Spectra |
1475 | C-H Bend or In-Plane Bend |
1546 | C=C Stretch of Quinoid Ring |
1646 | C=N Stretch of Quinoid Ring |
2840 | C-H Stretch |
2908 | C-H Stretch |
3375 | O-H Stretch |
Material | Element | Weight % | Atomic % |
---|---|---|---|
PANI | C K | 88.86 | 89.97 |
N K | 11.32 | 10.03 | |
ZnO | O K | 18.64 | 48.95 |
Zn L | 81.36 | 51.05 | |
PANI/ZnO | C K | 40.12 | 44.86 |
N K | 7.48 | 6.62 | |
O K | 18.31 | 48.08 | |
Zn L | 33.56 | 21.05 |
Prepared Devices | ISC (mA) | VOC (V) | FF (%) | PMax (W) | η (%) |
---|---|---|---|---|---|
Pure PANI | 6.8 | 0.68 | 67 | 3.14 | 3.10 ± 0.5 |
PANI:ZnO 1 wt% | 7 | 0.68 | 65 | 3.13 | 3.09 ± 0.5 |
PANI:ZnO 2 wt% | 7.5 | 0.69 | 69 | 3.57 | 3.57 ± 0.5 |
PANI:ZnO 3 wt% | 8.9 | 0.7 | 72 | 4.48 | 4.48 ± 0.5 |
PANI:ZnO 4 wt% | 8.21 | 0.7 | 71 | 4.09 | 4.08 ± 0.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamgeer; Tahir, M.; Sarker, M.R.; Ali, S.; Ibraheem; Hussian, S.; Ali, S.; Imran Khan, M.; Khan, D.N.; Ali, R.; et al. Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications. Polymers 2023, 15, 363. https://doi.org/10.3390/polym15020363
Alamgeer, Tahir M, Sarker MR, Ali S, Ibraheem, Hussian S, Ali S, Imran Khan M, Khan DN, Ali R, et al. Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications. Polymers. 2023; 15(2):363. https://doi.org/10.3390/polym15020363
Chicago/Turabian StyleAlamgeer, Muhammad Tahir, Mahidur R. Sarker, Shabina Ali, Ibraheem, Shahid Hussian, Sajad Ali, Muhammad Imran Khan, Dil Nawaz Khan, Rashid Ali, and et al. 2023. "Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications" Polymers 15, no. 2: 363. https://doi.org/10.3390/polym15020363
APA StyleAlamgeer, Tahir, M., Sarker, M. R., Ali, S., Ibraheem, Hussian, S., Ali, S., Imran Khan, M., Khan, D. N., Ali, R., & Mohd Said, S. (2023). Polyaniline/ZnO Hybrid Nanocomposite: Morphology, Spectroscopy and Optimization of ZnO Concentration for Photovoltaic Applications. Polymers, 15(2), 363. https://doi.org/10.3390/polym15020363